HK1218552B - Antibody binding sites specific for egfrviii - Google Patents
Antibody binding sites specific for egfrviiiInfo
- Publication number
- HK1218552B HK1218552B HK16106459.3A HK16106459A HK1218552B HK 1218552 B HK1218552 B HK 1218552B HK 16106459 A HK16106459 A HK 16106459A HK 1218552 B HK1218552 B HK 1218552B
- Authority
- HK
- Hong Kong
- Prior art keywords
- seq
- egfrviii
- chain domain
- antibody variable
- heavy chain
- Prior art date
Links
Description
本发明涉及特异性结合EGFRvIII的结合蛋白和特异性结合EGFRvIII和CD3的多特异性结合蛋白。本发明进一步延伸到结合EGFRvIII和CD3的多特异性串联双抗体(tandemdiabody)。特别是,本发明涉及用于募集T细胞以专门有效地杀死几种类型实体瘤癌症的高细胞毒性EGFRvIII/CD3双特异性串联双抗体The present invention relates to a binding protein that specifically binds to EGFRvIII and a multispecific binding protein that specifically binds to EGFRvIII and CD3. The present invention further extends to a multispecific tandem diabody that binds to EGFRvIII and CD3. In particular, the present invention relates to a highly cytotoxic EGFRvIII/CD3 bispecific tandem diabody that is used to recruit T cells to effectively kill several types of solid tumor cancers.
EGFR失调与许多癌症相关联,小分子和EGFR靶向抗体均已成功用于临床。然而,由于EGFR的广泛的正常组织表达,被批准用于临床应用的抗体以及那些处于开发中的抗体均具有严重的副作用。具有截短的胞外结构域并确保配体非依赖性固有活性的EGFR的缺失突变体(deletion variant)III(EGFRvIII),是与致癌性转化相关的最常见的突变体形式。EGFRvIII专门在癌组织中表达,并与各种实体瘤类型相关。癌细胞上受限制的EGFRvIII表达提供了开发专门靶向癌症同时保护正常组织并充分降低与EGFR治疗相关的副作用的细胞毒性抗体的机会。EGFR imbalance is associated with many cancers, and small molecules and EGFR-targeted antibodies have all been successfully used in clinical practice. However, due to the extensive normal tissue expression of EGFR, the antibodies approved for clinical use and those in development all have serious side effects. The deletion mutant (deletion variant) III (EGFRvIII) of EGFR with truncated extracellular domain and ensuring ligand-independent intrinsic activity is the most common mutant form associated with oncogenic transformation. EGFRvIII is specifically expressed in cancer tissue and is associated with various solid tumor types. The restricted EGFRvIII expression on cancer cells provides the opportunity for developing a cytotoxic antibody that specifically targets cancer, protects normal tissues, and fully reduces the side effects associated with EGFR treatment.
在本发明的第一个方面中,本文描述了全人的、高特异性的、高亲和力EGFRvIII结合蛋白。所描述的EGFRvIII结合蛋白具有如下优势:In a first aspect of the present invention, fully human, highly specific, high-affinity EGFRvIII binding proteins are described herein. The described EGFRvIII binding proteins have the following advantages:
它们不促进或促进来自靶向阳性分子的细胞表面的非常低的EGFRvIII内化,这有利于募集细胞毒性T-细胞或NK-细胞。图9中的结果显示,根据本发明,细胞在所有测试条件下暴露于EGFRvIII结合蛋白之后,相对于未处理的细胞,EGFRvIII受体分子仍保留在细胞表面上。这些结果表明,本发明的EGFRvIII/CD3结合蛋白令人惊讶地不显示任何内化趋势(图9)。本发明的EGFRvIII特异性结合蛋白的结合可能抑制内化,而不是诱导内化,或者可能促进EGFRvIII表达的增加,从而导致其细胞表面密度增加。Figure 9 shows that EGFRvIII/CD3 of the present invention is the most common EGFRvIII binding protein of the present invention.They do not promote or promote the very low EGFRvIII internalization from the cell surface of target positive molecule, and this helps to raise cytotoxic T-cell or NK-cell.The result in Fig. 9 shows, according to the present invention, after cell is exposed to EGFRvIII conjugated proteins under all test conditions, with respect to untreated cell, EGFRvIII receptor molecules still remains on the cell surface.These results show, EGFRvIII/CD3 conjugated proteins of the present invention surprisingly do not show any internalization trend (Fig. 9).The combination of EGFRvIII specific binding proteins of the present invention may suppress internalization, rather than inducing internalization, or may promote the increase that EGFRvIII expresses, thereby causes its cell surface density to increase.
可使用亲和力成熟技术(affinity maturation technique)使这些高亲和力结合蛋白的亲和力得到进一步大幅提高以获得对EGFRvIII有特异性、KD在100pM范围或更低的结合蛋白。令人惊讶的事实是,这些结合蛋白展示了结合EGFRvIII的异常特异性,且对天然EGFR(野生型EGFR或EGFRwt)没有交叉反应性。由于来自EGFR细胞外结构域(外显子2-7)的269个氨基酸的框内(in-frame)缺失,因此相对于EGFRwt,在EGFRvIII中形成新表位(neo-epitope),且预计该新表位相当小:其由新的氨基酸并列(novel juxtaposition of aminoacids)(氨基酸5融合于氨基酸274)和缺失位点处的一个新的GLY氨基酸组成。Can use affinity maturation technology (affinity maturation technique) to make the avidity of these high-affinity associated proteins be further significantly improved to obtain that EGFRvIII is had specificity, K D in 100pM scope or lower associated proteins.Surprising fact is, these associated proteins have demonstrated the abnormal specificity in conjunction with EGFRvIII, and natural EGFR (wild-type EGFR or EGFRwt) is not had cross reactivity.Due to from 269 amino acid whose frames (in-frame) of EGFR extracellular domain (exon 2-7), therefore with respect to EGFRwt, in EGFRvIII, form new epi-position (neo-epitope), and estimate that this new epi-position is quite little: it is arranged by new amino acid (novel juxtaposition of aminoacids) (amino acid 5 is fused to amino acid 274) and a new GLY amino acid composition at the deletion site.
亲和力成熟筛选方法的目的在于通过促进解离速率(kOFF)降低的结合蛋白的选择来提高结合亲和力。然而,令人惊讶的是,所显示的亲和力成熟的结合蛋白大大增加了结合速率(kON),而kOFF的降低对结合蛋白的提高达100倍的结合仅有小的贡献,其中一些可变抗体结构域显示KD小于100pM。The goal of affinity maturation screening methods is to improve binding affinity by promoting the selection of binding proteins with reduced off-rates ( kOFF ). However, surprisingly, the affinity matured binding proteins shown have greatly increased on-rates (kON ) , while the reduction in kOFF has only a small contribution to the 100-fold increased binding of the binding proteins, with some variable antibody domains showing KD less than 100 pM.
这些独特的性质使这些本文所描述的对EGFRvIII有特异性的可变抗体结构域特别适用于开发多特异性的,例如双特异性的、多价的、免疫效应细胞参与(immune effectorcell engaging)、肿瘤靶向抗体治疗,诸如,例如EGFRvIII/CD3双特异性串联双抗体These unique properties make the variable antibody domains described herein that are specific for EGFRvIII particularly suitable for the development of multispecific, e.g., bispecific, multivalent, immune effector cell engaging, tumor-targeting antibody therapeutics, such as, for example, EGFRvIII/CD3 bispecific tandem diabodies.
在本发明的进一步方面中,提供了多价EGFRvIII结合抗体,其对EGFRvIII具有两个结合位点,或在多价双特异性抗体的情况下,除对EGFRvIII具有两个结合位点之外,还对T-细胞抗原CD3或特异性表达于天然杀伤(NK)细胞上的CD16A具有结合位点。In a further aspect of the invention, multivalent EGFRvIII binding antibodies are provided that have two binding sites for EGFRvIII, or in the case of a multivalent bispecific antibody, in addition to two binding sites for EGFRvIII, also have a binding site for the T-cell antigen CD3 or CD16A specifically expressed on natural killer (NK) cells.
在一个实施例中,使用对EGFRvIII具有两个结合位点并另外包含对CD3具有两个结合位点的EGFRvIII/CD3串联双抗体,并测试了它们与重组EGFRvIII-或EGFR-Fc融合抗原的结合。在非还原条件下(由于完整的二硫键,分子结构仍部分保留),或在还原条件下(蛋白结构完全变性),EGFRvIII-或EGFR-Fc融合抗原通过SDS-PAGE分离,通过蛋白质印迹(Western Blotting)转移至PVDF膜,并使用不同的EGFRvIII/CD3串联双抗体抗体(diabodyantibody)或EGFR-结合IgG西妥昔单抗来评估结合以修饰(decorate)印迹(图4)。该实施例显示,包含对EGFRvIII具有两个结合位点的亲代EGFRvIII结合结构域和亲和力成熟的EGFRvIII结合结构域在多价抗体形式中也保持其对EGFRvIII的选择特异性。在还原和非还原条件下,所有EGFRvIII/CD3串联双抗体均能识别EGFRvIII,但在任意的这些条件下均不能识别全长野生型EGFR。该实施例还证明,本文所描述的EGFRvIII特异性结合结构域能识别线性表位,且其反应性不需要完整的三维结构。这与EGFR-结合IgG抗体西妥昔单抗(爱必妥(Erbitux))相反,EGFR-结合IgG抗体西妥昔单抗能识别野生型EGFR和成熟的EGFRvIII,但其反应性显然需要完整二硫键与构象表位(图4)。In one embodiment, use EGFRvIII is had two binding sites and comprises in addition the EGFRvIII/CD3 series connection diabody that CD3 has two binding sites, and tested their combination with recombinant EGFRvIII-or EGFR-Fc fused antigen.Under non-reducing conditions (due to complete disulfide bond, molecular structure still part retains), or under reducing conditions (protein structure complete denaturation), EGFRvIII-or EGFR-Fc fused antigen separates by SDS-PAGE, is transferred to PVDF membrane by Western blotting (Western Blotting), and uses different EGFRvIII/CD3 series connection diabody antibodies (diabodyantibody) or EGFR-to assess in conjunction with modifying (decorate) trace (Fig. 4).This embodiment shows, comprises the parental EGFRvIII binding domains that EGFRvIII has two binding sites and the EGFRvIII binding domains of affinity maturation and also keeps its selection specificity to EGFRvIII in multivalent antibody form. Under reducing and non-reducing conditions, all EGFRvIII/CD3 series connection double antibodies all can identify EGFRvIII, but all can not identify full-length wild-type EGFR under these conditions arbitrarily.This embodiment also proves, and EGFRvIII specific binding structural domain described herein can identify linear epitope, and its reactivity does not need complete three-dimensional structure.This is opposite with EGFR-in conjunction with IgG antibody cetuximab (Erbitux (Erbitux)), EGFR-in conjunction with IgG antibody cetuximab can identify wild-type EGFR and ripe EGFRvIII, but its reactivity obviously needs complete disulfide bond and conformational epitope (Fig. 4).
在另一个实施例中,使用包含与不同CD3结合结构域组合的亲代的或亲和力成熟的EGFRvIII特异性结构域和/或在串联双抗体分子中具有不同顺序单个结合结构域的EGFRvIII/CD3串联双抗体。具有结构域顺序VL CD3-VH EGFRvIII-VL EGFRvIII-VH CD3的串联双抗体在串联双抗体分子的中部含有二价EGFRvIII结合位点,而具有结构域顺序VH EGFRvIII-VL CD3-VH CD3-VL EGFRvIII的串联双抗体在外面的位置具有两个EGFRvIII结合位点且在中部具有两个CD3结合位点。在ELISA中,分析串联双抗体的不同EGFRvIII-结构域和结构域顺序突变体与EGFRvIII抗原、野生型EGFR抗原的浓度依赖性结合以及与CD3抗原的浓度依赖性结合(图6)。所有含有亲和力成熟的EGFRvIII结合结构域的串联双抗体均显示了与EGFRvIII结合的大幅提高,清楚地表现为相应的结合曲线向较低浓度移位大于两个数量级(图6)。没有观察到任何串联双抗体与野生型EGFR抗原的结合。In another embodiment, EGFRvIII/CD3 tandem diabodies comprising parental or affinity-matured EGFRvIII specific domains in combination with different CD3 binding domains and/or having single binding domains of different orders in the tandem diabody molecule are used. The tandem diabody with the domain order V L CD3 -V H EGFRvIII -V L EGFRvIII - V H CD3 contains a divalent EGFRvIII binding site in the middle of the tandem diabody molecule, while the tandem diabody with the domain order V H EGFRvIII -V L CD3 -V H CD3 -V L EGFRvIII has two EGFRvIII binding sites in the outside position and two CD3 binding sites in the middle. In ELISA, the concentration-dependent binding of different EGFRvIII-domains and domain order mutants of the tandem diabody to EGFRvIII antigen, wild-type EGFR antigen, and to the concentration-dependent binding of the CD3 antigen (Fig. 6) are analyzed. All tandem diabodies containing affinity-matured EGFRvIII binding domains showed a substantial increase in binding to EGFRvIII, clearly manifested as corresponding binding curves shifting by more than two orders of magnitude to lower concentrations ( FIG. 6 ). No binding of any tandem diabody to wild-type EGFR antigen was observed.
可通过噬菌体展示文库(phase display libraries)选择和鉴定抗EGFRvIII抗体,例如选择性地结合成熟的而非天然形式(native form)的EGFR的抗原-结合蛋白。T细胞是不能由天然抗体募集的有效的肿瘤杀伤效应细胞。因此,在本发明的进一步方面中,本发明提供了一组多特异性EGFRvIII/CD3抗原-结合蛋白,特别是串联双抗体,其能募集T细胞、具有宽范围的结合特性和细胞毒性特性。在一组体外试验中表征了本发明的抗原-结合蛋白的结合特性、T细胞介导的细胞毒性活性和靶标介导的T细胞活化的特征。在FACS中,本发明的抗原-结合蛋白对Biacore、ELISA和EGFRvIII-阳性细胞中的EGFRvIII抗原显示异常的特异性。在测试的全浓度范围内,没有观察到任何结合蛋白与EGFR抗原或与EGFRwt表达细胞的可检测的结合。最有效的高亲和力串联双抗体对表达EGFRvIII的F98神经胶质瘤细胞和CHO细胞显示EC50为1pM-10pM的细胞毒性;剩余的串联双抗体显示EC50高达约10000pM的细胞毒性。也试验了这些串联双抗体对作为结合至天然形式的残基的更敏感探针的EGFRwt+细胞的细胞毒性。直至最大评估的串联双抗体浓度为0.5μM时,才在EGFRwt+细胞或其他EGFRvIII-阴性细胞上观察到细胞毒性。与CD3的高亲和力结合对有效的T细胞募集是至关重要的,然而,在体外不存在EGFRvIII+靶细胞时,如由增殖缺乏测量,本发明的串联双抗体没有引起T细胞活化,这有助于良好的临床前安全性(图10)。总之,抗肿瘤细胞毒性的严格特异性和高效性由EGFRvIII/CD3串联双抗体介导。Can select and identify anti-EGFRvIII antibody by phage display library (phase display libraries), for example, selectively combine the antigen-binding proteins of the EGFR of maturation rather than native form (native form).T cell is the effective tumor-killing effector cell that can not be raised by natural antibody.Therefore, in a further aspect of the present invention, the invention provides one group of multispecific EGFRvIII/CD3 antigen-binding proteins, particularly series connection diabody, it can raise T cell, have the binding characteristic and cytotoxicity of a wide range.Characterized the feature of the binding characteristic of antigen-binding proteins of the present invention, the cytotoxic activity of T cell mediation and the T cell activation of target mediation in one group of in vitro test.In FACS, antigen-binding proteins of the present invention shows unusual specificity to the EGFRvIII antigen in Biacore, ELISA and EGFRvIII-positive cell.Within the full concentration range of test, do not observe any conjugated protein and EGFR antigen or with the detectable combination of EGFRwt expressing cell. The most effective high-affinity series diabody shows the cytotoxicity of EC50 for F98 glioma cells and Chinese hamster ovary celIs expressing EGFRvIII and CHO cells; Remaining series diabody shows the cytotoxicity of EC50 up to about 10000pM.Also tested these series diabody pairs as the cytotoxicity of the EGFRwt + cell of the more sensitive probe of the residue of native form.When the series diabody concentration of maximum assessment was 0.5 μM, cytotoxicity was observed on EGFRwt + cell or other EGFRvIII-negative cells.It is crucial to be combined with the high-affinity of CD3 to effectively T cell recruitment, yet, when there is no EGFRvIII + target cell in vitro, as lacking measurement by proliferation, the series diabody of the present invention does not cause T cell activation, and this contributes to good preclinical safety (Figure 10).In a word, the strict specificity and high efficiency of anti-tumor cell toxicity are mediated by EGFRvIII/CD3 series diabody.
产生了具有CD3结合KD范围为1.1nM至约500nM但相对恒定的EGFRvIII结合KD(范围为2.0nM-6.7nM)的串联双抗体,其显示了对表达EGFRvIII的细胞的CD3结合强度和细胞毒性效力的良好相关性,其EC50值范围为25pM至约10000pM(图11)。Tandem diabodies with CD3 binding KD ranging from 1.1 nM to approximately 500 nM but relatively constant EGFRvIII binding KD (ranging from 2.0 nM to 6.7 nM) were generated and showed good correlation between CD3 binding strength and cytotoxic potency against cells expressing EGFRvIII, with EC50 values ranging from 25 pM to approximately 10,000 pM (Figure 11).
虽然本发明的抗原-结合蛋白对EGFRvIII的亲和力已得到显著提高,但特异性没有损失。Although the affinity of the antigen-binding protein of the present invention for EGFRvIII has been significantly improved, the specificity is not lost.
是用于表示串联双抗体的Affimed Therapeutics的商标(Kipriyanovet al.,1999,J.Mol.Biol,293:41-56;Cochlovius et al.,2000,Cancer Res.,60:4336-4341;Reusch et al.,2004,Int.J.Cancer,112:509-518,Kipriyanov,2009,Methods MolBiol,562:177-93;McAleese and Eser,2012,Future Oncol.8:687-95)。在本发明的上下文中,TandAb和串联双抗体作为同义词使用。is a trademark of Affimed Therapeutics used to represent tandem diabodies (Kipriyanov et al., 1999, J. Mol. Biol, 293: 41-56; Cochlovius et al., 2000, Cancer Res., 60: 4336-4341; Reusch et al., 2004, Int. J. Cancer, 112: 509-518, Kipriyanov, 2009, Methods Mol Biol, 562: 177-93; McAleese and Eser, 2012, Future Oncol. 8: 687-95). In the context of the present invention, TandAb and tandem diabodies are used as synonyms.
野生型EGFR基因和蛋白的序列是已知的。EGFRvIII是野生型EGFR基因的外显子2-7(801bp)的框内缺失的结果,导致受体外部结构域的267个氨基酸缺失,并在外显子1和8的接点处产生新的甘氨酸残基。EGFR胞外结构域内的该新的氨基酸并列产生肿瘤特异性和免疫原性表位。The sequence of wild-type EGFR gene and protein is known. EGFRvIII is the result of an in-frame deletion of exons 2-7 (801bp) of the wild-type EGFR gene, resulting in 267 amino acid deletions in the receptor's outer domain and a new glycine residue at the junction of exons 1 and 8. This new amino acid juxtaposition in the EGFR extracellular domain generates tumor-specific and immunogenic epitopes.
根据本发明的第一个方面,描述了对至少EGFRvIII具有特异性的结合蛋白,其不与野生型EGFR交叉反应。该结合蛋白优选包括选自下表1A中所描述的CDR的抗体可变重链的CDR1、CDR2、CDR3和抗体可变轻链的CDR1、CDR2和CDR3。According to first aspect of the present invention, described EGFRvIII had to specific associated proteins at least, it does not cross-react with wild-type EGFR.This associated proteins preferably comprises CDR1, CDR2, CDR3 of the antibody variable heavy chain that is selected from the CDR described in the following table 1A and CDR1, CDR2 and the CDR3 of antibody variable light chain.
表1A:来自特异性结合EGFRvIII的结合蛋白的人类轻链和重链CDR的氨基酸序列的序列标识号Table 1A: Sequence identifiers of amino acid sequences of human light and heavy chain CDRs from binding proteins that specifically bind to EGFRvIII
因此,本发明的实施方案是具有至少一个EGFRvIII结合位点的EGFRvIII结合蛋白,包含抗体可变重链结构域和/或抗体可变轻链结构域;其中,所述抗体可变重链结构域包含选自SEQ ID NO:27、33、42、46、49、53的CDR1,选自SEQ ID NO:28、38、43、50、54、61、63的CDR2和SEQ ID NO:29的CDR3;所述抗体可变轻链结构域包含选自SEQ ID NO:30、34、36、39、44、47、51、56、59、64的CDR1,选自SEQ ID NO:31、40、57的CDR2和选自SEQ ID NO:32、35、37、41、45、48、52、55、58、60、62和65的CDR3。Therefore, an embodiment of the present invention is an EGFRvIII binding protein having at least one EGFRvIII binding site, comprising an antibody variable heavy chain domain and/or an antibody variable light chain domain; wherein the antibody variable heavy chain domain comprises a CDR1 selected from SEQ ID NO: 27, 33, 42, 46, 49, 53, a CDR2 selected from SEQ ID NO: 28, 38, 43, 50, 54, 61, 63 and a CDR3 of SEQ ID NO: 29; the antibody variable light chain domain comprises a CDR1 selected from SEQ ID NO: 30, 34, 36, 39, 44, 47, 51, 56, 59, 64, a CDR2 selected from SEQ ID NO: 31, 40, 57 and a CDR3 selected from SEQ ID NO: 32, 35, 37, 41, 45, 48, 52, 55, 58, 60, 62 and 65.
根据进一步的实施方案,所述结合蛋白包含具有选自如表1B所示的SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21和25的抗体可变重链结构域和/或选自如表1B所示的SEQ IDNO:2、4、6、8、10、12、14、16、18、20、22和26的抗体可变轻链结构域的至少一个EGFRvIII结合位点。三个可变轻链CDR和三个可变重链CDR的氨基酸序列在表1中以粗体显示且加有下划线。这些结构位点显示对EGFRvIII的亲和力提高,而特异性没有损失。这些抗原-结合蛋白不与野生型EGFR抗原交叉反应。According to further embodiment, described associated proteins comprises and has the antibody variable heavy chain domain that is selected from SEQ ID NO:1,3,5,7,9,11,13,15,17,19,21 and 25 as shown in Table 1B and/or is selected from SEQ ID NO:2,4,6,8,10,12,14,16,18,20,22 and 26 as shown in Table 1B at least one EGFRvIII binding site of antibody variable light chain domain.The aminoacid sequence of three variable light chain CDR and three variable heavy chain CDR is shown in bold and is underlined in Table 1.These structural sites show that the affinity to EGFRvIII is improved, and specificity does not have loss.These antigen-binding proteins do not cross-react with wild-type EGFR antigen.
进一步地,本发明的这些抗原-结合蛋白在结合EGFRvIII时没有显示或仅显示最小化的EGFRvIII内化。根据本发明,在根据实施例9的测试条件下,在细胞暴露于EGFRvIII-结合抗体之后,大于80%,优选大于90%,最优选大于95%的EGFRvIII受体分子仍保留在细胞表面。本发明的EGFRvIII特异性结合蛋白的结合可能抑制内化,而不是诱导内化,或者可能促进EGFRvIII的表达增加,从而导致其细胞表面密度增加。In some embodiments, the present invention relates to an antigen-binding protein of the present invention.These antigen-binding proteins of the present invention do not show or only show minimized EGFRvIII internalization when in conjunction with EGFRvIII.According to the present invention, under the test conditions according to embodiment 9, after cell is exposed to EGFRvIII-in conjunction with antibody, be greater than 80%, preferably greater than 90%, most preferably be greater than 95% EGFRvIII receptor molecules and still remain on cell surface.The protein-binding combination of EGFRvIII of the present invention may suppress internalization, rather than inducing internalization, or may promote that the expression of EGFRvIII increases, thereby causes its cell surface density to increase.
术语“结合蛋白”是指具有抗原结合性质的免疫球蛋白衍生物,即含有抗原结合位点的免疫球蛋白多肽或其片段。该结合蛋白包含抗体的可变结构域或其片段。每个抗原-结合结构域都由结合相同表位的抗体即免疫球蛋白、可变重链结构域(VH)和抗体可变轻链结构域(VL)形成。本发明的可变轻链结构域或可变重链结构域是包含CDR1、CDR2和CDR3的多肽。优选地,本发明的结合蛋白缺乏免疫球蛋白恒定结构域。术语“结合蛋白”也指抗体片段或衍生物,包括Fab、Fab’、F(ab’)2、Fv片段、单链Fv、双抗体、串联双抗体弹性抗体(flexibody,WO03/025018)、串联单链Fv((scFv)2)。The term "binding protein" refers to an immunoglobulin derivative with antigen-binding properties, i.e., an immunoglobulin polypeptide or fragment thereof containing an antigen-binding site. The binding protein comprises the variable domains of an antibody or fragment thereof. Each antigen-binding domain is formed by an antibody, i.e., an immunoglobulin, a variable heavy chain domain (VH), and an antibody variable light chain domain (VL), which bind to the same epitope. The variable light chain domain or variable heavy chain domain of the present invention is a polypeptide comprising CDR1, CDR2, and CDR3. Preferably, the binding protein of the present invention lacks immunoglobulin constant domains. The term "binding protein" also refers to antibody fragments or derivatives, including Fab, Fab', F(ab') 2 , Fv fragments, single-chain Fv, diabodies, tandem diabody flexibodies (WO03/025018), and tandem single-chain Fv ((scFv) 2 ).
表1B:所有抗-EGFRvIII可变重链结构域(VH)和可变轻链结构域(VL)的氨基酸序列(CDR1、CDR2和CDR3的氨基酸序列以粗体显示且加有下划线)Table 1B: Amino acid sequences of all anti-EGFRvIII variable heavy chain domains (VH) and variable light chain domains (VL) (amino acid sequences of CDR1, CDR2, and CDR3 are shown in bold and underlined)
在优选的实施方案中,赋予对EGFRvIII具有特异性的结合蛋白包含来自表1所示的可变重链结构域和可变轻链结构域的以下组合之一的抗原结合位点:In a preferred embodiment, the binding protein that confers specificity for EGFRvIII comprises an antigen binding site from one of the following combinations of variable heavy chain domains and variable light chain domains shown in Table 1:
(i)SEQ ID NO:1和SEQ ID NO:2,(i) SEQ ID NO: 1 and SEQ ID NO: 2,
(ii)SEQ ID NO:3和SEQ ID NO:4,(ii) SEQ ID NO: 3 and SEQ ID NO: 4,
(iii)SEQ ID NO:5和SEQ ID NO:6,(iii) SEQ ID NO: 5 and SEQ ID NO: 6,
(iv)SEQ ID NO:7和SEQ ID NO:8,(iv) SEQ ID NO: 7 and SEQ ID NO: 8,
(v)SEQ ID NO:9和SEQ ID NO:10,(v) SEQ ID NO: 9 and SEQ ID NO: 10,
(vi)SEQ ID NO:11和SEQ ID NO:12,(vi) SEQ ID NO: 11 and SEQ ID NO: 12,
(vii)SEQ ID NO:13和SEQ ID NO:14,(vii) SEQ ID NO: 13 and SEQ ID NO: 14,
(viii)SEQ ID NO:15和SEQ ID NO:16,(viii) SEQ ID NO: 15 and SEQ ID NO: 16,
(ix)SEQ ID NO:17和SEQ ID NO:18,(ix) SEQ ID NO: 17 and SEQ ID NO: 18,
(x)SEQ ID NO:19和SEQ ID NO:20,(x) SEQ ID NO: 19 and SEQ ID NO: 20,
(xi)SEQ ID NO:21和SEQ ID NO:22,或(xi) SEQ ID NO: 21 and SEQ ID NO: 22, or
(xii)SEQ ID NO:25和SEQ ID NO:26。(xii) SEQ ID NO:25 and SEQ ID NO:26.
本发明还提供不仅对EGFRvIII具有特异性,而且还具有至少一个其他功能结构域的结合蛋白。在进一步的实施方案中,所述至少一个其他功能结构域是效应子结构域(effector domain)。“效应子结构域”是对效应细胞有特异性的结合位点,其可刺激或触发细胞毒性、吞噬、抗原呈递、细胞因子释放。这样的效应细胞是,例如但不限于,T-细胞或NK-细胞。特别是,所述其他效应子结构域包含形成CD3优选人类CD3的抗原结合位点的至少一个抗体可变重链结构域和至少一个可变轻链结构域。The present invention also provides not only EGFRvIII has specificity, and also has the associated proteins of at least one other functional domain.In a further embodiment, described at least one other functional domain is effector domain (effector domain)." effector domain " is that effector cell is had specific binding site, and it can stimulate or trigger cytotoxicity, engulfment, antigen presentation, cytokine release.Such effector cell is, for example but not limited to, T-cell or NK-cell.Particularly, described other effector domains comprise at least one antibody variable heavy chain domain and at least one variable light chain domain that form the antigen binding site of CD3 preferred mankind CD3.
因此,本发明的EGFRvIII结合蛋白可以是多特异性的。本文所用的术语“多特异性的”意思是指本发明的结合蛋白对不同的表位具有至少两个抗原结合位点,其中至少一个用于EGFRvIII。例如,结合蛋白可以是三特异性的,并且对肿瘤细胞上的两个不同的表位和/或抗原具有结合位点且对效应细胞诸如例如CD3上的表位或抗原具有至少一个结合位点。结合蛋白对相同抗原的不同表位和/或不同抗原的表位可具有结合位点。这样的多特异性结合蛋白包括单链双抗体、(scFv)2、串联双抗体和弹性抗体(参见Le Gallet al.,1999FEBS Letts 453:164-168和WO 03/025018)。在本发明的具体实施方案中,结合蛋白是对EGFRvIII和CD3双特异性的。In some embodiments, the EGFRvIII conjugated proteins of the present invention can be multispecific.Term used herein " multispecific " means to refer to that conjugated proteins of the present invention have at least two antigen binding sites to different epi-positions, and wherein at least one is used for EGFRvIII.For example, conjugated proteins can be trispecific, and have binding site and have at least one binding site to effector cell such as epi-position on CD3 or antigen to two different epi-positions and/or antigen on tumor cell.Conjugated proteins can have binding site to different epi-positions of same antigen and/or the epi-position of different antigens.Such multispecific conjugated proteins comprise single-chain diabody, (scFv) 2 , series diabody and elastomeric antibody (referring to Le Gallet al., 1999FEBS Letts 453:164-168 and WO 03/025018).In a specific embodiment of the present invention, conjugated proteins are to EGFRvIII and CD3 bispecific.
本发明的多特异性结合蛋白的CD3结合位点可由如下组成:如表2所示的可变重链结构域(SEQ ID NO:23)和可变轻链结构域(SEQ ID NO:24),或与CDR序列仅两个氨基酸不同的该序列的密切同源物(close homolog),或对CD3(称为CD3)有特异性的任何其他全人的、人源化的或非人可变抗体结构域,诸如,例如,对CD3,特别是CD3ε有特异性的可变抗体结构域或任何其他全人的、人源化的或非人可变抗体结构域,诸如,例如UCHT1或OKT3的可变抗体结构域。The CD3 binding site of the multispecific binding protein of the invention can be composed of a variable heavy chain domain (SEQ ID NO: 23) and a variable light chain domain (SEQ ID NO: 24) as shown in Table 2, or a close homolog of such sequences that differs from the CDR sequences by only two amino acids, or any other fully human, humanized or non-human variable antibody domain specific for CD3 (referred to as CD3), such as, for example, a variable antibody domain specific for CD3, in particular CD3 epsilon, or any other fully human, humanized or non-human variable antibody domain, such as, for example, the variable antibody domain of UCHT1 or OKT3.
表2:全人抗-CD3可变重链结构域(VH)和可变轻链结构域(VL)的氨基酸序列(CDR1、CDR2和CDR3的氨基酸序列以粗体显示且加有下划线)Table 2: Amino acid sequences of fully human anti-CD3 variable heavy chain domain (VH) and variable light chain domain (VL) (amino acid sequences of CDR1, CDR2 and CDR3 are shown in bold and underlined)
此外,本发明的EGFRvIII结合蛋白可以是多价的。本文所用的术语“多价的”意思是指,本发明的结合蛋白包含至少两个抗原结合位点。抗原结合位点可具有相同或不同的特异性。在本发明的实施方案中,结合蛋白以至少两个结合位点即二价方式结合相同表位。二价的结合蛋白的实例是双抗体,至少四价的结合蛋白的实例是串联双抗体。In addition, EGFRvIII conjugated proteins of the present invention can be multivalent.Term used herein " multivalent " means to refer to, and conjugated proteins of the present invention comprises at least two antigen binding sites.Antigen binding site can have identical or different specificity.In embodiments of the present invention, conjugated proteins is in conjunction with identical epi-position with at least two binding sites in a divalent manner.The protein-conjugated example of divalence is diabody, and the protein-conjugated example of at least tetravalence is a series connection diabody.
在本发明进一步的方面中,所述的EGFRvIII结合蛋白以及双特异性EGFRvIII和CD3结合位点是人源化的或全人的,即人源的。在本发明进一步的方面中,EGFRvIII结合蛋白或多特异性EGFRvIII和CD3结合蛋白是二聚体,即包含两个具有EGFRvIII和CD3抗原结合位点的多肽。In a further aspect of the present invention, described EGFRvIII associated proteins and bispecific EGFRvIII and CD3 binding site are humanized or fully human, i.e. people-source. In a further aspect of the present invention, EGFRvIII associated proteins or multispecific EGFRvIII and CD3 associated proteins are dimers, i.e. comprise two polypeptides with EGFRvIII and CD3 antigen binding sites.
根据本发明,以串联双抗体的形式提供二聚双特异性EGFRvIII和CD3结合蛋白。这样的串联双抗体通过连接能够同源二聚的四个抗体可变结合结构域(单基因构建体中的重链可变结构域(VH)和轻链可变结构域(VL)(参见McAleese and Eser,2012,Future Oncol.8:687-95))来构建。在这样的串联双抗体中,接头(linker)长度是其防止可变结构域的分子间配对以致分子不能折叠回其本身上来形成单链双抗体,而是被迫与另一条链的互补结构域(complementary domain)配对。对这些结构域还可以这样排列,即使得相应的VH和VL结构域在二聚期间配对。由单个基因构建表达后,两条同样的多肽链头尾折叠形成约110kDa的功能性非共价同源二聚体(McAleese and Eser,2012,Future Oncol.8:687-95)。尽管不存在分子内共价键,同源二聚体一旦形成即是高度稳定的,保持完整并且不恢复为单体形式。According to the present invention, dimerization bispecific EGFRvIII and CD3 binding proteins are provided in the form of series connection diabody.Such series connection diabody is by connecting four antibody variable binding domains (heavy chain variable domain (VH) and light chain variable domain (VL) in single gene construct (referring to McAleese and Eser, 2012, Future Oncol.8:687-95)) that can homodimerize and build.In such series connection diabody, joint (linker) length is that it prevents the intermolecular pairing of variable domain so that molecule can not fold back to form single-chain diabody on itself, but is forced to pair with the complementary domain (complementary domain) of another chain.These domains can also be arranged like this, namely make corresponding VH and VL domain pair during dimerization.After being expressed by single gene construction, two same polypeptide chains head to tail folding form the functional non-covalent homodimer (McAleese and Eser, 2012, Future Oncol.8:687-95) of about 110kDa. Despite the absence of intramolecular covalent bonds, homodimers, once formed, are highly stable, remain intact and do not revert to monomeric form.
在多特异性串联双抗体的一个实施方案中,提供了人源化的双特异性四价抗体其对CD3和EGFRvIII各具有两个结合位点(EGFRvIII/CD3RECRUIT-),以利用T细胞的细胞毒性能力治疗成胶质细胞瘤(GB)、前列腺癌、头颈癌以及其他表皮生长因子受体突变体vIII阳性(EGFRvIII+)癌。In one embodiment of a multispecific tandem diabody, a humanized bispecific tetravalent antibody is provided that has two binding sites each for CD3 and EGFRvIII (EGFRvIII/CD3RECRUIT-) to utilize the cytotoxic capacity of T cells to treat glioblastoma (GB), prostate cancer, head and neck cancer, and other epidermal growth factor receptor mutant vIII-positive (EGFRvIII+) cancers.
相对于传统单克隆抗体,串联双抗体具有提供优势的大量性质,还具有较小的多特异性分子。串联双抗体在不存在糖基化时是全功能性的。串联双抗体可仅含有抗体可变结构域,并因此可没有可与Fc部分相关的任何副作用。因为双特异性串联双抗体允许二价结合至EGFRvIII和CD3中的每一个,因此,其亲合力(avidity)与IgG的亲合力相同。串联双抗体的大小约为110kDa,小于IgG,这可增强肿瘤渗透。然而,与基于抗体-结合结构域或非抗体支架的较小的双特异性形式相比,该大小远高于首过清除(first-pass clearance)的肾阈,这提供了药代动力学优势。例如Kipriyanov SM:Methods Mol.Biol.2009;562:177-93、Kipriyanov SM:Methods Mol.Biol.2003;207:323-33或McAleese and Eser,2012,Future Oncol.8:687-95中描述了这样的串联双抗体的产生和制备。In the present invention, the tandem diabody is the most widely used antibody of the present invention.Relative to traditional monoclonal antibody, tandem diabody has a large amount of properties that advantage is provided, also has less multispecific molecule.Tandem diabody is fully functional when there is no glycosylation.Tandem diabody can only contain antibody variable domains, and therefore can not have any side effect that can be relevant to Fc part.Because bispecific tandem diabody allows divalence to be bound to each in EGFRvIII and CD3, therefore, its avidity (avidity) is identical with the avidity of IgG.The size of tandem diabody is about 110kDa, is less than IgG, and this can enhance tumor infiltration.But, compared with the less bispecific form based on antibody-binding domain or non-antibody scaffold, this size is much higher than the kidney threshold of first-pass clearance (first-pass clearance), and this provides pharmacokinetic advantage. The generation and preparation of such tandem diabodies is described, for example, in Kipriyanov SM: Methods Mol. Biol. 2009; 562: 177-93, Kipriyanov SM: Methods Mol. Biol. 2003; 207: 323-33 or McAleese and Eser, 2012, Future Oncol. 8: 687-95.
串联双抗体在CHO细胞中良好表达。可以使有效的上游和下游制造工艺落实到位。Tandem diabodies are well expressed in CHO cells, enabling efficient upstream and downstream manufacturing processes to be put in place.
将本发明的EGFRvIII和CD3双特异性串联双抗体设计为通过募集细胞毒性T细胞特异性靶向EGFRvIII+肿瘤细胞。抗体不能直接募集细胞毒性T细胞。相反,通过雇用(engage)在这些细胞上特异性表达的CD3分子,串联双抗体可使细胞毒性T细胞与EGFRvIII+肿瘤细胞以高度特异性的方式交联,从而显著增加这些分子的细胞毒作用。串联双抗体显示强的、特异性的和有效的细胞毒性。显著的证据是T细胞能在控制肿瘤生长中起作用。例如,大肠肿瘤以及来自NHL患者的淋巴结中细胞毒性T细胞的存在显示与更好的临床结果相互关联。此外,对于黑色素瘤疫苗,以及针对CTLA-4即T-细胞活化的负调节剂的抗体,已证明了经设计诱导T-细胞应答的疗法的潜力。本发明的串联双抗体通过结合表面表达的CD3、优选CD3ε雇用细胞毒性T细胞,CD3ε形成T-细胞受体的一部分。该串联双抗体与在特定肿瘤细胞表面上表达的CD3和EGFRvIII的同时结合引起T-细胞活化并调节随后的肿瘤细胞裂解。The EGFRvIII and CD3 bispecific tandem double antibody of the present invention is designed to specifically target EGFRvIII + tumor cells by recruiting cytotoxic T cells. Antibodies cannot directly recruit cytotoxic T cells. On the contrary, by employing (engage) the CD3 molecules specifically expressed on these cells, the tandem double antibody can make cytotoxic T cells and EGFRvIII + tumor cells cross-linked in a highly specific manner, thereby significantly increasing the cytotoxic effect of these molecules. The tandem double antibody shows strong, specific and effective cytotoxicity. Significant evidence is that T cells can play a role in controlling tumor growth. For example, the presence of cytotoxic T cells in colorectal tumors and lymph nodes from NHL patients is shown to be correlated with better clinical results. In addition, for melanoma vaccines, and antibodies for CTLA-4, a negative regulator of T-cell activation, have demonstrated the potential for the therapy of designing induction of T-cell responses. The tandem double antibody of the present invention employs cytotoxic T cells by binding surface-expressed CD3, preferably CD3ε, which forms a part of the T-cell receptor. The simultaneous binding of this tandem diabody to CD3 and EGFRvIII expressed on the surface of specific tumor cells leads to T-cell activation and mediates subsequent tumor cell lysis.
“二聚体”是指两个多肽的复合体。优选地,所述两个多肽彼此非共价相关,特别是在两个多肽之间没有共价键的条件下。优选地,双特异性二聚体是同源二聚体,即包含两个相同多肽。然而,三特异性或其他多特异性二聚体可以是异源二聚体并包含两个不同的多肽,例如可变轻链结构域的至少一个结合位点位于一个多肽上且可变重链结构域位于其他结构域上。术语“多肽”是指由酰胺键连接的氨基酸残基的聚合物。优选地,多肽是未分枝的单链融合蛋白。在该多肽中,可变抗体结构域相继连接。除可变结构域N-端和/或C-端之外,该多肽还可具有连续的(contiguous)氨基酸残基。例如,这样连续的氨基酸残基可包括可有益于多肽纯化的Tag序列,优选在C-端。"Dimer" refers to a complex of two polypeptides. Preferably, the two polypeptides are non-covalently associated with each other, particularly under conditions where there is no covalent bond between the two polypeptides. Preferably, the bispecific dimer is a homodimer, i.e., comprises two identical polypeptides. However, a trispecific or other multispecific dimer can be a heterodimer and comprise two different polypeptides, for example, at least one binding site of the variable light chain domain is located on one polypeptide and the variable heavy chain domain is located on the other domain. The term "polypeptide" refers to a polymer of amino acid residues connected by amide bonds. Preferably, the polypeptide is an unbranched single-chain fusion protein. In this polypeptide, the variable antibody domains are connected in sequence. In addition to the variable domain N-terminus and/or C-terminus, the polypeptide may also have contiguous amino acid residues. For example, such contiguous amino acid residues may include a Tag sequence that may be beneficial to polypeptide purification, preferably at the C-terminus.
双特异性串联双抗体的每个多肽都包含至少四个可变结构域,即CD3结合蛋白的可变轻链(VL)和可变重链(VH)以及EGFRvIII结合蛋白的可变轻链(VL)和可变重链(VH)。四个结合结构域由肽接头L1、L2和L3连接,并可从N-端至C-端进行如下排列:Each polypeptide of the bispecific tandem diabody contains at least four variable domains, namely the variable light chain (VL) and variable heavy chain (VH) of the CD3 binding protein and the variable light chain (VL) and variable heavy chain (VH) of the EGFRvIII binding protein. The four binding domains are connected by peptide linkers L1, L2 and L3 and can be arranged as follows from N-terminus to C-terminus:
(i)VL(CD3)-L1-VH(EGFRvIII)-L2-VL(EGFRvIII)-L3-VH(CD3);或(i)VL(CD3)-L1-VH(EGFRvIII)-L2-VL(EGFRvIII)-L3-VH(CD3); or
(ii)VH(CD3)-L1-VL(EGFRvIII)-L2-VH(EGFRvIII)-L3-VL(CD3);或(ii) VH(CD3)-L1-VL(EGFRvIII)-L2-VH(EGFRvIII)-L3-VL(CD3); or
(iii)VL(EGFRvIII)-L1-VH(CD3)-L2-VL(CD3)-L3-VH(EGFRvIII);或(iii) VL(EGFRvIII)-L1-VH(CD3)-L2-VL(CD3)-L3-VH(EGFRvIII); or
(iv)VH(EGFRvIII)-L1-VL(CD3)-L2-VH(CD3)-L3-VL(EGFRvIII)。(iv) VH(EGFRvIII)-L1-VL(CD3)-L2-VH(CD3)-L3-VL(EGFRvIII).
在本发明的实施方案中,四个可变结构域按VL(CD3)-L1-VH(EGFRvIII)-L2-VL(EGFRvIII)-L3-VH(CD3)排列。具有结构域顺序VL CD3-VH EGFRvIII-VL EGFRvIII-VH CD3并含有不同EGFRvIII结合序列的串联双抗体,尽管对EGFRvIII具有不同亲和力,所有都显示出对第二特异性CD3非常相似的结合,如CD3γε抗原上通过ELISA所示(图5A)。在含有外面位置的EGFRvIII结合结构域和中部的两个CD3结合位点的其他串联双抗体结构域顺序(VH EGFRvIII-VL CD3-VH CD3-VL EGFRvIII)中,EGFRvIII与亲和力成熟的EGFRvIII结合结构域的结合的显著提高同样是明显的,而串联双抗体中部结构域与CD3的结合稍弱,且在单个串联双抗体之间比第一结构域顺序变化更多(图5B)。当用不同CD3结构域(SEQ ID NO:23和24)构建含有不同EGFRvIII-结合结构域的串联双抗体时,进行了相似的观察(图5C)。In an embodiment of the present invention, the four variable domains are arranged as VL (CD3)-L1-VH(EGFRvIII)-L2-VL(EGFRvIII)-L3-VH(CD3). Tandem diabodies having the domain order VLCD3-VHEGFRvIII -VLEGFRvIII-VHCD3 and containing different EGFRvIII binding sequences , despite having different affinities for EGFRvIII, all showed very similar binding to the second specific CD3, as shown by ELISA on the CD3γε antigen ( FIG5A ). In other tandem diabody domain sequences containing EGFRvIII binding domains in the outer positions and two CD3 binding sites in the middle ( VH EGFRvIII - VL CD3 - VH CD3 - VL EGFRvIII ), a significant improvement in EGFRvIII binding to the affinity-matured EGFRvIII binding domain was also evident, while binding of the tandem diabody middle domain to CD3 was slightly weaker and more variable between individual tandem diabodies than the first domain sequence (Figure 5B). Similar observations were made when tandem diabodies containing different EGFRvIII-binding domains were constructed using different CD3 domains (SEQ ID NOs: 23 and 24) (Figure 5C).
接头的长度影响抗原-结合串联双抗体的柔韧性(flexibility)。例如,Todorovska et al.,2001Journal of Immunological Methods 248:47-66;Perisic etal.,1994Structure 2:11217-1226;Le Gall et al.,2004,Protein Engineering 17:357-366和WO94/13804中描述了接头长度对形成二聚抗原-结合蛋白的影响。The length of the linker affects the flexibility of the antigen-binding tandem diabody. For example, Todorovska et al., 2001 Journal of Immunological Methods 248:47-66; Perisic et al., 1994 Structure 2:11217-1226; Le Gall et al., 2004 Protein Engineering 17:357-366 and WO94/13804 describe the effect of linker length on the formation of dimeric antigen-binding proteins.
根据本发明,优选肽接头L1、L2和L3的长度是可使一个多肽的结构域与另一个多肽的结构域分子间结合以形成二聚抗原-结合串联双抗体。这样的接头是“短的”,即由0、1、2、3、4、5、6、7、8、9、10、11或12个氨基酸残基组成。因此,所述接头由约12个或更少的氨基酸残基组成。在0个氨基酸残基的情况中,所述接头是肽键。这样的短接头通过在不同多肽的抗体可变轻链结构域和抗体可变重链结构域之间结合和形成正确的抗原-结合位点有利于两个多肽的分子间二聚。约12个或更少氨基酸残基的短接头通常防止同一多肽链的相邻结构域彼此分子间相互作用。在本发明的一个实施方案中,这些接头由约3个至约10个,例如4个、5个或6个连续氨基酸残基组成。According to the present invention, the length of the peptide linkers L1, L2, and L3 is preferably such that the domains of one polypeptide can intermolecularly bind to the domains of another polypeptide to form a dimeric antigen-binding tandem diabody. Such linkers are "short," i.e., comprised of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 amino acid residues. Thus, the linker consists of approximately 12 or fewer amino acid residues. In the case of 0 amino acid residues, the linker is a peptide bond. Such short linkers facilitate intermolecular dimerization of the two polypeptides by binding and forming a correct antigen-binding site between the antibody variable light chain domain and the antibody variable heavy chain domain of the different polypeptides. Short linkers of approximately 12 or fewer amino acid residues generally prevent intermolecular interaction between adjacent domains of the same polypeptide chain. In one embodiment of the present invention, these linkers consist of approximately 3 to approximately 10, e.g., 4, 5, or 6, consecutive amino acid residues.
关于这些接头的氨基酸组成,选择不干扰两个多肽二聚化的肽。例如,包含甘氨酸和丝氨酸残基的接头通常提供蛋白酶抗性。接头的氨基酸序列,例如,可通过噬菌体展示法(phage-display method)来优化,以提高抗原结合和抗原-结合多肽二聚体的产率。适于本发明的串联双抗体的肽接头的实例是GGSGGS(SEQ ID NO:66)、GGSG(SEQ ID NO:67)或GGSGG(SEQ ID NO:68)。Regarding the amino acid composition of these linkers, peptides are selected that do not interfere with the dimerization of the two polypeptides. For example, linkers containing glycine and serine residues generally provide protease resistance. The amino acid sequence of the linker can be optimized, for example, by phage display methods to increase antigen binding and the yield of antigen-binding polypeptide dimers. Examples of peptide linkers suitable for the tandem diabodies of the present invention are GGSGGS (SEQ ID NO: 66), GGSG (SEQ ID NO: 67), or GGSGG (SEQ ID NO: 68).
本文所述的EGFRvIII结合蛋白和多特异性串联双抗体可通过表达编码串联双抗体多肽的多核苷酸产生,所述串联双抗体的多肽与另一个相同多肽结合以形成抗原-结合串联双抗体。因此,本发明进一步的实施方案是编码本文所述的抗原-结合串联双抗体多肽的多核苷酸,例如DNA或RNA。EGFRvIII associated proteins as herein described and multi-specific series connection diabody can produce by the polynucleotide of expressing coding series connection diabody polypeptide, and the polypeptide of described series connection diabody is combined to form antigen-in conjunction with series connection diabody with another identical polypeptide.Therefore, the further embodiment of the present invention is the polynucleotide of coding antigen as herein described-in conjunction with series connection diabody polypeptide, for example DNA or RNA.
多核苷酸可通过本领域技术人员已知的方法构建,例如,通过将编码由编码肽接头的序列隔开的或由肽键直接连接的至少四个抗体可变结构域的基因组合到单基因构建体中,并在细菌或其他适当的表达系统诸如例如CHO细胞中表达,所述单基因构建体与合适的启动子、可选地用于检测和纯化的蛋白标签,以及合适的转录终止子可操作地连接。根据所使用的载体系统和宿主,可使用任何数量的包括构成和诱导启动子的合适的转录和翻译元件。选择启动子以使其驱动多核苷酸在各自宿主细胞中的表达。Polynucleotide can be constructed by methods well known to those skilled in the art, for example, by combining the gene of at least four antibody variable domains separated by the sequence encoding peptide linkers or directly connected by peptide bonds into a single gene construct, and in bacteria or other suitable expression systems such as for example expressed in Chinese hamster ovary celI, the single gene construct is operably connected with a suitable promotor, alternatively a protein tag for detection and purification, and a suitable transcription terminator. According to employed vector systems and hosts, any number of suitable transcription and translation elements comprising formation and inducible promoters can be used. Select promoter so that it drives the expression of polynucleotides in respective host cells.
作为本发明进一步的实施方案,可将多核苷酸插入到载体中,优选表达载体中。该重组载体可根据本领域技术人员已知的方法构建。As a further embodiment of the present invention, the polynucleotide can be inserted into a vector, preferably an expression vector. The recombinant vector can be constructed according to methods known to those skilled in the art.
各种表达载体/宿主系统可用于包含或表达编码本发明多肽的多核苷酸。用于在大肠杆菌(E.coli)中表达的表达载体的实例是pSKK(Le Gall et al.,J ImmunolMethods.(2004)285(1):111-27)或用于在哺乳动物细胞中表达的pcDNA5(Invitrogen(英杰公司))。Various expression vector/host systems can be used to contain or express polynucleotides encoding polypeptides of the present invention. Examples of expression vectors for expression in E. coli are pSKK (Le Gall et al., J Immunol Methods. (2004) 285(1): 111-27) or pcDNA5 (Invitrogen) for expression in mammalian cells.
因此,本文所述的抗原-结合串联双抗体可通过将编码上文所述多肽的载体引入到宿主细胞并在所述多肽链表达、可从所述培养基分离以及任选地此后纯化的条件下培养所述细胞。Thus, the antigen-binding tandem diabodies described herein can be prepared by introducing a vector encoding the polypeptides described above into host cells and culturing the cells under conditions whereby the polypeptide chains are expressed, can be isolated from the culture medium, and optionally thereafter purified.
在进一步的实施方案中,本发明提供一种药物组合物,其包含EGFRvIII结合蛋白,抗原-结合串联双抗体,包含编码抗原结合串联双抗体的多肽的多核苷酸的载体或由该载体转化的宿主细胞,以及至少一种药学上可接受的载体。术语“药学上可接受的载体”的意思是指包括不干扰成分生物活性的效力并且对所施用的患者没有毒性的任何载体。合适的药学上的载体实例是本领域已知的,包括生理盐水、磷酸盐缓冲生理盐水、水、乳化液例如油/水乳化液、各种类型的湿润剂、无菌溶液等。这样的载体可通过传统方法配制,并以合适的剂量施用于个体。优选地,该组合物是无菌的。这些组合物也可包含佐剂,例如防腐剂、乳化剂和分散剂。可通过包含各种抗细菌剂和抗真菌剂来确保预防微生物的作用。In a further embodiment, the present invention provides a pharmaceutical composition comprising an EGFRvIII binding protein, an antigen-binding tandem diabody, a vector comprising a polynucleotide encoding the polypeptide of the antigen-binding tandem diabody or a host cell transformed by the vector, and at least one pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" means any carrier that does not interfere with the effectiveness of the biological activity of the component and is non-toxic to the administered patient. Suitable pharmaceutical carrier examples are known in the art and include physiological saline, phosphate buffered saline, water, emulsions such as oil/water emulsions, various types of wetting agents, sterile solutions, etc. Such carriers can be prepared by conventional methods and administered to an individual at a suitable dosage. Preferably, the composition is sterile. These compositions may also include adjuvants, such as preservatives, emulsifiers, and dispersants. The effects of microorganisms can be prevented by including various antibacterial and antifungal agents.
通过使用本领域已知的成熟技术和标准方法,技术人员会没有过度负担地容易构建并获得抗原-结合蛋白如本文所述的串联双抗体,参见,例如Sambrook,MolecularCloning A Laboratory Manual(分子克隆实验室手册),Cold Spring Harbor Laboratory(1989)N.Y,;The Protein Protocols Handbook(蛋白质实验指南手册),John M.Walker编辑,Humana Press Inc.(2002);或Antibody engineering:methods and protocols(抗体工程:方法和方案)/Benny K.C.Lo编辑;Benny K.C.II Series:Methods in molecularbiology(分子生物学方法)(Totowa,N.J.)。The skilled artisan will readily construct and obtain antigen-binding proteins such as the tandem diabodies described herein without undue burden by using well-established techniques and standard methods known in the art, see, for example, Sambrook, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y.; The Protein Protocols Handbook, John M. Walker, ed., Humana Press Inc. (2002); or Antibody engineering: methods and protocols/Benny K.C. Lo, ed.; Benny K.C. II Series: Methods in molecular biology (Totowa, N.J.).
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1说明亲和力成熟后衍生的EGFRvIII特异性高亲和力结合结构域中可变序列的位置。不同于亲代序列的重链和轻链可变区的CDR位置用星号标出,各自的氨基酸用灰色高亮显示。具有有益突变的位置用深灰色高亮显示。Fig. 1 illustrates the position of variable sequence in the EGFRvIII specific high-affinity binding domain derived after affinity maturation.The CDR position that is different from the heavy chain and light chain variable region of parental sequence is marked with asterisk, and amino acid is highlighted with grey separately.The position with useful sudden change is highlighted with dark grey.
图2显示Biacore T200中,多循环动力学测量不同scFv抗体结合至重组EGFRvIII-Fc抗原或野生型EGFR-Fc抗原的结果。Sensogram显示在4个不同scFv抗体浓度水平(86nM,17.2nM,3.4nM,0.69nM)下随时间测量的表面等离子体共振(SPR)响应单元(RU)的动力学。测量结合180秒,此后测量解离。使用1:1结合模型分析数据。Fig. 2 shows that among Biacore T200, multi-circulation kinetics measures the result that different scFv antibodies are attached to recombinant EGFRvIII-Fc antigen or wild-type EGFR-Fc antigen.Sensogram is presented at the kinetics of surface plasmon resonance (SPR) response unit (RU) measured in time under 4 different scFv antibody concentration levels (86nM, 17.2nM, 3.4nM, 0.69nM).Measurement is in conjunction with 180 seconds, after this measurement dissociates.Use 1:1 to combine model analysis data.
图3显示流式细胞仪测量scFv抗体结合至(A)过表达EGFRvIII的F98大鼠神经胶质瘤细胞(F98EGFRvIII)、(B)过表达天然EGFR的F98细胞(F98EGFR)、(C)未转染的F98细胞(F98)的结果,以及相似的scFv抗体结合至(D)过表达EGFRvIII的CHO细胞(CHOEGFRvIII)、(E)过表达天然EGFR的CHO细胞(CHOEGFRvIII)和(F)未转染的CHO细胞(CHO)的结果。Figure 3 shows the results of flow cytometry measurement of scFv antibody binding to (A) F98 rat glioma cells overexpressing EGFRvIII (F98 EGFRvIII ), (B) F98 cells overexpressing native EGFR (F98 EGFR ), and (C) untransfected F98 cells (F98), as well as the results of similar scFv antibody binding to (D) CHO cells overexpressing EGFRvIII (CHO EGFRvIII ), (E) CHO cells overexpressing native EGFR (CHO EGFRvIII ), and (F) untransfected CHO cells (CHO).
图4说明含有不同EGFRvIII结合结构域的串联双抗体与由SDA-PAGE分离并通过蛋白质印迹转移至PDVF膜的纯化的EGFRvIII-或天然EGFR-Fc融合抗原(非还原蛋白或用DTT还原的蛋白)的结合。Fc融合蛋白通过二硫键在Fc部分二聚,但用DTT还原后是单体。EGFRvIII-特异性抗体以还原或非还原的构象结合至EGFRvIII-融合蛋白,但不与天然EGFR结合。该抗-EGFR抗体西妥昔单抗用作对照,并识别非还原性EGFRvIII-Fc和非还原性EGFR-Fc抗原,但不识别DTT-处理的抗原。Fig. 4 illustrates the tandem diabody containing different EGFRvIII binding domains and is separated by SDA-PAGE and is transferred to the EGFRvIII-or natural EGFR-Fc fusion antigen (non-reducing protein or the albumen with DTT reduction) of the purification of PDVF film by western blotting.Fc fusion rotein is by disulfide bond at Fc part dimerization, but is monomer after reducing with DTT.EGFRvIII-specific antibody is bonded to EGFRvIII-fusion rotein with reduction or non-reduction conformation, but is not combined with natural EGFR.This anti-EGFR antibody cetuximab is as contrast, and identifies non-reducing EGFRvIII-Fc and non-reducing EGFR-Fc antigen, but does not identify the antigen of DTT-processing.
图5显示了ELISA中分析的不同EGFRvIII/CD3特异性串联双抗体与EGFRvIII-Fc、EGFR-Fc和CD3γε重组抗原的浓度依赖性结合。(A)显示了具有结构域顺序VL CD3-VH EGFRvIII-VL EGFRvIII-VH CD3的EGFRvIII/CD3特异性串联双抗体的结合信号,(B)显示了具有结构域顺序VH EGFRvIII-VL CD3-VH CD3-VL EGFRvIII的EGFRvIII/CD3特异性串联双抗体的结合信号,以及(C)显示了含有SEQ ID NO:23、24的CD3结构域并具有结构域顺序VL CD3-VH EGFRvIII-VL EGFRvIII-VH CD3的EGFRvIII/CD3特异性串联双抗体的结合信号。含有亲和力成熟的EGFRvIII-结合结构域的串联双抗体与EGFRvIII的结合的提高是明显可检测到的,在所有形式/结构域顺序中作为各自结合曲线向较低浓度的移位。Figure 5 shows the concentration-dependent binding of different EGFRvIII/CD3-specific tandem diabodies to EGFRvIII-Fc, EGFR-Fc, and CD3γε recombinant antigens analyzed in ELISA. (A) shows the binding signals of the EGFRvIII/CD3-specific tandem diabodies having the domain sequence VL CD3 - VH EGFRvIII - VL EGFRvIII - VH CD3 , (B) shows the binding signals of the EGFRvIII/CD3-specific tandem diabodies having the domain sequence VH EGFRvIII - VL CD3 - VH CD3 - VL EGFRvIII , and (C) shows the binding signals of the EGFRvIII/CD3-specific tandem diabodies containing the CD3 domains of SEQ ID NOs: 23 and 24 and having the domain sequence VL CD3 - VH EGFRvIII - VL EGFRvIII - VH CD3 . The improvement in binding of tandem diabodies containing affinity-matured EGFRvIII-binding domains to EGFRvIII was clearly detectable as a shift of the respective binding curves to lower concentrations in all formats/domain orders.
图6显示Biacore T200中,多循环动力学测量含有结构域顺序为VL CD3-VH EGFRvIII-VL EGFRvIII-VH CD3的不同二价EGFRvIII结合结构域的EGFRvIII/CD3特异性串联双抗体结合至重组EGFRvIII-Fc抗原的结果。Sensogram显示在不同串联双抗体浓度水平下随时间测量的表面等离子体共振(SPR)响应单元(RU)的动力学。测量结合180秒,此后测量解离。使用1:1结合模型分析数据。Figure 6 shows the results of multi-cycle kinetic measurements of EGFRvIII/CD3-specific tandem diabodies containing different bivalent EGFRvIII binding domains in the order of V CD3 - V EGFRvIII - V EGFRvIII - V CD3 bound to recombinant EGFRvIII-Fc antigen in a Biacore T200. Sensogram displays the kinetics of surface plasmon resonance (SPR) response units (RU) measured over time at different tandem diabody concentration levels. Binding was measured for 180 seconds, followed by dissociation. Data were analyzed using a 1:1 binding model.
图7显示来自(A)三个个体头颈(H&N)癌患者、(B)三个个体成胶质细胞瘤患者的组织切片的免疫组织化学(IHC)染色结果,以及(C)来自前列腺癌、乳腺癌(Her2neg)和非小细胞肺癌(NSCLC)的代表性结果。切片用2种不同浓度的二价构象的含有EGFRvIII-特异性结合结构域Li3G30的EGFRvIII-特异性双抗体进行染色,所述二价构象类似于EGFRvIII靶向串联双抗体抗体(例如,(VL CD3-)VH EGFRvIII-VL EGFRvIII(-VH CD3))的排列但缺少CD3结合部分。作为对照,切片用识别EGFR(存在于健康组织以及癌组织上)以及EGFRvIII的EGFR-特异性IgG抗体西妥昔单抗进行染色。染色的特异性由在不含EGFR-或EGFRvIII-特异性初级抗体的二级试剂中孵育的对照切片证实。Fig. 7 shows the immunohistochemistry (IHC) staining result of tissue section from (A) three individual head and neck (H&N) cancer patients, (B) three individual glioblastoma patients, and (C) representative results from prostate cancer, mammary cancer (Her2neg) and non-small cell lung cancer (NSCLC).The EGFRvIII-specific double antibody containing EGFRvIII-specific binding domain Li3G30 of the divalent conformation of 2 kinds of different concentrations is dyed in section, and described divalent conformation is similar to the arrangement of EGFRvIII targeting tandem double antibody antibody (for example, (V L CD3- ) V H EGFRvIII - V L EGFRvIII (-V H CD3 )) but lacks CD3 binding part.As a control, section is dyed with the EGFR-specific IgG antibody cetuximab of identification EGFR (being present on healthy tissue and cancerous tissue) and EGFRvIII.The specificity of dyeing is confirmed by the control section hatched in the secondary reagent that does not contain EGFR-or EGFRvIII-specific primary antibody.
图8说明在EGFRvIII阳性细胞上,与含有亲和力成熟之前的亲代EGFRvIII结合结构域(Li3G30)的EGFRvIII和CD3各自的串联双抗体相比,含有不同亲和力成熟的EGFRvIII-特异性结合结构域的EGFRvIII/CD3串联双抗体的细胞毒性能力、有效性和靶标依赖性特异性的提高:(A)含有EGFRvIII/CD3串联双抗体的ABC 470,(B)含有EGFRvIII/CD3串联双抗体的ABC 471,(C)含有EGFRvIII/CD3串联双抗体的ABC 472。在使用表达EGFRvIII的CHO细胞(CHOEGFRvIII)、表达EGFRvIII阴性EGFR的CHO细胞(CHOEGFR)或未转染的CHO细胞作为靶细胞并且使用人类PBMC作为效应细胞,在基于流式细胞术的分析中,测量抗体浓度依赖性细胞毒性。在各图版(A-C)中,含有单个EGFRvIII结合结构域和CD3结构域v64、顺序为VL CD3-VH EGFRvIII-VL EGFRvIII-VH CD3的串联双抗体示于左侧,含有与不同CD3结构域组合的单个EGFRvIII结合结构域、顺序为VH EGFRvIII-VL CD3-VH CD3-VL EGFRvIII的串联双抗体示于右侧。Fig. 8 illustrates that on EGFRvIII positive cells, compared with the tandem diabody of EGFRvIII and CD3 respectively containing the parental EGFRvIII binding domain (Li3G30) before affinity maturation, the cytotoxicity ability, effectiveness and target-dependent specificity of EGFRvIII/CD3 tandem diabody containing different affinity maturation EGFRvIII-specific binding domains: (A) ABC 470 containing EGFRvIII/CD3 tandem diabody, (B) ABC 471 containing EGFRvIII/CD3 tandem diabody, (C) ABC 472 containing EGFRvIII/CD3 tandem diabody. Using CHO cells expressing EGFRvIII (CHO EGFRvIII ), expressing EGFRvIII negative EGFR (CHO EGFR ) or untransfected CHO cells as target cells and using human PBMC as effector cells, in the analysis based on flow cytometry, antibody concentration-dependent cytotoxicity was measured. In each panel (AC), tandem diabodies containing a single EGFRvIII binding domain and CD3 domain v64, in the order VL CD3 - VH EGFRvIII - VL EGFRvIII - VH CD3 , are shown on the left, and tandem diabodies containing a single EGFRvIII binding domain combined with a different CD3 domain, in the order VH EGFRvIII - VL CD3 - VH CD3 - VL EGFRvIII , are shown on the right.
图9显示结合EGFRvIII-特异性抗体时,评估EGFRvIII受体从细胞表面内化的结果。在37℃下用不同浓度的三种不同的具有结构域顺序VL CD3-VH EGFRvIII-VL EGFRvIII-VH CD3(i)或VH EGFRvIII-VL CD3-VH CD3-VL EGFRvIII(iv),和/或含有不同CD3-结合结构域的EGFRvIII/CD3串联双抗体抗体将表达EGFRvIII的细胞孵育24小时。调整之后,用10μg/ml饱和浓度的各自的串联双抗体抗体染色细胞表面所有剩余的EGFRvIII受体分子。Figure 9 shows the results of evaluating EGFRvIII receptor internalization from the cell surface when combined with EGFRvIII-specific antibodies. Cells expressing EGFRvIII were incubated for 24 hours at 37°C with varying concentrations of three different EGFRvIII / CD3 tandem diabody antibodies with the domain order V L CD3 -V H EGFRvIII - V L EGFRvIII - V H CD3 (i) or V H EGFRvIII-V L CD3 -V H CD3-V L EGFRvIII (iv), and/or EGFRvIII/CD3 tandem diabody antibodies containing different CD3-binding domains. After adjustment, all remaining EGFRvIII receptor molecules on the cell surface were stained with the respective tandem diabody antibodies at a saturating concentration of 10 μg/ml.
图10显示在EGFRvIII/CD3(或EGFRvIII/CD16A)串联双抗体抗体的存在下,评估人类PBMC培养物中细胞增殖(BrdU incoporation)的结果。PBMC用作阳性对照,其在CD3结合抗体OKT3或植物凝集素(plant lectin phytohemagglutinin)(PHA)的存在下增殖。在不存在EGFRvIII-阳性靶细胞的情况下,用不同的EGFRvIII/CD3串联双抗体孵育PBMC不诱导PBMC的活化和增殖。Figure 10 is presented in the presence of EGFRvIII/CD3 (or EGFRvIII/CD16A) series double antibody antibody, assesses the result of cell proliferation (BrdU incoporation) in human PBMC culture.PBMC is used as positive control, and it breeds in the presence of CD3 binding antibody OKT3 or phytohemagglutinin (plant lectin phytohemagglutinin) (PHA).In the absence of EGFRvIII-positive target cells, with different EGFRvIII/CD3 series double antibodies, hatch PBMC and do not induce activation and the proliferation of PBMC.
图11说明EGFRvIII/CD3串联双抗体的CD3-结合亲和性与其细胞毒性能力正相关。关于CD3+-Jurkat细胞上的CD3-结合、CHOEGFRvIII细胞上的EGFRvIII-结合以及细胞毒性能力,对以结构域顺序VL CD3-VH EGFRvIII-VL EGFRvIII-VH CD3与对CD3具有不同亲和力的不同CD3-结合结构域组合的全部含有相同EGFRvIII结合结构域(Li3G30)的多于20个的EGFRvIII/CD3串联双抗体进行分析。CD3-结合KD值的范围是1nM至约500nM。对于每个所分析的串联双抗体而言,相对于CD3-结合KD值,对EGFRvIII-结合KD值和细胞毒性EC50值作图。虽然TandAb显示EGFRvIII-结合KD值仅有小的变化,但随着串联双抗体的CD3-结合KD值升高,细胞毒性EC50显示几乎线性升高。Figure 11 illustrates that the CD3-binding affinity of EGFRvIII/CD3 tandem diabodies is positively correlated with their cytotoxic capacity. Regarding CD3-binding on CD3 + -Jurkat cells, EGFRvIII-binding on CHO EGFRvIII cells and cytotoxic capacity, all 20 EGFRvIII/CD3 tandem diabodies containing the same EGFRvIII binding domain (Li3G30) in the domain order V L CD3 -V H EGFRvIII -V L EGFRvIII -V H CD3 and different CD3-binding domain combinations with different affinities for CD3 were analyzed. The scope of CD3-binding K D value is 1nM to approximately 500nM. For each analyzed tandem diabodies, relative to CD3-binding K D value, EGFRvIII-binding K D value and cytotoxic EC 50 value are mapped. While the TandAbs showed only small changes in EGFRvIII-binding KD values, the cytotoxicity EC50s showed an almost linear increase as the CD3-binding KD values of the tandem diabodies increased.
图12显示概念研究(concept study)的体内验证结果。对含有相同EGFRvIII-结合结构域(Li3G30)但不同CD3结合结构域或结构域顺序的两个EGFRvIII/CD3串联双抗体分析了皮下F98EGFRvIII移植瘤生长的剂量依赖性抑制效果,并与以高得多的浓度水平给药的西妥昔单抗的效果进行比较。(A)由具有结构域顺序VL CD3-VH EGFRvIII-VL EGFRvIII-VH CD3的EGFRvIII/CD3v6串联双抗体引起的剂量依赖性肿瘤生长抑制;(B)由含有不同高亲和力CD3-结合结构域并具有结构域顺序VH EGFRvIII-VL CD3-VH CD3-VL EGFRvIII的EGFRvIII/CD3串联双抗体引起的剂量依赖性肿瘤生长抑制。Figure 12 shows the in vivo proof-of-concept results from the study. Two EGFRvIII/CD3 tandem diabodies containing the same EGFRvIII-binding domain (Li3G30) but different CD3-binding domains or domain sequences were analyzed for dose-dependent inhibition of subcutaneous F98 EGFRvIII xenograft tumor growth and compared with the effect of cetuximab administered at a much higher concentration. (A) Dose-dependent tumor growth inhibition caused by the EGFRvIII /CD3 v6 tandem diabody with the domain sequence VL CD3 - VH EGFRvIII- VL EGFRvIII - VH CD3 ; (B) Dose-dependent tumor growth inhibition caused by EGFRvIII/CD3 tandem diabodies containing different high-affinity CD3-binding domains and the domain sequence VH EGFRvIII - VL CD3 - VH CD3 - VL EGFRvIII .
通过以下实施例进一步说明本发明,但本发明不限于此。The present invention is further illustrated by the following examples, but the present invention is not limited thereto.
实施例1:EGFRvIII特异性结合蛋白的发现和亲和力成熟:Example 1: Discovery and affinity maturation of EGFRvIII-specific binding proteins:
Li3G30的发现:Li3G30 Discovery:
对基于IgM来源的人scFv序列的噬菌体展示文库进行两至三轮淘选(panning)以富集对EGFRvIII有特异性的结合物(binders)。在每轮淘选前,将所述文库用EGFR-Fc预孵育以耗尽(deplete)野生型形式EGFR的结合物或融合蛋白Fc部分的结合物。在EGFRvIII包被的固相上和在溶液中平行进行选择(selection)。两轮和三轮淘选后,挑选出单克隆,诱导可溶性scFv表达并筛选与EGFRvIII-Fc和EGFR-Fc结合的提取物。The phage display library of people's scFv sequence based on IgM source is carried out two to three rounds of panning (panning) and EGFRvIII is had specific binding substances (binders) with enrichment.Before every round of panning, described library is pre-incubated with the binding substances of (deplete) wild-type form EGFR or the binding substances of fusion rotein Fc part with EGFR-Fc.On the solid phase of EGFRvIII coating and in solution, select (selection) in parallel.After two rounds and three rounds of panning, pick out monoclonal, induce soluble scFv to express and screen the extract that is combined with EGFRvIII-Fc and EGFR-Fc.
根据本发明,描述了与EGFRvIII结合的全人的高特异性可变抗体结构域,EGFRvIII是EGFR的缺失突变体,其以突变的形式专门在肿瘤中而非在健康组织上表达。本文描述的全人EGFRvIII特异性结构域最初在使用基于IgM来源的全人scFv文库的噬菌体展示筛选中发现。令人惊讶的是,尽管对野生型EGFR抗原使用耗尽步骤(depletionprocedure)进行了两或三轮淘选,这应富集对EGFRvIII有特异性的结合物,但是在ELISA中大多数所得的scFv对两种蛋白(EGFRvIII和野生型EGFR)都结合。鉴定了一条高EGFRvIII特异性的序列,命名为Li3G30。除了在VH和VL的N末端有很小的差异,重链和轻链的框架区以及CDR1和CDR2分别与种系编码的序列VH5-51和VL3-25完全相同。Li3G30从第三轮液相淘选中鉴定出来。According to the present invention, the fully human high specific variable antibody domains combined with EGFRvIII have been described, and EGFRvIII is the deletion mutant of EGFR, and it is specifically expressed in tumor rather than on healthy tissue with the form of mutation.Full human EGFRvIII specific domains described herein were initially found in the phage display screening of the fully human scFv library using based on IgM source.Surprisingly, although two or three rounds of panning were carried out using exhaustion step (depletion procedure) to wild-type EGFR antigen, this should be enriched to have specific binding substances to EGFRvIII, but in ELISA, most of the scFvs of gained are all combined to two kinds of albumen (EGFRvIII and wild-type EGFR).Identified a high EGFRvIII specific sequence, called after Li3G30.Except that there is little difference in the N-terminal of VH and VL, the framework region of heavy chain and light chain and CDR1 and CDR2 are identical with sequence VH5-51 and VL3-25 of germline encoding respectively.Li3G30 was identified from the third round of liquid phase panning.
亲和力成熟:Affinity Maturation:
抗体框架对VH5-51/VL3-25的文库用从DistributedBio订购的算法来设计。鉴定Li3G30的特异性决定残基并将其包含在文库设计中。该设计包括52个随机化的CDR位点,每个CDR位点都有单独定义的氨基酸分布。将三种不同的环长度构建到VL CDR3中。编码VH和VL的随机化位点的基因片段订购自Geneart/Lifetechnologies,并通过TRIM-技术合成。将所述片段克隆至噬菌体展示载体pEXHAM(Schwarz et al.2004)中,达到3.7E+8个转化的大肠杆菌细胞的最终文库大小。将该文库包装到噬菌体颗粒中,并经过淘选和筛选步骤以分离具有提高的亲和力并保留对EGFRvIII有特异性的变体。用固定在蛋白结合塑料表面上的EGFRvIII-Fc抗原进行淘选。通过实施以下步骤将淘选步骤设计为有利于具有低解离速率(kOFF)的EGFRvIII结合的scFv:洗涤步骤,包括持续长达30分钟的若干个洗涤缓冲液孵育步骤,以有利于选择缓慢解离的scFv。另一个步骤基于与可溶性EGFRvIII的过夜竞争。为了确保在亲和力成熟的过程中不会选出EGFR-EGFRvIII交叉反应抗体或结合Fc的抗体,在第一个淘选步骤之前,通过对野生型EGFR-Fc的预孵育使文库耗尽可能的野生型EGFR结合物。而且,由于在对固定的EGFRvIII进行淘选步骤的过程中可溶性EGFR的存在,筛选方案不利于交叉反应结合物。The library of antibody framework pair VH5-51/VL3-25 was designed using an algorithm ordered from DistributedBio. The specificity determining residues of Li3G30 were identified and included in the library design. The design includes 52 randomized CDR sites, each with a separately defined amino acid distribution. Three different loop lengths were built into the VL CDR3. Gene fragments encoding the randomized sites of VH and VL were ordered from Geneart/Lifetechnologies and synthesized using TRIM-technology. The fragments were cloned into the phage display vector pEXHAM (Schwarz et al. 2004) to a final library size of 3.7E+8 transformed E. coli cells. The library was packaged into phage particles and, through panning and screening steps, separated with improved affinity and retained variants specific for EGFRvIII. Panning was performed using the EGFRvIII-Fc antigen immobilized on a protein-bound plastic surface. The elutriation step is designed to the scFv that helps to have the EGFRvIII bonded with low dissociation rate ( kOFF ) by implementing following steps: washing step comprises several washing buffer incubation steps that continue up to 30 minutes, to help select the scFv that slowly dissociates.Another step is based on the overnight competition with solubility EGFRvIII.In order to guarantee in the process of affinity maturation, can not select EGFR-EGFRvIII cross-reaction antibody or the antibody in conjunction with Fc, before first elutriation step, by the pre-incubation of wild-type EGFR-Fc, the library is exhausted possible wild-type EGFR binding substances.And owing to the existence of solubility EGFR in the process of the elutriation step being carried out to fixing EGFRvIII, screening scheme is unfavorable for cross-reaction binding substances.
在流式细胞仪中,进一步测试唯一的EGFRvIII特异性scFv对表达EGFRvIII的转染的CHO和F98细胞的结合。将显示结合表达野生型EGFR的细胞和/或未转染的细胞的ScFv排除在下一步分析之外。用Biacore X100中的初始KD排名鉴定与初始克隆Li3G30相比对EGFRvIII具有提高的亲和力的scFv。最好的变体在详细的SPR测量和基于荧光的稳定性试验中进行了表征。The unique EGFRvIII-specific scFv was further tested for binding to transfected CHO and F98 cells expressing EGFRvIII using flow cytometry. ScFvs that showed binding to cells expressing wild-type EGFR and/or untransfected cells were excluded from further analysis. Initial KD ranking using Biacore X100 was used to identify scFvs with improved affinity for EGFRvIII compared to the original clone, Li3G30. The best variants were characterized using detailed SPR measurements and fluorescence-based stability assays.
对于VL CDR3,用于亲和力成熟的初始文库包括三种不同的环长度,已知所有长度与VH5-51/VL3-25框架兼容。令人惊讶的是,在选择过程中,中间的环长度明显被偏爱。因此,与亲代抗EGFRvIII抗体相比,所有亲和力成熟的变体的VL CDR3都缩短了一个氨基酸(表1,图1)。将所选择的scFv的序列与输入文库作比较,该分析表明了VL CDR3中的3个有益突变。亲代抗EGFRvIII抗体的重链和轻链的CDR1和CDR2与种系序列VH5-51和VL3-25各自编码的序列相同。在75%的位点中,各个种系编码的残基被重构(reconstituted)或者明显被偏爱。表明了一个有益的突变在VH CDR1中,一个在VL CDR1中(图1)。剩余的随机化位点中的氨基酸分布非常接近于进行选择之前文库中的分布。For VL CDR3, the initial library for affinity maturation comprises three kinds of different loop lengths, and known all lengths are compatible with VH5-51/VL3-25 framework.Surprisingly, in the selection process, the middle loop length is obviously preferred.Therefore, compared with the anti-EGFRvIII antibody of parent generation, the VL CDR3 of the variant of all affinity maturations has all shortened one amino acid (table 1, Fig. 1).The sequence of selected scFv is compared with the input library, and this analysis has shown 3 useful sudden changes in VL CDR3.The heavy chain of the anti-EGFRvIII antibody of parent generation and the CDR1 and CDR2 of light chain are identical with the sequence encoded separately of germline sequence VH5-51 and VL3-25.In 75% of the sites, the residue of each germline coding is reconstructed (reconstituted) or obviously preferred.Shown a useful sudden change in VH CDR1, one in VL CDR1 (Fig. 1).The amino acid distribution in the remaining randomization site is very close to the distribution in the library before selecting.
实施例2:在Biacore中测量scFV对EGFRvIII和野生型EGFR的结合:Example 2: Measurement of scFV binding to EGFRvIII and wild-type EGFR in Biacore:
制备抗hu Fc IgG CM5-芯片:Preparation of anti-hu Fc IgG CM5-chip:
根据制造商的说明书,通过使用胺偶联试剂盒(Amine-Coupling-Kit)(GE)进行共价胺偶联来制备抗hu Fc IgG CM5-芯片。将IgG在提供的固定缓冲液(10mM乙酸钠,pH 5.0)中稀释至浓度为25μg/ml。对于偶联步骤,应用Biacore T200控制软件的预定义方法“胺(Amine)”。实现所有4个流通池中5000-10000RU的靶水平。在注入重组蛋白溶液前,用EDC/NHS活化芯片的表面。用乙醇胺封闭表面上空余的结合位点。选择1×HBS-P+作为整个偶联步骤的运行缓冲液。Anti-hu Fc IgG CM5-chip was prepared by covalent amine coupling using an amine coupling kit (Amine-Coupling-Kit) (GE) according to the manufacturer's instructions. IgG was diluted to a concentration of 25 μg/ml in the provided immobilization buffer (10 mM sodium acetate, pH 5.0). For the coupling step, the predefined method "Amine" of the Biacore T200 control software was applied. A target level of 5000-10000 RU was achieved in all 4 flow cells. Before injecting the recombinant protein solution, the surface of the chip was activated with EDC/NHS. The remaining binding sites on the surface were blocked with ethanolamine. 1×HBS-P+ was selected as the running buffer for the entire coupling step.
SPR测量中使用的单链Fv’s(scFv)的浓度范围:Concentration range of single-chain Fv’s (scFv) used in SPR measurements:
在SPR测量之前,使用Nandrop通过A280测定检查ScFv浓度。储备液的浓度(c)根据以下等式计算:Before SPR measurement, the ScFv concentration was checked by A280 determination using Nandrop. The concentration (c) of the stock solution was calculated according to the following equation:
c[mg/ml]=(A280)/(2.25[cm2/mg]×1[cm])c[mg/ml]=(A280)/(2.25[cm 2 /mg]×1[cm])
用“Expasy Protparam”预测工具(http://web.expasy.org/protparam/)计算不同的消光系数。为了计算His标签的scFv抗体的摩尔浓度,假定分子量为约28kD。通过在l×HBS-P+缓冲液中进行连续稀释将scFv调整至下面提到的终浓度。制备以下浓度:430nM、86nM、17.2nM、3.44nM、0.688nM和0nM。Different extinction coefficients were calculated using the "Expasy Protparam" prediction tool (http://web.expasy.org/protparam/). To calculate the molar concentration of the His-tagged scFv antibody, a molecular weight of approximately 28 kD was assumed. The scFv was adjusted to the following final concentrations by serial dilution in 1×HBS-P+ buffer. The following concentrations were prepared: 430 nM, 86 nM, 17.2 nM, 3.44 nM, 0.688 nM, and 0 nM.
ScFv的测量条件:ScFv measurement conditions:
将EGFRvIII-Fc和野生型EGFR-Fc融合蛋白在l×HBS-P+中稀释至浓度为6.25nM。以10μl/min的流速注入两种抗原,EGFRvIII-Fc:75秒,野生型EGFR-Fc:90秒。将EGFRvIII-Fc注入流通池2,野生型EGFR-Fc注入流通池4。流通池1和3为空白。EGFRvIII-Fc and wild-type EGFR-Fc fusion proteins were diluted in 1× HBS-P+ to a concentration of 6.25 nM. Both antigens were injected at a flow rate of 10 μl/min: EGFRvIII-Fc for 75 seconds and wild-type EGFR-Fc for 90 seconds. EGFRvIII-Fc was injected into flow cell 2, and wild-type EGFR-Fc was injected into flow cell 4. Flow cells 1 and 3 were left blank.
将1×HBS-P+用作整个程序的运行缓冲液。将scFv抗体以30μL/min的流速注入所有四个流通池,持续180秒。将在未捕获抗原的流通池1中测量的信号从流通池2中的信号中减去以校正结合曲线的背景结合。将在未捕获抗原的流通池3中测量的信号从流通池4的信号中减去以校正结合曲线的背景结合。在540秒的解离时间后,如下所述重新生成芯片。1× HBS-P+ was used as running buffer throughout the procedure. The scFv antibody was injected into all four flow cells at a flow rate of 30 μL/min for 180 seconds. The signal measured in flow cell 1, where no antigen was captured, was subtracted from the signal in flow cell 2 to correct for background binding in the binding curve. The signal measured in flow cell 3, where no antigen was captured, was subtracted from the signal in flow cell 4 to correct for background binding in the binding curve. After a 540-second dissociation time, the chip was regenerated as described below.
抗hu Fc IgG芯片通过注入高盐缓冲液3.0M MgCl2(30秒,10μL/min)重新生成。每次测量前,在没有scFv的情况下,执行4个“启动(start-up)循环”。从最低至最高浓度测量ScFv溶液。包括无运行缓冲液(0μΜ)的一个循环。The anti-hu Fc IgG chip was regenerated by injecting high salt buffer 3.0M MgCl2 (30 seconds, 10 μL/min). Before each measurement, four "start-up cycles" were performed without scFv. ScFv solutions were measured from the lowest to the highest concentration, including one cycle without running buffer (0 μM).
在MCK(Multi Cycle Kinetic)测量中测定scFv抗体的动力学。为了估算表观结合亲和力,用Biacore评估软件中包含的“动力学(Kinetic)”方法评估结合曲线。通过这个方法,使用“Langmuir 1:1相互作用模型”用所述软件全部拟合结合曲线。结果示于表3中。The kinetics of the scFv antibodies were determined in the MCK (Multi Cycle Kinetic) measurement. To estimate the apparent binding affinity, the binding curves were evaluated using the "Kinetic" method included in the Biacore evaluation software. Using this method, all binding curves were fitted using the "Langmuir 1:1 interaction model" with the software. The results are shown in Table 3.
所应用的亲和力成熟筛选步骤旨在通过使具有降低的解离速率(kOFF)的结合物的选择更容易来提高EGFRvIII特异性结合结构域的EGFRvIII结合亲和力。然而,令人惊讶的是,所得的亲和力成熟的结合物(表3)展示出大幅增加的结合速率(kON),而kOFF的降低对于scFv的提高达100倍的结合仅作出较小的贡献,同时一些结合物显示出低于100pM的KD(表3)。尤其让人惊讶的是,虽然筛选步骤有利于选择kOFF降低的scFv,但是实现KD的降低主要是由于kON的提高。这也是令人惊讶的,因为抗体的亲和力成熟通常与kOFF的降低有关(Schier et al.,1996,Pini et al.,1998,Boder et al.,2000)。The affinity maturation screening step that is used is intended to improve the EGFRvIII binding affinity of EGFRvIII specific binding domain more easily by making the selection of the binding substances with the dissociation rate ( kOFF ) of reduction.Yet, surprisingly, the affinity maturation binding substances (table 3) of gained shows the association rate ( kON ) that significantly increases, and the reduction of kOFF reaches 100 times of combination for the raising of scFv and only makes less contribution, and some binding substances demonstrate the KD lower than 100pM simultaneously (table 3).Especially surprisingly, although the screening step is conducive to the scFv that selects the kOFF reduction, the reduction of realization KD is mainly due to the raising of kON.This also is surprising, because the affinity maturation of antibody is relevant (Schier et al., 1996, Pini et al., 1998, Boder et al., 2000) with the reduction of kOFF conventionally.
表3:对scFv结合亲和力的总结(“VH”是scFv的可变重链结构域,“VL”是scFv的可变轻链结构域)。在Biacore(SPR)1:1结合模型中测量的scFv形式的不同EGFRvIII结合结构域对重组EGFRvIII-Fc抗原的KD值、结合速率(kON)和解离速率(kOFF);“提高系数”是指相对于亲代scFv,即Li3G30(VH SEQ ID NO:25和VL SEQ ID NO:26)的倍数变化。Table 3: Summary of scFv binding affinities ("VH" is the variable heavy chain domain of the scFv, "VL" is the variable light chain domain of the scFv). K values, association rates (kON) and dissociation rates ( kOFF ) of different EGFRvIII binding domains in scFv format for recombinant EGFRvIII-Fc antigen measured in a Biacore ( SPR ) 1:1 binding model; "enhancement factor" refers to the fold change relative to the parental scFv, i.e., Li3G30 (VH SEQ ID NO: 25 and VL SEQ ID NO: 26).
11个亲和力成熟的scFv中有8个显示出与亲代scFv相比kON至少5倍的提高;它们中的三个具有20倍高的kON。与kON的提高相比,亲和力成熟对kOFF的影响相当小。只有3个亲和力成熟的scFv显示出4-5倍提高的kOFF。有趣的是,它们中有两个从竞争性选择方法中分离出来,该方法与延长在洗涤缓冲液中的孵育相比可能是选择kOFF降低的scFv的更有效的方法。Eight of the 11 affinity-matured scFvs showed at least a 5-fold improvement in kON compared to the parental scFv; three of these had a 20-fold higher kON . Compared to the improvement in kON , the effect of affinity maturation on kOFF was quite small. Only three affinity-matured scFvs showed a 4-5-fold improvement in kOFF . Interestingly, two of these were isolated from a competitive selection method, which may be a more effective method for selecting scFvs with reduced kOFF than prolonged incubation in wash buffer.
通过差示扫描荧光测定法(DSF)测定的所选择的亲和力成熟的候选者的解链温度的平均值为62.2℃,范围为53℃-67.2℃。The average melting temperature of the selected affinity matured candidates determined by differential scanning fluorimetry (DSF) was 62.2°C, ranging from 53°C to 67.2°C.
在亲和力成熟的过程中维持相对于野生型EGFR的对EGFRvIII的高特异性Maintaining high specificity for EGFRvIII relative to wild-type EGFR during affinity maturation
通常亲和力成熟常常伴有结合表位的小变化,该小变化可影响特异性/交叉反应性(Barbas et al,1994,Parsons et al.,1996,Winkler et al.,2000)。由于野生型EGFR胞外结构域(外显子2-7)的269个氨基酸的框内缺失形成了相对于野生型EGFR的EGFRvIII新表位,并且预测其是相当小的:它由新的氨基酸并列(氨基酸5融合至氨基酸274)和在缺失位点处的一个新的GLY氨基酸组成。预期在这种情况下即使结合表位的小变化也会快速破坏对EGFRvIII的异常特异性并可得到也能识别天然EGFR的交叉反应结合物。Affinity maturation is usually accompanied by small changes in binding epitopes, which can affect specificity/cross-reactivity (Barbas et al, 1994, Parsons et al., 1996, Winkler et al., 2000). Due to the in-frame deletion of 269 amino acids in the wild-type EGFR extracellular domain (exon 2-7), an EGFRvIII new epitope relative to wild-type EGFR is formed, and it is predicted to be quite small: it is composed of new amino acids in parallel (amino acid 5 is fused to amino acid 274) and a new GLY amino acid at the deletion site. Even if it is expected that small changes in binding epitopes will quickly destroy the abnormal specificity of EGFRvIII in this case, a cross-reactive conjugate that can also identify native EGFR can be obtained.
令人惊讶的是,本文描述的亲和力成熟导致对抗EGFRvIII抗体提高达100倍的结合而不损失对EGFRvIII的专门特异性(表3,图2)。Surprisingly, the affinity maturation described herein resulted in up to 100-fold improved binding of anti-EGFRvIII antibodies without loss of exclusive specificity for EGFRvIII (Table 3, Figure 2).
在选择亲和力成熟的结合物期间,在流式细胞仪中检测了唯一的EGFRvIII特异性scFv对表达EGFRvIII的CHO细胞(CHOEGFRvIII)和F98细胞(F98EGFRvIII)的结合以及对表达人野生型EGFR的CHO细胞(CHOEGFR)和F98细胞(F98EGFR)及未转染的CHO和F98细胞的结合。During the selection of affinity-matured binders, the binding of the only EGFRvIII-specific scFv to CHO cells expressing EGFRvIII (CHO EGFRvIII ) and F98 cells (F98 EGFRvIII ), as well as to CHO cells expressing human wild-type EGFR (CHO EGFR ) and F98 cells (F98 EGFR ), and to untransfected CHO and F98 cells were tested in flow cytometry.
更详细地表征了没有任何可测量的与野生型EGFR阳性细胞(CHOEGFR)或未转染的CHO细胞的背景结合的11个高特异性抗EGFRvIII scFv。在最好的情况下,测量到了对EGFRvIII抗原的80pM的亲和力,对应于与亲代scFv相比的100倍的提高系数(表3)。同时,所检测的抗EGFRvIII scFv都没有显示出与野生型EGFR抗原的任何交叉反应性(图2)。Characterized in more detail 11 high-specificity anti-EGFRvIII scFv that do not have any measurable background combination with wild-type EGFR positive cell (CHO EGFR ) or the Chinese hamster ovary celI of non-transfected.In the best case, measured the avidity to 80pM of EGFRvIII antigen, corresponding to 100 times of raising coefficient (table 3) compared with parental scFv.Simultaneously, the anti-EGFRvIII scFv that is detected all does not demonstrate any cross reactivity (Fig. 2) with wild-type EGFR antigen.
据我们所知,之前从未观察到与对EGFRvIII的排他性特异性结合的人抗体结构域对EGFRvIII的如此高的亲和力,并且没有可测量的与野生型EGFR的交叉反应性。Safdari和同事最近描述了人源化鼠EGFRvIII结合抗体结构域MR1的结果(Safdari et al.,2014),以其鼠(murine)形式的MR1最先由Lorimer和同事描述(Lorimer et al.,1996,Beers etal.,2000,Kuan et al.,2000)。在人源化方法中,他们实现了humMR1的亲和力提高,达到了于此报导的相似的皮摩尔KD值,然而,与本发明相反,他们没有完全消除所述抗体结构域与野生型EGFR的交叉反应性,这可以在他们的出版物(Safdari et al.,2014)的图4中清楚地看出。因此,在SDS PAGE和蛋白质印迹后,humMR1不只对EGFRvIII(145KD)有特异性,也识别EGFR(170KD)(Safdari et al.,2014)。在亲和力成熟前后,申请人广泛地检测了本申请EGFRvIII结合结构域的特异性和交叉反应性,并惊讶地发现在Biacore(图2),或在SDSPAGE和蛋白质印迹(图4)或在ELISA(图5)的分析中都没有发现与野生型EGFR,或与纯化的重组野生型EGFR抗原的交叉反应性的信号。本申请的EGFRvIII结合结构域同样没有展示出与转染的CHO细胞(CHOEGF)或F98神经胶质瘤细胞(F98EGFR)的细胞表面上过表达的野生型EGFR的任何交叉反应性(图3)。To our knowledge, such high affinity for EGFRvIII has never been observed for a human antibody domain that binds exclusively specifically to EGFRvIII, without measurable cross-reactivity with wild-type EGFR. Safdari and colleagues recently described results for humanizing the murine EGFRvIII-binding antibody domain MR1 (Safdari et al., 2014), which was first described in its murine form by Lorimer and colleagues (Lorimer et al., 1996, Beers et al., 2000, Kuan et al., 2000). In their humanization approach, they achieved an increase in the affinity of humMR1, reaching similar picomolar K values reported here. However, in contrast to the present invention, they did not completely eliminate the cross-reactivity of the antibody domain with wild-type EGFR, as can be clearly seen in Figure 4 of their publication (Safdari et al., 2014). Thus, after SDS PAGE and Western blotting, humMR1 was not only specific for EGFRvIII (145 kD), but also recognized EGFR (170 kD) (Safdari et al., 2014). Applicants extensively tested the specificity and cross-reactivity of the EGFRvIII binding domain of the present application before and after affinity maturation and surprisingly found no cross-reactivity signals with wild-type EGFR or purified recombinant wild-type EGFR antigen in Biacore (Figure 2), SDS PAGE and Western blotting (Figure 4), or ELISA (Figure 5). The EGFRvIII binding domain of the present application also did not exhibit any cross-reactivity with wild-type EGFR overexpressed on the cell surface of transfected CHO cells (CHO EGF ) or F98 glioma cells (F98 EGFR ) (Figure 3).
实施例3:通过流式细胞术评估EGFRvIII特异性scFv抗体对过表达EGFRvIII的F98大鼠神经胶质瘤细胞(F98EGFRvIII)或稳定转染的过表达EGFRvIII的CHO细胞(CHOEGFRvIII)的高特异性和高亲和力;没有与过表达天然EGFR的F98细胞(F98EGFR)或未转染的F98细胞(F98)的结合,以及没有与过表达天然EGFR的CHO细胞(CHOEGFR)或未转染的CHO细胞(CHO)的结合。Example 3: High specificity and high affinity of EGFRvIII-specific scFv antibodies were assessed by flow cytometry for binding to F98 rat glioma cells (F98 EGFRvIII ) or stably transfected CHO cells (CHO EGFRvIII ) expressing EGFRvIII; no binding to F98 cells (F98 EGFR ) or untransfected F98 cells (F98) expressing native EGFR, and no binding to CHO cells (CHO EGFR ) or untransfected CHO cells (CHO) expressing native EGFR.
材料(培养基、缓冲液和试剂):Materials (media, buffers, and reagents):
抗His IgG 13/45/31(Dianova)、FCS(Invitrogen)、Ficoll Paque PLUS(GEHealthcare)、FITC缀合的山羊抗人IgG(Dianova)、FITC缀合的山羊抗小鼠IgG、min X(Dianova)、L谷氨酰胺(Invitrogen)、NaN3(Carl Roth)、PBS(Invitrogen)、青霉素/链霉素(Invitrogen)、碘化丙啶(Propidium iodide)(Sigma)、RPMI-1640(Invitrogen)。Anti-His IgG 13/45/31 (Dianova), FCS (Invitrogen), Ficoll Paque PLUS (GE Healthcare), FITC-conjugated goat anti-human IgG (Dianova), FITC-conjugated goat anti-mouse IgG, min X (Dianova), L-glutamine (Invitrogen), NaN3 (Carl Roth), PBS (Invitrogen), Penicillin/Streptomycin (Invitrogen), Propidium iodide (Sigma), RPMI-1640 (Invitrogen).
细胞和细胞系:Cells and cell lines:
F98大鼠神经胶质瘤细胞、过表达EGFR的F98细胞(F98EGFR)以及过表达EGFRvIII的F98细胞(F98EGFRvIII)购自美国典型培养物收藏中心(American type culture collection(ATCC))并根据所推荐的方案进行培养。F98 rat glioma cells, F98 cells overexpressing EGFR (F98 EGFR ), and F98 cells overexpressing EGFRvIII (F98 EGFRvIII ) were purchased from the American type culture collection (ATCC) and cultured according to the recommended protocol.
F98(ATCC CRL-2397)F98 (ATCC CRL-2397)
F98EGFR(ATCC CRL-2948)F98 EGFR (ATCC CRL-2948)
F98npEGFRvIII(ATCC CRL-2949)F98 npEGFRvIII (ATCC CRL-2949)
稳定转染的表达重组EGFR或EGFRvIII的CHO细胞根据以下方案在Affimed生成:Stably transfected CHO cells expressing recombinant EGFR or EGFRvIII were generated at Affimed according to the following protocol:
编码野生型EGFR或缺失突变体EGFRvIII的基因由Life Technologies/GeneArt(雷根斯堡,德国)合成,并亚克隆至哺乳动物表达载体pcDNA5/FRT中。表达重组野生型EGFR或EGFRvIII的稳定的CHO细胞系基于先前适应悬浮生长的宿主细胞系Flp-In CHO(LifeTechnologies)生成。在转染前一天,将Flp-In CHO细胞在补充有L-谷氨酰胺、HT补充剂和青霉素/链霉素的HyClone CDM4CHO中进行传代培养(没有博来霉素(Zeocin))。稳定的表达细胞系通过使用聚乙烯亚胺(PEI)转染试剂,用基于pcDNA5/FRT的产物表达和整合质粒和Flp重组酶表达质粒pOG44(Life Technologies)共转染Flp-In CHO细胞系来生成。将2.5μg总DNA稀释于50μL OptiMEMI培养基中并与稀释于50μL OptiMEMI培养基中的7.5μg PEI合并。将混合物孵育10分钟,然后加入到悬浮在1mL CHO-S-SFMII培养基的2×106个Flp-InCHO细胞中。在转染后一天,将细胞在补充有500μg/mL潮霉素B的CHO-S-SFMII培养基中稀释至密度为l×l05个活细胞/mL,并在T75培养瓶中接种。Flp重组酶通过位点特异性的DNA重组介导Flp-In表达构建体在整合的FRT位点插入到基因组中。在选择阶段,一周一次或两次测量活细胞密度,将细胞离心并以l×l05个活细胞/mL的最大密度重悬于新鲜的选择培养基中。在使用500μg/mL潮霉素B选择约2-3周后,回收表达EGFR或EGFRvIII的稳定的细胞,然后将所述细胞转移至HyClone CDM4 CHO悬浮培养基中。将稳定的表达野生型EGFR或EGFRvIII的细胞冷冻保存于含50%ProFreeze(Lonza)和7.5%DMSO的培养基中。The gene of coding wild-type EGFR or deletion mutant EGFRvIII is synthesized by Life Technologies/GeneArt (Regensburg, Germany), and is subcloned among the mammalian expression vector pcDNA5/FRT.Expressing the stable Chinese hamster ovary celI of recombinant wild-type EGFR or EGFRvIII generates based on the host cell line Flp-In CHO (Life Technologies) of previous adaptation to suspension growth.The day before transfection, Flp-In Chinese hamster ovary celI is carried out passage culture (not having bleomycin (Zeocin)) in the HyClone CDM4CHO that is supplemented with L-glutamine, HT supplement and penicillin/streptomycin.The stable expression cell line is by using polyethyleneimine (PEI) transfection reagent, with the product expression based on pcDNA5/FRT and integration plasmid and Flp recombinase expression plasmid pOG44 (Life Technologies) cotransfection Flp-In Chinese hamster ovary celI system generates. 2.5 μg of total DNA was diluted in 50 μL of OptiMEMI medium and combined with 7.5 μg of PEI diluted in 50 μL of OptiMEMI medium. The mixture was incubated for 10 minutes and then added to 2×10 6 Flp-In CHO cells suspended in 1 mL of CHO-S-SFMII medium. One day after transfection, the cells were diluted to a density of 1×10 5 viable cells/mL in CHO-S-SFMII medium supplemented with 500 μg/mL hygromycin B and seeded in T75 culture flasks. Flp recombinase mediates the insertion of the Flp-In expression construct into the genome at the integrated FRT site through site-specific DNA recombination. During the selection phase, the viable cell density was measured once or twice a week, the cells were centrifuged and resuspended in fresh selection medium at a maximum density of 1×10 5 viable cells/mL. After about 2-3 weeks of selection using 500 μg/mL hygromycin B, stable cells expressing EGFR or EGFRvIII were recovered and then transferred to HyClone CDM4 CHO suspension culture medium. Stable cells expressing wild-type EGFR or EGFRvIII were cryopreserved in a culture medium containing 50% ProFreeze (Lonza) and 7.5% DMSO.
为了测定稳定转染细胞系上野生型EGFR或EGFRvIII细胞表面抗原的密度,根据制造商的说明书使用流式细胞间接免疫荧光测定(QIFIKIT,Dako),并证明了CHOEGFR稳定转染细胞上野生型EGFR的密度与CHOEGFRvIII稳定转染细胞上EGFRvIII的密度近似相等,而在未转染CHO细胞上没有检测到野生型EGFR或EGFRvIII结合位点。To determine the density of wild-type EGFR or EGFRvIII cell surface antigens on stably transfected cell lines, a flow cytometric indirect immunofluorescence assay (QIFIKIT, Dako) was used according to the manufacturer's instructions and demonstrated that the density of wild-type EGFR on CHO EGFR stably transfected cells was approximately equal to the density of EGFRvIII on CHO EGFRvIII stably transfected cells, whereas no wild-type EGFR or EGFRvIII binding sites were detected on untransfected CHO cells.
通过流式细胞术测定抗体结合和亲和力:Determination of Antibody Binding and Affinity by Flow Cytometry:
将细胞与所指示的scFv抗体从100μg/mL(约3300nM)开始在FACS缓冲液中的100μL连续稀释液在冰上孵育45min(分钟)。用FACS缓冲液洗涤3次后,将细胞在同一缓冲液中与0.1mL 10μg/mL小鼠单克隆抗His抗体克隆13/45/31在冰上孵育45min。在第二个洗涤循环之后,在与前相同的条件下,将细胞与0.1mL 15μg/mL FITC缀合的山羊抗小鼠IgG抗体孵育。作为对照,在没有scFv的情况下,将细胞与抗His IgG 13/45/31孵育,然后与FITC缀合的山羊抗小鼠IgG抗体孵育。然后将细胞再次洗涤并重悬于含2μg/mL碘化丙啶的0.2mLFACS缓冲液中以排除死细胞。使用用MXP软件的Beckman-Coulter FC500 MPL流式细胞仪(Beckman-Coulter,克雷菲尔德,德国)或用Incyte软件的Millipore Guava EasyCyte流式细胞仪(Merck Millipore,施瓦尔巴赫,德国)测量l×l04个活细胞的荧光。细胞样品的平均荧光强度用CXP软件(Beckman-Coulter,克雷费尔德,德国)或Incyte软件(MerckMillipore,施瓦尔巴赫,德国)计算。Cells and indicated scFv antibodies are started from 100 μ g/mL (about 3300nM) in 100 μ L serial dilutions in FACS buffer and are hatched on ice for 45min (minute). After washing 3 times with FACS buffer, cells are hatched on ice for 45min with 0.1mL 10 μ g/mL mouse monoclonal anti-His antibody clone 13/45/31 in the same buffer. After second washing cycle, under the same conditions as before, cells are hatched with the goat anti-mouse IgG antibody that 0.1mL 15 μ g/mL FITC is put together. As a control, in the absence of scFv, cells are hatched with anti-His IgG 13/45/31, then with the goat anti-mouse IgG antibody that FITC is put together. Then cells are washed again and are resuspended in the 0.2mL FACS buffer containing 2 μ g/mL propidium iodide to exclude dead cells. The fluorescence of 1×10 4 living cells was measured using a Beckman-Coulter FC500 MPL flow cytometer with MXP software (Beckman-Coulter, Krefeld, Germany) or a Millipore Guava EasyCyte flow cytometer with Incyte software (Merck Millipore, Schwalbach, Germany). The mean fluorescence intensity of the cell samples was calculated using CXP software (Beckman-Coulter, Krefeld, Germany) or Incyte software (Merck Millipore, Schwalbach, Germany).
如果用Beckman-Coulter FC500 MPL流式细胞仪进行分析,使用0.5×l06个细胞/染色,如果用Millipore Guava EasyCyte流式细胞仪,仅使用0.25×l06个细胞/染色。If analyzing with a Beckman-Coulter FC500 MPL flow cytometer, use 0.5 × 10 6 cells/stain; if analyzing with a Millipore Guava EasyCyte flow cytometer, use only 0.25 × 10 6 cells/stain.
在减去单独用二级和三级试剂染色的细胞的荧光强度值后,采用GraphPad Prism软件(用于Windows的GraphPad Prism 6.00版,GraphPad Software,加利福尼亚拉荷亚,美国)的单位点结合的等式(双曲线)计算KD值。KD values were calculated using the equation for single-site binding (hyperbola) using GraphPad Prism software (GraphPad Prism version 6.00 for Windows, GraphPad Software, La Jolla, CA, USA) after subtracting the fluorescence intensity values of cells stained with secondary and tertiary reagents alone.
结果示于图3。The results are shown in Figure 3.
实施例4:SDS PAGE和蛋白质印迹分析结合EGFRvIII的抗体的结合特异性。Example 4: SDS PAGE and Western blotting analysis of the binding specificity of antibodies binding to EGFRvIII.
为了检测含有不同结合结构域的EGFRvIII/CD3串联双抗体对EGFRvIII抗原的结合特异性以及为了证明不存在与野生型EGFR抗原的结合,实施了十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)和蛋白质印迹分析。To detect the binding specificity of EGFRvIII/CD3 tandem diabodies containing different binding domains to EGFRvIII antigen and to demonstrate the absence of binding to wild-type EGFR antigen, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis were performed.
通过重组DNA技术将编码野生型EGFR或截短型EGFRvIII的胞外结构域的序列融合至人IgG抗体的Fc部分。将DNA构建体转染至将作为可溶性蛋白的重组的野生型EGFR-Fc或EGFRvIII-Fc分泌至细胞培养上清液中的CHO细胞中,使用蛋白A层析法从所述细胞培养上清液中纯化所述重组的野生型EGFR-Fc或EGFRvIII-Fc。通过Fc部分中分子内二硫键的形成,野生型EGFR-Fc(或EGFRvIII-Fc)融合抗原形成有两条相同的链的二聚体。由于EGFRvIII-特异性267个氨基酸缺失,EGFRvIII-Fc比EGFR-Fc小约25kD,导致二聚体形式的Fc融合蛋白有约50kD的大小差异。By recombinant DNA technology, the sequence of the extracellular domain of encoding wild-type EGFR or truncated EGFRvIII is fused to the Fc part of human IgG antibody.DNA construct is transfected into the Chinese hamster ovary celI as the wild-type EGFR-Fc or EGFRvIII-Fc of the reorganization of soluble protein and is secreted into the cell culture supernatant, uses protein A chromatography to purify the wild-type EGFR-Fc or EGFRvIII-Fc of described reorganization from described cell culture supernatant.Through the formation of intramolecular disulfide bond in the Fc part, wild-type EGFR-Fc (or EGFRvIII-Fc) fused antigen forms the dimer with two identical chains.Due to EGFRvIII-specific 267 amino acid deletions, EGFRvIII-Fc causes the Fc fusion protein of dimer form to have the size difference of about 50kD than EGFR-Fc little by about 25kD.
将等量的纯化的野生型EGFR-Fc(和EGFRvIII-Fc)与非还原性2×SDS PAGE样品缓冲液或含二硫苏糖醇(DTT)作为还原剂的还原性2×SDS PAGE样品缓冲液混合。将含DTT的样品在95℃加热5分钟,然后加载到4-20%标准TGX预制SDS PAGE凝胶(Biorad)上。每个泳道使用1μg的蛋白样品。为了在凝胶中分离蛋白,SDS-PAGE在300V下,在l×Tris/甘氨酸/SDS缓冲液(Biorad)中运行约25min。使用标准无染色分子成像系统(Biorad)使总蛋白在凝胶中可视化。将Page Ruler未染色蛋白梯带(Thermo Scientific)用作分子量标记物。然后用BioRad的半干快速印迹(Semi-dry blotting Fastblot)系统将凝胶印迹在PVDF膜上。在室温下将膜在溶于l×TBS的3%(w/v)脱脂奶粉中封闭30min。将膜切成小块,每一块含有所印迹的相似的蛋白样品。将不同的串联双抗体在溶于l×TBS的3%(w/v)脱脂奶粉中稀释至浓度为2μg/ml,并在摇动平台上与单独的膜块孵育1小时。将10μg/ml浓度的抗EGFR抗体西妥昔单抗用作对照。将膜用TBST(TBS+0.1%(v/v)吐温20)洗涤3次,每次10分钟,用TBS洗涤一次,然后与在溶于TBS的3%脱脂奶粉中以1:5000稀释的HRP缀合的二级检测抗体PentaHIS-HRP(QIAGEN)(用于检测串联双抗体)或蛋白L-HRP(Thermo Scientific)(用于检测西妥昔单抗)在摇动平台上孵育1小时。将膜用TBST(TBS+0.1%(v/v)吐温20)洗涤3次,每次10分钟,用TBS洗涤一次。通过加入溶于TBS的0.06%DAB+0.02%CoCl2+0.015%H2O2而启动膜上HRP介导的显色。通过添加水终止反应。将膜干燥并扫描。Equal amounts of purified wild-type EGFR-Fc (and EGFRvIII-Fc) were mixed with either non-reducing 2× SDS PAGE sample buffer or reducing 2× SDS PAGE sample buffer containing dithiothreitol (DTT) as a reducing agent. Samples containing DTT were heated at 95°C for 5 minutes and then loaded onto a 4-20% standard TGX precast SDS PAGE gel (Biorad). 1 μg of protein sample was used per lane. To separate the proteins in the gel, SDS-PAGE was run at 300V in 1× Tris/glycine/SDS buffer (Biorad) for approximately 25 minutes. Total protein was visualized in the gel using a standard stain-free molecular imaging system (Biorad). A Page Ruler unstained protein ladder (Thermo Scientific) was used as a molecular weight marker. The gel was then blotted onto a PVDF membrane using BioRad's semi-dry blotting Fastblot system. The membrane was blocked in 3% (w/v) nonfat dry milk in 1× TBS for 30 min at room temperature. The membrane was cut into small pieces, each containing a similar protein sample to be blotted. Different tandem diabodies were diluted to a concentration of 2 μg/ml in 3% (w/v) nonfat dry milk in 1× TBS and incubated with separate membrane pieces on a rocking platform for 1 hour. The anti-EGFR antibody cetuximab was used as a control at a concentration of 10 μg/ml. The membrane was washed three times for 10 minutes each with TBST (TBS + 0.1% (v/v) Tween 20) and once with TBS, then incubated with HRP-conjugated secondary detection antibodies PentaHIS-HRP (QIAGEN) (for detection of the tandem diabodies) or Protein L-HRP (Thermo Scientific) (for detection of cetuximab) at a dilution of 1:5000 in 3% nonfat dry milk in TBS on a rocking platform for 1 hour. The membrane was washed three times for 10 minutes each with TBST (TBS + 0.1% (v/v) Tween 20) and once with TBS. HRP-mediated color development on the membrane was initiated by adding 0.06% DAB + 0.02% CoCl 2 + 0.015% H 2 O 2 in TBS. The reaction was terminated by adding water. The membrane was dried and scanned.
结果示于图4。The results are shown in Figure 4.
实施例5:通过酶联免疫吸附测定(ELISA)分析含有不同EGFRvIII结合结构域的EGFRvIII/CD3串联双抗体对EGFRvIII抗原的结合和对CD3的结合,以及在不结合野生型EGFR抗原情况下它们对EGFRvIII的结合的特异性。Example 5: The binding of EGFRvIII/CD3 tandem diabodies containing different EGFRvIII binding domains to EGFRvIII antigen and CD3, as well as their binding specificity to EGFRvIII in the absence of binding to wild-type EGFR antigen, were analyzed by enzyme-linked immunosorbent assay (ELISA).
ELISA步骤:ELISA steps:
将96孔ELISA板(Immuno MaxiSorp;Nunc)在4℃下用在100mM碳酸盐-碳酸氢盐缓冲液中的EGFRvIII-Fc、野生型EGFR-Fc或CD3γε重组抗原包被过夜。为了获得接近相同的抗原摩尔包被密度,EGFRvIII-Fc以4μg/ml的浓度包被,EGFR-Fc以6μg/ml的浓度包被,CD3γε抗原以1.5μg/ml的浓度包被。在使用溶于PBS的3%(w/v)脱脂奶粉(Merck)进行封闭步骤后,将溶于含0.3%(w/v)脱脂奶粉(Merck)的PBS中的范围为200ng/μl-6.5×l0-6ng/μl的不同EGFRvIH/CD3串联双抗体的11个连续稀释液在25℃下在板上孵育1.5h。孵育后,将板用300μl/孔的含0.1%(v/v)吐温20(Serva)的PBS洗涤3次。加入50ng/ml的蛋白L-HRP并在25℃下在板上孵育1h。用300μl/孔的含0.1%(v/v)吐温20的PBS洗涤3次后,加入四甲基联苯胺(TMB)底物(Seramun)进行检测。在约2分钟后通过加入100μl/孔的0.5M H2SO4终止反应。用多孔板读取器(Victor,Perkin Elmer)在450nm下测量孔的吸光度。96-well ELISA plates (Immuno MaxiSorp; Nunc) were coated overnight at 4°C with EGFRvIII-Fc, wild-type EGFR-Fc, or CD3γε recombinant antigen in 100 mM carbonate-bicarbonate buffer. To achieve approximately equal antigen molar coating densities, EGFRvIII-Fc was coated at a concentration of 4 μg/ml, EGFR-Fc at a concentration of 6 μg/ml, and CD3γε at a concentration of 1.5 μg/ml. After a blocking step using 3% (w/v) skim milk powder (Merck) in PBS, 11 serial dilutions of different EGFRvIH/CD3 tandem diabodies ranging from 200 ng/μl to 6.5× 10-6 ng/μl in PBS containing 0.3% (w/v) skim milk powder (Merck) were incubated on the plates at 25°C for 1.5 h. After incubation, the plates were washed three times with 300 μl/well of PBS containing 0.1% (v/v) Tween 20 (Serva). 50 ng/ml of Protein L-HRP was added and incubated on the plates at 25°C for 1 hour. After washing three times with 300 μl/well of PBS containing 0.1% (v/v) Tween 20, tetramethylbenzidine (TMB) substrate (Seramun) was added for detection. The reaction was terminated after approximately 2 minutes by adding 100 μl/well of 0.5 M H₂SO₄ . The absorbance of the wells was measured at 450 nm using a multiwell plate reader (Victor, Perkin Elmer).
使用GraphPad Prism软件(GraphPad Software,加州圣地亚哥,加拿大)将吸光值在图中绘制成线。Absorbance values were plotted as lines in the graph using GraphPad Prism software (GraphPad Software, San Diego, CA, Canada).
结果示于图5中。The results are shown in FIG5 .
实施例6:通过SPR测量串联双抗体与EGFRvIII的结合:Example 6: Measurement of Binding of Tandem Diabodies to EGFRvIII by SPR:
制备抗hu Fc IgG CM5-芯片Preparation of anti-hu Fc IgG CM5-chip
如上所述(实施例2)制备抗hu Fc IgG CM5-芯片。An anti-hu Fc IgG CM5-chip was prepared as described above (Example 2).
SPR测量中使用的串联双抗体的浓度范围:Concentration range of tandem diabodies used in SPR measurements:
在SPR测量之前,使用Nandrop通过A280测定检查串联双抗体浓度。储备液的浓度(c)根据以下等式计算:Before SPR measurement, the concentration of the tandem diabody was checked by A280 determination using Nandrop. The concentration (c) of the stock solution was calculated according to the following equation:
c[mg/ml]=(A280)/(2.25[cm2/mg]×1[cm])c[mg/ml]=(A280)/(2.25[cm 2 /mg]×1[cm])
用“Expasy Protparam”预测工具(http://web.expasy.org/protparam/)计算不同的消光系数。为了计算摩尔浓度,假定所有串联双抗体的分子量为105kD。通过在l×HBS-P+缓冲液中进行连续稀释将串联双抗体调整至下面提到的终浓度。制备以下浓度:150nM、30nM、6nM、1.2nM、0.24nM、0.048nM和0nM;或90nM、30nM、10nM、3.33nM、1.11nM、0.37nM、0.123nM、0.041nM和0nM,或所指示的浓度。Different extinction coefficients were calculated using the "Expasy Protparam" prediction tool (http://web.expasy.org/protparam/). To calculate molar concentrations, a molecular weight of 105 kD was assumed for all tandem diabodies. The tandem diabodies were adjusted to the final concentrations mentioned below by serial dilution in 1×HBS-P+ buffer. The following concentrations were prepared: 150 nM, 30 nM, 6 nM, 1.2 nM, 0.24 nM, 0.048 nM, and 0 nM; or 90 nM, 30 nM, 10 nM, 3.33 nM, 1.11 nM, 0.37 nM, 0.123 nM, 0.041 nM, and 0 nM, or the concentrations indicated.
串联双抗体KD测量的结合测定条件Binding assay conditions for tandem diabody KD measurements
将EGFRvIII-Fc融合蛋白在l×HBS-P+中稀释至浓度为6.25nM。对于EGFRvIII-Fc,以10μl/min的流速注入抗原溶液持续40秒。将抗原注入流通池2。流通池1为参考池。Dilute the EGFRvIII-Fc fusion protein in 1×HBS-P+ to a concentration of 6.25 nM. For EGFRvIII-Fc, inject the antigen solution at a flow rate of 10 μl/min for 40 seconds. Inject the antigen into flow cell 2. Flow cell 1 serves as the reference cell.
将1×HBS-P+用作整个程序的运行缓冲液。将串联双抗体稀释液以30μL/min的流速注入所有四个流通池持续180秒。将在未捕获抗原的流通池1中测量的信号从流通池2的信号中减去以校正结合曲线的背景结合。在540秒的解离时间后,如下所述重新生成芯片。1× HBS-P+ was used as running buffer throughout the procedure. Serial dilutions of the diabody were injected into all four flow cells at a flow rate of 30 μL/min for 180 seconds. The signal measured in flow cell 1, where no antigen was captured, was subtracted from the signal in flow cell 2 to correct for background binding in the binding curve. After a 540-second dissociation time, the chip was regenerated as described below.
抗hu Fc IgG芯片通过注入高盐缓冲液3.0M MgCl2(3×15秒,10μL/min)重新生成。每次测量前,在没有串联双抗体的情况下,执行3个“启动循环”。从最低至最高浓度测量串联双抗体溶液。包括无运行缓冲液(0μΜ)的一个循环。The anti-hu Fc IgG chip was regenerated by injecting high salt buffer 3.0 M MgCl2 (3 x 15 seconds, 10 μL/min). Before each measurement, three "priming cycles" were performed without the tandem diabody. The tandem diabody solutions were measured from the lowest to the highest concentration, including one cycle without running buffer (0 μM).
在MCK(Multi Cycle Kinetic)测量中测定串联双抗体的结合参数。为了估算表观结合亲和力,用Biacore X100评估软件中包含的“动力学(Kinetic)”方法评估结合曲线。通过这个方法,使用“Langmuir 1:1相互作用模型”用所述软件全部或部分地拟合结合曲线。Binding parameters of the tandem diabodies were determined in an MCK (Multi Cycle Kinetic) measurement. To estimate apparent binding affinity, binding curves were evaluated using the "Kinetic" method included in the Biacore X100 evaluation software. Using this method, binding curves were fitted in whole or in part using the "Langmuir 1:1 interaction model" with the software.
串联双抗体的结合参数Binding parameters of tandem diabodies
为了分析将两个EGFRvIII结合结构域组合至二价或多价或多特异性分子如EGFRvIII/CD3串联双抗体中的效果,应用BiacoreX100通过SPR测量EGFRvIII/CD3串联双抗体对EGFRvIII抗原的表观亲和力(图6)。To analyze the effect of combining two EGFRvIII binding domains into bivalent or multivalent or multispecific molecules such as EGFRvIII/CD3 tandem diabodies, the apparent affinity of EGFRvIII/CD3 tandem diabodies to EGFRvIII antigen was measured by SPR using BiacoreX100 ( FIG6 ).
对于所有检测的分子,EGFRvIII/串联双抗体中EGFRvIII特异性结合结构域的表观亲和力提高,最好的结合串联双抗体实现了11pM的KD。相对于对应的含有亲代EGFRvIII结合结构域的串联双抗体,含有亲和力成熟的结构域的串联双抗体的KD降低高达25倍。相对于单价结合scFv的测量的KD,KD的提高也高达25倍。有趣的是,与通过主要由提高的kON驱动的亲和力成熟实现的提高相反,在二价串联双抗体形式中结合亲和力的进一步提高很大程度上通过更慢的kofOFF实现(表4)。For all molecules detected, the apparent affinity of the EGFRvIII specific binding domain in the EGFRvIII/tandem diabody improves, and the best combination tandem diabody has achieved a K of 11pM. Relative to the corresponding tandem diabody containing the parental EGFRvIII binding domain, the K of the tandem diabody containing the domain of affinity maturation reduces by up to 25 times. Relative to the K of the measurement of the monovalent binding scFv, the improvement of K is also up to 25 times. Interestingly, contrary to the improvement achieved by the affinity maturation driven mainly by the improved k ON , the further improvement of binding affinity in the bivalent tandem diabody format is realized by slower k ofOFF to a great extent (Table 4).
因此,串联双抗体形式提供了一种在维持抗体结合结构域的特异性的同时进一步增强结合亲和力的方法。Therefore, the tandem diabody format provides a way to further enhance binding affinity while maintaining the specificity of the antibody binding domain.
表4:在SPR 1:1结合模型中对含有二价亲代的或亲和力成熟的EGFRvIII特异性结合结构域的结构域顺序为VL CD3-VH EGFRvIII-VL EGFRVIII-VH CD3的不同EGFRvIII/CD3串联双抗体与重组EGFRvIII-Fc抗原的结合所测量的KD、结合速率(kON)和解离速率(kOFF)的总结。Table 4: Summary of measured KD, association rates (kON), and dissociation rates ( kOFF ) for binding of different EGFRvIII/ CD3 tandem diabodies containing bivalent parental or affinity matured EGFRvIII -specific binding domains with the domain order VLCD3 - VHEGFRvIII - VLEGFRVIII - VHCD3 to recombinant EGFRvIII-Fc antigen in the SPR 1:1 binding model.
实施例7:用抗EGFRvIII双特异性双抗体或西妥昔单抗进行实体瘤组织切片的免疫组化(IHC)染色Example 7: Immunohistochemistry (IHC) staining of solid tumor tissue sections using anti-EGFRvIII bispecific diabody or cetuximab
与在健康组织上广泛表达的野生型EGFR相比,突变受体EGFRvIII的表达是高度肿瘤特异性的。然而,神经胶质瘤细胞中EGFRvIII的高频表达与文献中描述的一致,EGFRvIII的表达广泛度和它在其它肿瘤中表达的同质性仍是有争议的。In contrast to wild-type EGFR, which is ubiquitously expressed on healthy tissues, expression of the mutant receptor EGFRvIII is highly tumor-specific. However, the high frequency of EGFRvIII expression in glioma cells is consistent with literature descriptions, but the extent of EGFRvIII expression and its homogeneity in other tumors remain controversial.
开始了一项小的免疫组化(IHC)研究,分析了来自各3例患有成胶质细胞瘤(GB)、头颈(H&N)癌、前列腺癌、Her2-阴性乳腺癌以及非小细胞肺癌(NSCLC)的癌症患者的组织切片与根据本发明的二价双抗体形式的EGFRvIII特异性结合结构域的反应性(图7)。A small immunohistochemistry (IHC) study was initiated, analyzing the reactivity of tissue sections from three cancer patients each suffering from glioblastoma (GB), head and neck (H&N) cancer, prostate cancer, Her2-negative breast cancer, and non-small cell lung cancer (NSCLC) with the EGFRvIII specific binding domains in the form of a bivalent diabody according to the present invention ( FIG. 7 ).
实施所述免疫组化研究以评估在不同肿瘤中EGFRvIII的表达以及EGFRvIII结合抗体的肿瘤特异性。以含有以VH EGFRvIII-VL EGFRvIII排列的EGFRvIII结合结构域Li3G30的二价双抗体形式,检测了EGFRvIII特异性可变结构域的EGFRvIII结合。二级检测通过双抗体蛋白上的His标签实施。作为对照,使用了对天然EGFR有特异性的IgG抗体西妥昔单抗(爱必妥(Erbitux))。The present invention relates to the immunohistochemical study of the expression of EGFRvIII and the tumor specificity of EGFRvIII binding antibodies to assess different tumors.To contain the bivalent double antibody form of the EGFRvIII binding domain Li3G30 arranged with V H EGFRvIII - V L EGFRvIII , the EGFRvIII combination of EGFRvIII specific variable domains has been detected.Secondary detection is implemented by the His tag on the double antibody protein.In contrast, used natural EGFR to have specific IgG antibody cetuximab (Erbitux (Erbitux)).
所有的人组织切片购自BioChain Institute,Inc.,并根据供应商的说明书处理切片。使组织切片适应于室温并与DAKO过氧化物酶阻断剂孵育,然后用10%山羊血清封闭。将EGFRvIII特异性双抗体以0.5μg/ml和0.1μg/ml的两个浓度水平孵育1小时,然后与抗His抗体(Dianova)孵育并通过Envision+HRP-DAB系统检测小鼠抗体(DAKO)。根据制造商的说明书,使用Klear人HRP-聚合物DAB检测系统(GBI Labs),以10g/ml的浓度实施用对照项爱必妥(Merck KGaA)进行的组织切片染色。All people's tissue sections are purchased from BioChain Institute, Inc., and according to supplier's specification sheets process section.Make tissue section be adapted to room temperature and hatch with DAKO peroxidase blocker, then use 10% goat serum to seal.EGFRvIII specific double antibody was hatched 1 hour with two concentration levels of 0.5 μ g/ml and 0.1 μ g/ml, then hatched and passed through Envision+HRP-DAB system detection mouse antibody (DAKO) with anti-His antibody (Dianova).According to manufacturers' specification sheets, use Klear people HRP-polymer DAB detection system (GBI Labs), implement the tissue section dyeing that carries out with control item Erbitux (Merck KGaA) with the concentration of 10g/ml.
最终,将切片用苏木精染色并用封固介质(mountant medium)(Shandon ConsulMountTM,Thermo Scientific)封片。Finally, sections were stained with hematoxylin and mounted with mountant medium (Shandon ConsulMount ™ , Thermo Scientific).
结果示于图7。The results are shown in FIG7 .
三个成胶质细胞瘤样品中有两个显示出与EGFRvIII特异性双抗体的明显且特异性的反应性。令人惊讶的是,所有三个头颈癌样品都显示出强且明显的EGFRvIII阳性,并且同样地对于前列腺癌、乳腺癌和NSCLC,用本文描述的EGFRvIII特异性抗体获得了肿瘤组织的特异性染色(图7)。Two demonstrate in three glioblastoma samples with the obvious and specific reactivity of EGFRvIII specific double antibody.Surprisingly, all three head and neck cancer samples all demonstrate strong and obvious EGFRvIII positive, and similarly for prostate cancer, mammary cancer and NSCLC, obtained the specific staining (Fig. 7) of tumor tissue with EGFRvIII specific antibody described herein.
基于这些特性,在此描述的EGFRvIII结合结构域,诸如,例如,EGFRvIII/CD3双特异性串联双抗体,极好地适用于开发多特异性的、多价的、免疫效应细胞参与,肿瘤靶向抗体疗法。Based on these properties, the EGFRvIII binding domains described herein, such as, for example, EGFRvIII/CD3 bispecific tandem diabodies, are excellently suited for developing multispecific, multivalent, immune effector cell engaging, tumor targeting antibody therapies.
实施例8:在基于FACS的细胞毒性测定中评估由EGFRvIII/CD3串联双抗体介导的细胞毒活性Example 8: Evaluation of cytotoxic activity mediated by EGFRvIII/CD3 tandem diabodies in a FACS-based cytotoxicity assay
在基于细胞的细胞毒性测定中,分析了EGFRvIII/CD3串联双抗体抗体,其含有与不同CD3结合结构域结合的亲代的或亲和力成熟的EGFRvIII特异性结构域和/或在所述串联双抗体分子中具有不同的顺序的各个结合结构域(图8)。通过将表达EGFRvIII的CHO细胞(CHOEGFRvIII)、表达野生型EGFR的CHO细胞(CHOEGFR)和未转染CHO细胞用作靶细胞来分析靶介导的依赖性、串联双抗体的特异性和T细胞介导的杀伤性。In the cytotoxicity assay based on cell, analyzed EGFRvIII/CD3 series connection diabody antibody, it contains the parental generation that is combined with different CD3 binding domains or the EGFRvIII specificity domain of affinity maturation and/or each binding domain (Fig. 8) with different orders in described series connection diabody molecule.By using the Chinese hamster ovary celI (CHO EGFRvIII ) of expressing EGFRvIII, the Chinese hamster ovary celI (CHO EGFR ) of expressing wild-type EGFR and not transfected Chinese hamster ovary celI as target cell to analyze the specificity of target-mediated, series connection diabody and the lethality of T cell mediation.
材料(培养基、缓冲液和试剂):Materials (media, buffers, and reagents):
DMSO(Sigma)、EasySepTM人T细胞富集试剂盒(Stem Cell Technologies(干细胞技术公司))、EasySepTM人CD4+T细胞富集试剂盒(Stem Cell Technologies)、EasySepTM人CD8+T细胞富集试剂盒(Stem Cell Technologies)、The Big Easy EasySepTM磁极(Stem CellTechnologies)、FCS(Invitrogen)、Lymphoprep(Stem Cell)、L-谷氨酰胺(Invitrogen)、mlgGl FITC(ADG)、CD16-FITC(MEM-154)(Thermo Fisher Scientific)、mlgGl-FITC/mlgGl-PE/mlgGl-ECD(Beckman Coulter)、mlgGl-PE(Beckman Coulter)、mIgGl-PC5(Beckman Coulter)、mIgGl-PC7(Beckman Coulter)、CD8-FITC/CD4-PE/CD3-ECD(BeckmanCoulter)、CD16-PC5(Beckman Coulter)、CD19-PC7(Beckman Coulter)、CD16-FITC/CD56-PE/CD3-ECD(Beckman Coulter)、CD14-PC7(Beckman Coulter)、CD33-PE(MACS MiltenyiBiotech)、NaN3(Roth)、PBS(Invitrogen)、青霉素/链霉素(Invitrogen)、PKH67绿色荧光细胞标记(Linker)Midi试剂盒(Sigma)、Gammanorm人IgG(Octapharma)、碘化丙啶(Sigma)、RPMI-1640(Invitrogen)DMSO (Sigma), EasySep ™ Human T Cell Enrichment Kit (Stem Cell Technologies), EasySep ™ Human CD4+ T Cell Enrichment Kit (Stem Cell Technologies), EasySep ™ Human CD8+ T Cell Enrichment Kit (Stem Cell Technologies), The Big Easy EasySep ™ Magnet (Stem Cell Technologies), FCS (Invitrogen), Lymphoprep (Stem Cell), L-glutamine (Invitrogen), mlgGl FITC (ADG), CD16-FITC (MEM-154) (Thermo Fisher Scientific), mlgGl-FITC/mlgGl-PE/mlgGl-ECD (Beckman Coulter), mlgGl-PE (Beckman Coulter), mlgGl-PC5 (Beckman Coulter), mlgGl-PC7 (Beckman Coulter), CD8-FITC/CD4-PE/CD3-ECD (Beckman Coulter), CD16-PC5 (Beckman Coulter), CD19-PC7 (Beckman Coulter), CD16-FITC/CD56-PE/CD3-ECD (Beckman Coulter), CD14-PC7 (Beckman Coulter), CD33-PE (MACS Miltenyi Biotech), NaN 3 (Roth), PBS (Invitrogen), penicillin/streptomycin (Invitrogen), PKH67 green fluorescent cell labeling (Linker) Midi kit (Sigma), Gammanorm human IgG (Octapharma), propidium iodide (Sigma), RPMI-1640 (Invitrogen)
从血沉棕黄色层(buffy coat)分离PBMC并富集T细胞:Isolation of PBMCs from buffy coats and enrichment of T cells:
在抽血当天从Deutsches Rotes Kreuz,DRK-Blutspendedienst Baden-Wurttemberg-Hessen(曼海姆,德国)购买血沉棕黄色层;血沉棕黄色层制备物在室温下保存过夜,然后通过密度梯度离心分离PBMC。将血沉棕黄色层样品用两到三倍体积的PBS稀释,在Lymphoprep垫层(cushion)上分层并在室温w/o制动(brake)下以800×g离心25min。收集位于界面处的PBMC,并用PBS洗涤3次,然后将它们用于富集T细胞或流式细胞分析。根据制造商的说明书使用EasySepTM人T细胞富集试剂盒(用于免疫磁性分离未接触的人T细胞)和Big Easy EasySepTM磁铁从PBMC群富集T细胞。On the day of blood draw, buy buffy coat from Deutsches Rotes Kreuz, DRK-Blutspendedienst Baden-Wurttemberg-Hessen (Mannheim, Germany); Buffy coat preparation is stored at room temperature overnight, and then PBMC is separated by density gradient centrifugation. Buffy coat sample is diluted with two to three volumes of PBS, layered on Lymphoprep cushion and centrifuged at 800 × g for 25 min at room temperature w/o brake. PBMC at the interface is collected and washed 3 times with PBS, and then they are used for enrichment of T cells or flow cytometric analysis. According to the manufacturer's instructions, EasySep ™ human T cell enrichment kit (for immunomagnetic separation of untouched human T cells) and Big Easy EasySep ™ magnet are used to enrich T cells from the PBMC group.
通过流式细胞分析表征效应细胞:Characterization of effector cells by flow cytometry:
为了评估PBMC亚群的分布和富集的PBMC或T细胞子群(subset)的纯度,实施PBMC染色。To assess the distribution of PBMC subpopulations and the purity of enriched PBMC or T cell subsets, PBMC staining was performed.
对于流式细胞分析,将分离的PBMC或富集的PBMC亚群重悬于补充有2%热灭活的FCS和0.1%叠氮化钠(被称为FACS缓冲液)及1mg/mL多克隆人IgG的PBS中,至密度为0.5-2×l06/mL。然后根据制造商所推荐的以下方案将0.5ml细胞悬浮液的等份试样在黑暗中与抗体孵育15min。For flow cytometric analysis, isolated PBMCs or enriched PBMC subpopulations were resuspended in PBS supplemented with 2% heat-inactivated FCS and 0.1% sodium azide (referred to as FACS buffer) and 1 mg/mL polyclonal human IgG to a density of 0.5-2 × 10 6 /mL. 0.5 ml aliquots of the cell suspension were then incubated with the antibody for 15 minutes in the dark according to the manufacturer's recommended protocol.
表5:通过流式细胞术表征PBMC和分级的PBMC的移液方案Table 5: Pipetting scheme for characterization of PBMCs and fractionated PBMCs by flow cytometry
孵育后,在MXP采集软件(Beckman-Coulter)中,使用为PBMC和多色染色(FITC PEECD PC5 PC7;FITC PE ECD;FITC PE PC5PC7)制定的方案在Beckman-Coulter FC500 MPL流式细胞仪(Beckman-Coulter,克雷费尔德,德国)上以3、4、5、6、1、2的顺序测量样品。对于分析和数据绘图,使用了CXP分析软件(Beckman-Coulter)。After incubation, samples were measured on a Beckman-Coulter FC500 MPL flow cytometer (Beckman-Coulter, Krefeld, Germany) in the order 3, 4, 5, 6, 1, 2 using a protocol developed for PBMC and multicolor staining (FITC PEECD PC5 PC7; FITC PE ECD; FITC PE PC5PC7) in MXP acquisition software (Beckman-Coulter). For analysis and data plotting, CXP analysis software (Beckman-Coulter) was used.
细胞毒性测定:Cytotoxicity assay:
如前所述,通过流式细胞术表征用作效应细胞的T细胞。细胞毒性测定中使用的靶细胞是稳定转染以过表达EGFRvIII的CHO细胞(CHOEGFRv111),稳定转染以表达野生型EGFR的CHO细胞(CHOEGFR)或未转染的CHO细胞(CHO)。如先前所述生成细胞系,并如前所述在标准条件下培养。对于细胞毒性测定,将靶细胞收集起来,用不含FCS的RPMI 1640培养基洗涤两次并重悬于PKH67绿色荧光细胞标记Midi试剂盒所提供的稀释液C中至密度为2×l07/mL。然后根据制造商的说明书,将细胞悬液与等体积的双倍浓缩的PKH67-标记溶液(例如,1μLPKH在250μL稀释液C中)混合,并在室温孵育2-5min,并定期混合。染色反应通过加入等体积的FCS并孵育1min来终止。用完全RPMI培养基洗涤标记的靶细胞后,进行细胞计数并将细胞在完全RPMI培养基中重悬至密度为2×l05/mL。As previously described, T cells used as effector cells were characterized by flow cytometry. The target cells used in the cytotoxicity assay were CHO cells stably transfected to overexpress EGFRvIII (CHO EGFRv111 ), CHO cells stably transfected to express wild-type EGFR (CHO EGFR ), or untransfected CHO cells (CHO). Cell lines were generated as previously described and cultured under standard conditions as previously described. For the cytotoxicity assay, target cells were collected, washed twice with RPMI 1640 medium without FCS, and resuspended in diluent C provided by the PKH67 green fluorescent cell labeling Midi kit to a density of 2×10 7 /mL. The cell suspension was then mixed with an equal volume of double-concentrated PKH67-labeling solution (e.g., 1 μL PKH in 250 μL diluent C) according to the manufacturer's instructions and incubated at room temperature for 2-5 minutes with regular mixing. The staining reaction was terminated by adding an equal volume of FCS and incubating for 1 minute. After washing the labeled target cells with complete RPMI medium, the cells were counted and resuspended in complete RPMI medium to a density of 2×10 5 /mL.
然后将2×l04个靶细胞与T细胞以5:1的E:T比例和所指示的抗体一起接种在圆底96孔微板的各孔中,总体积为200μL/孔。通常检测9个从30μg/mL开始的连续1:5稀释液。在每个平板上至少一式三份测定没有抗体的情况下自然的细胞死亡和效应子(effectors)引起的靶杀伤。串联双抗体介导的杀伤通常一式两份地测定。2×10 4 target cells were then seeded with T cells at a 5:1 E:T ratio in each well of a round-bottom 96-well microplate along with the indicated antibodies in a total volume of 200 μL/well. Nine serial 1:5 dilutions, starting at 30 μg/mL, were typically tested. Natural cell death in the absence of antibody and target killing by effectors were determined in at least three replicates on each plate. Tandem diabody-mediated killing was typically determined in duplicate.
在室温下以200g离心2min后,将测定板在37℃,含5%CO2的加湿空气中,孵育40h-48h。孵育后,将培养物用FACS缓冲液洗涤一次,然后重悬于补充有2μg/mL PI的150μL FACS缓冲液中。特征为阳性绿色PKH67染色但PI染色为阴性的活的靶细胞的绝对数量用Millipore Guava EasyCyte流式细胞仪(Merck Millipore)来测量。After centrifugation at 200 g for 2 minutes at room temperature, the assay plate was incubated at 37° C. in a humidified atmosphere containing 5% CO 2 for 40-48 hours. After incubation, the culture was washed once with FACS buffer and then resuspended in 150 μL FACS buffer supplemented with 2 μg/mL PI. The absolute number of viable target cells, characterized by positive green PKH67 staining but negative PI staining, was measured using a Millipore Guava EasyCyte flow cytometer (Merck Millipore).
基于所测量的剩余的活的靶细胞,根据以下公式计算特异性细胞裂解的百分比:[1-(活的靶细胞数目(样品))/(活的靶细胞数目(自然的))]×100%。使用GraphPad Prism软件(用于Windows的GraphPad Prism 6.00版,GraphPad Software,加利福尼亚拉荷亚,美国)通过非线性回归/4参数逻辑拟合来计算Sigmoidal剂量响应曲线和EC50值。Based on the remaining live target cells measured, the percentage of specific cell lysis was calculated according to the following formula: [1-(number of live target cells (sample) )/(number of live target cells (native) )]×100%. Sigmoidal dose response curves and EC50 values were calculated by nonlinear regression/4-parameter logistic fit using GraphPad Prism software (GraphPad Prism version 6.00 for Windows, GraphPad Software, La Jolla, California, USA).
数据分析:Data Analysis:
对于给定的抗体浓度所获得的裂解值一式两份地测定,使用Prism软件(用于Windows的GraphPad Prism 6.00版,GraphPad Software,加利福尼亚拉荷亚,美国)通过Sigmoidal剂量响应/4参数逻辑拟合分析来进行分析,并用于计算EC50平均值和裂解百分比的重复的SD。Lysis values obtained for a given antibody concentration were determined in duplicate and analyzed by Sigmoidal dose-response/4-parameter logistic fit analysis using Prism software (GraphPad Prism version 6.00 for Windows, GraphPad Software, La Jolla, CA, USA) and used to calculate the mean EC50 and SD of the replicates for percentage lysis.
结果示于图8和表6。The results are shown in FIG8 and Table 6.
所有检测的串联双抗体均显示出对表达EGFRvIII的细胞的浓度依赖性、高度的特异性、细胞毒性和高效能,而EGFRvIII阴性细胞的存活并不受损害。在用表达EGFRwt-的细胞或未转染的细胞检测的任何串联双抗体的全部浓度范围内,没有观察到可检测的细胞毒性。因此,EGFRvIII/CD3串联双抗体介导的细胞毒性是严格地靶向依赖性的。在细胞毒性测定中,含有亲和力成熟之前的亲代EGFRvIII结合结构域且结构域顺序为VL CD3-VH EGFRVIII-VL EGFRVIII-VH CD3的串联双抗体的EC50为25pM(图8)。对应的串联双抗体以相同的结构域顺序(VL CD3-VH EGFRVIII-VL EGFRVIII-VH CD3)含有亲和力提高的EGFRvIII结合结构域,同样表现出增强的细胞毒性效力,在最好的情况下,达到1.5pM的EC50(表6)。细胞毒活性的相对提高在具有位于外部位置中的EGFRvIII特异性结构域的串联双抗体(结构域顺序VH EGFRVIII-VL CD3-VH CD3-VL EGFRvIII)中更加明显(表6)。在这些串联双抗体中,高达70倍提高的细胞毒性效力可通过在这些串联双抗体中用亲和力提高的结构域替换低亲和力EGFRvIII结合结构域Li3G30来实现(图8,表6)。The tandem diabody of all detections all demonstrates the concentration dependency to the cell of expressing EGFRvIII, high specificity, cytotoxicity and high efficiency, and the survival of EGFRvIII negative cells is not impaired.Within the whole concentration range of any tandem diabody of expressing EGFRwt-cell or non-transfected cell detection, do not observe detectable cytotoxicity.Therefore, the cytotoxicity of EGFRvIII/CD3 tandem diabody mediation is strictly target-dependent.In cytotoxicity assay, the EC 50 of the tandem diabody that contains parental EGFRvIII binding domain before affinity maturation and domain order is V L CD3 -V H EGFRvIII - V L EGFRvIII -V H CD3 is 25pM (Fig. 8).Corresponding tandem diabody contains the EGFRvIII binding domain that avidity improves with identical domain order (V L CD3 -V H EGFRvIII - V L EGFRvIII -V H CD3 ), shows enhanced cytotoxicity efficacy equally, and in the best case, reaches the EC 50 (table 6) of 1.5pM. The relative increase in cytotoxic activity is more evident in the tandem diabodies with EGFRvIII specific domains located in the external position (domain order VH EGFRvIII - VL CD3 - VH CD3 - VL EGFRvIII ) (Table 6). In these tandem diabodies, up to 70-fold increased cytotoxic potency can be achieved by replacing the low-affinity EGFRvIII binding domain Li3G30 with an affinity-enhanced domain in these tandem diabodies (Figure 8, Table 6).
表6:对细胞毒性测定中用不同的EGFRvIII/CD3串联双抗体测量的EC50值的总结,所述不同的EGFRvIII/CD3串联双抗体以两种不同的结构域顺序含有亲和力成熟的EGFRvIII特异性结合结构域。示出了相对于对应的含有亲代EGFRvIII结合结构域的串联双抗体的提高系数。Table 6: to the summary of the EC50 value measured with different EGFRvIII/CD3 series connection diabodies in the cytotoxicity assay, described different EGFRvIII/CD3 series connection diabodies contain the EGFRvIII specific binding domain of affinity maturation with two different domain orders.Shown the raising coefficient relative to the series connection diabodies that contain the parental generation EGFRvIII binding domain of correspondence.
Choi et al.(Proc Natl Acad Sci USA.2013 Jan 2;1 10(l):270-5;WO2013/7185010)描述了t EGFRvIII/CD3的comparator,即EGFRvIII/CD3双特异性T-细胞衔接器(bispecific T-cell engager)(BiTE),其具有一个EGFRvIII结合位点(基于鼠MR1结构域)和一个CD3结合位点(基于抗CD3的抗体OKT3)。在基于细胞的细胞毒性测定中,该抗体在约10-2μg/ml的浓度下实现了50%的最大地获得的特异性裂解,其对应于52kD BiTE的约200pM的摩尔EC50浓度(Choi et al.,2013的图4C)。比较显示本文描述的含有亲代的而非亲和力成熟的EGFRvIII结合结构域的串联双抗体的细胞毒性甚至比EGFRvIII/CD3BiTE的高约10倍。而且本发明的含有亲和力成熟的EGFRvIII结合结构域的串联双抗体甚至展示出相对于EGFRvIII/CD3BiTE的高100倍的细胞毒性。Choi et al. (Proc Natl Acad Sci USA. 2013 Jan 2; 1 10 (1): 270-5; WO2013/7185010) describes a t EGFRvIII/CD3 comparator, an EGFRvIII/CD3 bispecific T-cell engager (BiTE), which has an EGFRvIII binding site (based on the mouse MR1 domain) and a CD3 binding site (based on the anti-CD3 antibody OKT3). In a cell-based cytotoxicity assay, the antibody achieved 50% of the maximum specific lysis achieved at a concentration of about 10-2 μg/ml, which corresponds to a molar EC50 concentration of about 200 pM for the 52kD BiTE (Figure 4C of Choi et al., 2013). Comparisons show that the cytotoxicity of the tandem diabodies described herein containing the parental, rather than affinity-matured, EGFRvIII binding domains is even about 10-fold higher than that of the EGFRvIII/CD3 BiTE. Furthermore, the tandem diabody containing the affinity-matured EGFRvIII binding domain of the present invention even exhibited 100-fold higher cytotoxicity than that of EGFRvIII/CD3 BiTE.
实施例9:在表达重组EGFRvIII的CHO细胞(CHOEGFRvIII)或表达重组EGFRvIII的F98细胞(F98EGFRvIII)上由EGFRvIII/CD3串联双抗体引起的EGFRvIII受体内化Example 9: EGFRvIII receptor internalization induced by EGFRvIII/CD3 tandem diabody on CHO cells expressing recombinant EGFRvIII (CHO EGFRvIII ) or F98 cells expressing recombinant EGFRvIII (F98 EGFRvIII )
为了评估由EGFRvIII/CD3串联双抗体引起的EGFRvIII调控,将表达重组EGFRvIII的CHO细胞(CHOEGFRvIII)或表达重组EGFRvIII的F98细胞(F98EGFRvIII)以2.5×105个细胞的等份试样在圆底96孔微板各单孔中,在补充有10%FCS、2mM L-谷氨酰胺、100IU/mL青霉素G钠盐、100μg/mL硫酸链霉素、100μg/mL丙酮酸钠(本文中称为完全RPMI培养基;所有组分购自英杰公司)的RPMI 1640培养基中与浓度渐增的EGFRvIII/CD3串联双抗体在37℃,5%CO2下,在加湿孵育器中孵育24小时。在没有抗体的情况下培养若干等份的细胞,用作检测最高EGFRvIII细胞表面水平的对照样品和单独用二级试剂用作进行的染色的阴性对照。To evaluate EGFRvIII regulation by EGFRvIII/CD3 tandem diabodies, CHO cells expressing recombinant EGFRvIII (CHO EGFRvIII ) or F98 cells expressing recombinant EGFRvIII (F98 EGFRvIII ) were seeded in aliquots of 2.5×10 5 cells per well of a round-bottom 96-well microplate and incubated with increasing concentrations of EGFRvIII/CD3 tandem diabodies in RPMI 1640 medium supplemented with 10% FCS, 2 mM L-glutamine, 100 IU/mL penicillin G sodium salt, 100 μg/mL streptomycin sulfate, and 100 μg/mL sodium pyruvate (referred to herein as complete RPMI medium; all components purchased from Invitrogen) at 37° C., 5% CO 2 , in a humidified incubator for 24 hours. Aliquots of cells were cultured in the absence of antibody to serve as control samples for detection of the highest EGFRvIII cell surface levels and as negative controls for staining performed with the secondary reagent alone.
孵育后,将细胞用冰冷的补充有2%热灭活的FCS(Invitrogen)和0.1%叠氮化钠(Roth,卡尔斯鲁厄,德国)的磷酸盐缓冲盐水(PBS,Invitrogen)(在本文中称为FACS缓冲液)洗涤2次,然后用饱和浓度(10μg/mL)的抗体(该抗体和在调整培养期间与细胞孵育的抗体是相同的)染色以评估对应于细胞表面上剩余EGFRvIII抗原的最大的抗体结合。将在没有抗体的情况下培养的细胞的等份试样用饱和浓度的同一抗体染色,以测定对应于细胞表面上的最大可测量的EGFRvIII水平的最大抗体结合能力。用FACS缓冲液洗涤3次后,用串联双抗体处理细胞并用10μg/mL抗His mAb(Dia910,Dianova)染色,然后用15μg/mL FITC缀合的山羊抗小鼠IgG(Dianova)染色。用FACS缓冲液反复洗涤后,将细胞重悬于含2μg/mL碘化丙啶(Sigma)的FACS缓冲液中以排除死细胞。使用MXP软件和FC500 MPL流式细胞仪(Beckman-Coulter,克雷费尔德,德国)分析来自每个样品的约5×l03个碘化丙啶阴性细胞,用CXP软件(Beckman-Coulter)测定所测量的样品的平均荧光强度(MFI)或者使用Incyte软件(Merck Millipore,施瓦尔巴赫,德国)用Millipore Guava EasyCyte流式细胞仪分析细胞。44.After hatching, cell is washed 2 times with ice-cold phosphate buffered saline (PBS, Invitrogen) (being called FACS buffer in this article) that is supplemented with 2% heat inactivation FCS (Invitrogen) and 0.1% sodium azide (Roth, Karlsruhe, Germany), then with the antibody (this antibody is identical with the antibody that hatches with cell during adjustment incubation) of saturation concentration (10 μ g/mL) dyeing to assess the maximum antibody combination corresponding to the remaining EGFRvIII antigen on the cell surface.The aliquots of the cell that is cultivated under the situation that there is no antibody are dyed with the same antibody of saturation concentration, to measure the maximum antibody binding capacity corresponding to the maximum measurable EGFRvIII level on the cell surface.After washing 3 times with FACS buffer, with series connection double antibody treatment cell and dye with the anti-His mAb (Dia910, Dianova) of 10 μ g/mL, then with the goat anti-mouse IgG (Dianova) dyeing that puts together with 15 μ g/mL FITC. After repeated washing with FACS buffer, cells were resuspended in FACS buffer containing 2 μg/mL propidium iodide (Sigma) to exclude dead cells. Approximately 5 × 10 3 propidium iodide-negative cells from each sample were analyzed using MXP software and an FC500 MPL flow cytometer (Beckman-Coulter, Krefeld, Germany). The mean fluorescence intensity (MFI) of the samples was determined using CXP software (Beckman-Coulter) or cells were analyzed using a Millipore Guava EasyCyte flow cytometer using Incyte software (Merck Millipore, Schwalbach, Germany).
在减去获自单独用二级试剂进行的细胞染色的信号之后,使用GraphPad Prism软件(GraphPad Software,加州圣地亚哥,加拿大)将所测量样品的平均荧光强度在图中绘制成线,并使用通过在没有EGFRvIII/CD3串联双抗体的情况下在37℃下对未处理的细胞样品进行染色而获得的荧光信号(其被设置为代表100%的细胞表面EGFRvIII)来计算细胞表面上剩余EGFRvIII的相对量。After subtracting the signal obtained from cell staining with the secondary reagent alone, the mean fluorescence intensity of the measured samples was plotted as a line in the graph using GraphPad Prism software (GraphPad Software, San Diego, CA, Canada), and the relative amount of EGFRvIII remaining on the cell surface was calculated using the fluorescence signal obtained by staining untreated cell samples at 37°C in the absence of the EGFRvIII/CD3 tandem diabody, which was set to represent 100% of cell surface EGFRvIII.
结果示于图9。The results are shown in FIG9 .
若干文献报告描述了与天然EGFR相比缺失突变体EGFRvIII显示出受损的内化(Fenstermaker et al.2000,Han et al.2006,Grandal et al.2007,Gan et al.2009)。尽管如此,关于EGFRvIII特异性抗体或针对也结合EGFRvIII的野生型EGFR的抗体(例如西妥昔单抗)的若干公开的报告,描述了在结合各自的抗体之后表达EGFRvIII的细胞中EGFRvIII的快速内化和降解(Reist et al.1995,Foulon et al.2000,Kuan et al.2000,Patel et al.2007,Jutten et al.2009,Dreier et al.2012)。Some bibliographic reports have described and compared deletion mutant EGFRvIII and demonstrated impaired internalization (Fenstermaker et al.2000, Han et al.2006, Grandal et al.2007, Gan et al.2009) with natural EGFR.However, about EGFRvIII specific antibody or for several disclosed reports of the antibody (for example cetuximab) also in conjunction with the wild-type EGFR of EGFRvIII, described in conjunction with rapid internalization and the degraded (Reist et al.1995, Foulon et al.2000, Kuan et al.2000, Patel et al.2007, Jutten et al.2009, Dreier et al.2012) of EGFRvIII in the cell that expresses EGFRvIII after antibody separately.
对于内化测定,使用过表达EGFRvIII的转染CHOEGFRvIII细胞。将这些表达EGFRvIII的细胞与不同浓度的EGFRvIII/CD3串联双抗体在37℃下孵育24小时,描述了其它EGFRvIII结合抗体的上下文中的条件以诱导强的内化。在本调整(期间抗体-受体复合体可以内化或不内化)之后,用各抗体以10μg/ml的饱和浓度给细胞表面上所有剩余的EGFRvIII受体分子染色(图9)。图9呈现的结果表明,在将细胞暴露于EGFRvIII-结合串联双抗体之后,在所有检测条件下未处理细胞上存在的多于80%且高达140%的EGFRvIII受体分子仍是可用的(140%或更多的>100%的一般值是指与细胞表面上受体的数目减少(细胞内化)相反,用串联双抗体处理的细胞显示出细胞表面上受体的增加。内化至100%来自与未处理的细胞的对比)。这些结果表明,本发明的EGFRvIII/CD3串联双抗体令人惊讶地没有显示出任何内化趋势(图9)。本发明的EGFRvIII特异性结构域的结合,没有诱导内化,而是甚至可能抑制内化并导致细胞表面上EGFRvIII受体水平增加。图9呈现的结果表明,相对于未处理的细胞,在所有检测条件下,在将细胞暴露于EGFRvIII-结合抗体之后,至少多于80%仍保留在细胞表面上。这些结果表明,本发明的EGFRvIII/CD3抗体,尤其是EGFRvIII/CD3串联双抗体,令人惊讶地没有显示出任何内化趋势(图9)。本发明的EGFRvIII特异性结构域的结合,没有诱导内化,而是可能抑制内化或促进EGFRvIII表达增加,导致其细胞表面密度增加。For internalization determination, use the transfection CHO EGFRvIII cell of overexpressing EGFRvIII.The cells of these expression EGFRvIII and the EGFRvIII/CD3 series connection double antibody of varying concentrations were hatched 24 hours at 37 ℃, described the condition in the context of other EGFRvIII binding antibodies to induce strong internalization.After this adjustment (during which antibody-receptor complex can internalize or not internalize), give all remaining EGFRvIII receptor molecules dyeing (Fig. 9) on the cell surface with the saturation concentration of 10 μ g/ml with each antibody.The result that Fig. 9 presents shows, after cell is exposed to EGFRvIII-in conjunction with series connection double antibody, under all detection conditions, the EGFRvIII receptor molecules more than 80% and up to 140% existing on untreated cell are still available (140% or more>100% general value refers to and reduces (cellular internalization) with the number of receptor on the cell surface on the contrary, and the cell processed with series connection double antibody demonstrates the increase of receptor on the cell surface.Internalization to 100% comes from the contrast with untreated cell). These results show, EGFRvIII/CD3 series connection diabody of the present invention surprisingly does not demonstrate any internalization trend (Fig. 9).The combination of EGFRvIII specific structural domain of the present invention does not induce internalization, but may even suppress internalization and cause EGFRvIII receptor levels on the cell surface to increase.The result that Fig. 9 presents shows, with respect to untreated cell, under all detection conditions, after cell is exposed to EGFRvIII-in conjunction with antibody, at least more than 80% still remain on the cell surface.These results show, EGFRvIII/CD3 antibody of the present invention, especially EGFRvIII/CD3 series connection diabody surprisingly does not demonstrate any internalization trend (Fig. 9).The combination of EGFRvIII specific structural domain of the present invention does not induce internalization, but may suppress internalization or promote EGFRvIII to express and increase, cause its cell surface density to increase.
实施例10:评估在EGFRvIII/CD3(或EGFRvIII/CD16A)串联双抗体的存在下PBMC培养物中的细胞增殖Example 10: Evaluation of cell proliferation in PBMC culture in the presence of EGFRvIII/CD3 (or EGFRvIII/CD16A) tandem diabodies
为了评估在不存在EGFRvIII+靶细胞的情况下EGFRvIII/CD3(或EGFRvIII/CD16A)串联双抗体是否诱导T细胞的激活和后续的增殖,在浓度渐增的EGFRvIII/CD3串联双抗体的存在下培养人PBMC。孵育5天后,在溴脱氧尿苷掺入试验(BrdU incorporation assay)中评估增殖。To evaluate whether EGFRvIII/CD3 (or EGFRvIII/CD16A) tandem diabodies induce T cell activation and subsequent proliferation in the absence of EGFRvIII + target cells, human PBMCs were cultured in the presence of increasing concentrations of EGFRvIII/CD3 tandem diabodies. After 5 days of incubation, proliferation was assessed in a BrdU incorporation assay.
材料(培养基、缓冲液和试剂)Materials (culture media, buffers, and reagents)
FCS(Invitrogen)、人血清(Sigma)、Lymphoprep(Stemcell Technologies)、L-谷氨酰胺(Invitrogen)、OKT3(Biolegend)、PBS(Invitrogen)、β-巯基乙醇(Invitrogen)、青霉素/链霉素(Invitrogen)、RPMI-1640(Invitrogen)、丙酮酸钠(Invitrogen)、BrdU细胞增殖ELISA(Roche)。FCS (Invitrogen), human serum (Sigma), Lymphoprep (Stemcell Technologies), L-glutamine (Invitrogen), OKT3 (Biolegend), PBS (Invitrogen), β-mercaptoethanol (Invitrogen), penicillin/streptomycin (Invitrogen), RPMI-1640 (Invitrogen), sodium pyruvate (Invitrogen), BrdU cell proliferation ELISA (Roche).
细胞:cell:
在抽血当天从Deutsches Rotes Kreuz,DRK-Blutspendedienst Baden-Wurttemberg-Hessen(曼海姆,德国)购买血沉棕黄色层;在分离PBMC之前,将血沉棕黄色层制备物在室温下保存过夜。Buffy coats were purchased from Deutsches Rotes Kreuz, DRK-Blutspendedienst Baden-Wurttemberg-Hessen (Mannheim, Germany) on the day of blood draw; buffy coat preparations were stored at room temperature overnight before PBMC isolation.
从血沉棕黄色层分离PBMC并富集T细胞:Isolation of PBMCs from buffy coats and enrichment of T cells:
通过密度梯度离心从血沉棕黄色层分离PBMC。将血沉棕黄色层样品用两到三倍体积的PBS稀释,在Lymphoprep垫层上分层并在室温w/o制动下以800×g离心25min。收集位于界面处的PBMC,并用PBS洗涤3次,然后将它们用于增殖试验。PBMCs were isolated from the buffy coat by density gradient centrifugation. The buffy coat sample was diluted with two to three volumes of PBS, layered onto a Lymphoprep cushion, and centrifuged at 800 × g for 25 minutes at room temperature with or without braking. PBMCs at the interface were collected and washed three times with PBS before use in proliferation assays.
增殖试验Proliferation assay
将所有测定板在室温下用补充有10%热灭活的人血清、4mM L-谷氨酰胺、100U/mL青霉素G钠盐、100μg/mL硫酸链霉素、1mM丙酮酸钠、0.05mMβ-巯基乙醇的RPMI1640培养基(本文中称为完全RPMI培养基)封闭2小时以防止抗体与塑料表面的非特异性结合。在除去封闭培养基后,将4×l05个PBMC与所指示浓度的检测项和对照项一起接种在平底96孔微板的每个孔中的完全RPMI培养基中,总体积为200μL/孔,每个样品测定三次。将IgG抗CD3的克隆OKT3用作阳性对照。为了评估自发增殖,在6个重复中,在没有抗体的情况下培养细胞。然后将板在37℃和5%CO2下,在加湿的空气中孵育4天。在孵育终止前18小时,将细胞培养物用100μΜBrdU脉冲处理(pulsed)。根据制造商的说明书,用BrdU增殖ELISA试剂盒对掺入的BrdU定量。通过加入100mM H2SO4终止显色后,用多标签酶标仪(plate reader)(Victor 3,Perkin Elmer)在450nm下测量吸光值。分析吸光度值并使用GraphPad Prism软件(用于Windows的GraphPad Prism 6.00版,GraphPad Software,加利福尼亚拉荷亚,美国)将平均值和SD绘制成线。All assay plates were blocked for 2 hours at room temperature with RPMI1640 medium supplemented with 10% heat-inactivated human serum, 4 mM L-glutamine, 100 U/mL penicillin G sodium salt, 100 μg/mL streptomycin sulfate, 1 mM sodium pyruvate, and 0.05 mM β-mercaptoethanol (referred to herein as complete RPMI medium) to prevent nonspecific binding of antibodies to plastic surfaces. After removing the blocking medium, 4 × 10 5 PBMCs were seeded in each well of a flat-bottom 96-well microplate with the indicated concentrations of test and control items in complete RPMI medium in a total volume of 200 μL/well. Each sample was assayed in triplicate. IgG anti-CD3 clone OKT3 was used as a positive control. To assess spontaneous proliferation, cells were cultured in the absence of antibody in six replicates. The plates were then incubated at 37°C and 5% CO 2 in a humidified atmosphere for 4 days. 18 hours before termination of incubation, the cell cultures were pulsed with 100 μM BrdU. BrdU incorporation was quantified using a BrdU proliferation ELISA kit according to the manufacturer's instructions. Color development was stopped by adding 100 mM H₂SO₄ , and absorbance was measured at 450 nm using a multilabel plate reader (Victor 3, Perkin Elmer). Absorbance values were analyzed and the mean and SD were plotted using GraphPad Prism software (GraphPad Prism version 6.00 for Windows, GraphPad Software, La Jolla, CA, USA).
结果示于图10。The results are shown in FIG10 .
实施例11:EGFRvIII/CD3的串联双抗体CD3结合亲和力与细胞毒性效力的相关性Example 11: Correlation between CD3 Binding Affinity and Cytotoxicity of EGFRvIII/CD3 Tandem Diabody
构建并表达了含有相同EGFRvIII结合结构域(Li3G30)和不同CD3结合结构域(其对CD3T细胞抗原具有一些亲和力)的EGFRvIII/CD3串联双抗体并测定了与CD3+Jurkat细胞和EGFRvIII+CHOEGFRvIII细胞的结合;此外,实施了将CHOEGFRvIII细胞用作靶细胞和将PBMC细胞用作效应细胞的细胞毒性测定。在本实施例中检测的所有检测的串联双抗体的各VH和VL(重链和轻链)结构域的顺序都相同:VL CD3-VH EGFRVIII-VL EGFRVIII-VH CD3。Constructed and expressed EGFRvIII/CD3 tandem diabodies containing the same EGFRvIII binding domain (Li3G30) and different CD3 binding domains (which have some affinity for CD3 T cell antigens) and measured binding to CD3 + Jurkat cells and EGFRvIII + CHO EGFRvIII cells; In addition, cytotoxicity assays were performed using CHO EGFRvIII cells as target cells and PBMC cells as effector cells. The order of each VH and VL (heavy and light chain) domain of all tested tandem diabodies tested in this example was the same: VL CD3 - VH EGFRvIII - VL EGFRvIII - VH CD3 .
如先前实施例中所述,对结合EGFRvIII+CHOEGFRvIII细胞的抗体和由EGFRvIII/CD3串联双抗体介导的细胞毒活性进行流式细胞术评估。Antibody binding to EGFRvIII + CHO EGFRvIII cells and cytotoxic activity mediated by the EGFRvIII/CD3 tandem diabody were evaluated by flow cytometry as described in previous examples.
用渐增浓度的串联双抗体对CD3+Jurkat细胞染色后,通过流式细胞仪测定EGFRvIII/CD3串联双抗体对CD3+细胞的表观亲和力。使用通过流式细胞术测定的各串联双抗体浓度的平均荧光值,通过非线性回归/双曲线计算KD值。After staining CD3 + Jurkat cells with increasing concentrations of the tandem diabody, the apparent affinity of the EGFRvIII/CD3 tandem diabody for CD3 + cells was determined by flow cytometry. KD values were calculated by nonlinear regression/hyperbola using the mean fluorescence values for each tandem diabody concentration determined by flow cytometry.
材料(培养基、缓冲液和试剂):Materials (media, buffers, and reagents):
抗His IgG 13/45/31(Dianova)、FCS(Invitrogen)、FITC缀合的山羊抗小鼠IgGmin X(Dianova)、L-谷氨酰胺(Invitrogen)、NaN3(Carl Roth)、PBS(Invitrogen)、青霉素/链霉素(Invitrogen)、碘化丙啶(Sigma)、RPMI-1640(Invitrogen)Anti-His IgG 13/45/31 (Dianova), FCS (Invitrogen), FITC-conjugated goat anti-mouse IgGmin X (Dianova), L-glutamine (Invitrogen), NaN 3 (Carl Roth), PBS (Invitrogen), penicillin/streptomycin (Invitrogen), propidium iodide (Sigma), RPMI-1640 (Invitrogen)
细胞:cell:
将Jurkat细胞(由G.Moldenhauer博士(DKFZ,海德尔堡,德国)惠赠)培养在补充有2mM L-谷氨酰胺和100IU/mL青霉素G钠盐和100μg/mL硫酸链霉素的RPMI 1640培养基中(所有组分均来自Invitrogen,本文中称为完全RPMI 1640培养基)。Jurkat cells (kindly provided by Dr. G. Moldenhauer (DKFZ, Heidelberg, Germany)) were cultured in RPMI 1640 medium supplemented with 2 mM L-glutamine, 100 IU/mL penicillin G sodium salt, and 100 μg/mL streptomycin sulfate (all components were from Invitrogen, referred to herein as complete RPMI 1640 medium).
通过流式细胞术测定对CD3+细胞的抗体亲和力:Determination of antibody affinity to CD3+ cells by flow cytometry:
将细胞与所指示的抗体在补充有2%热灭活的FCS和0.1%叠氮化钠的冰冷PBS(称为FACS缓冲液)中从100μg/mL(约1000nM)开始的100μL连续稀释液在冰上孵育45min。用FACS缓冲液洗涤3次后,将细胞在同一缓冲液中与0.1mL 10μg/mL小鼠单克隆抗His抗体克隆13/45/31在冰上一起孵育45min。在第二个洗涤循环之后,在与前相同的条件下,将细胞与0.1mL 15μg/mL FITC缀合的山羊抗小鼠IgG抗体一起孵育。作为对照,在没有一抗的情况下,将细胞与抗His IgG 13/45/31孵育,然后与FITC缀合的山羊抗小鼠IgG抗体孵育。然后将细胞再次洗涤,并重悬于含2μg/mL碘化丙啶的0.2mL FACS缓冲液中以排除死细胞。使用用MXP软件的Beckman-Coulter FC500 MPL流式细胞仪(Beckman-Coulter,克雷菲尔德,德国)或用Incyte软件的Millipore Guava EasyCyte流式细胞仪(Merck Millipore,施瓦尔巴赫,德国)测量l×l04个活细胞的荧光。细胞样品的平均荧光强度用CXP软件(Beckman-Coulter,克雷费尔德,德国)或Incyte软件(Merck Millipore,施瓦尔巴赫,德国)计算。如果用Beckman-Coulter FC500 MPL流式细胞仪进行分析,使用0.5×l06个细胞/染色,如果用Millipore Guava EasyCyte流式细胞仪,仅使用0.25×l06个细胞/染色。Cells were incubated on ice for 45 min with 100 μL serial dilutions of the indicated antibodies starting from 100 μg/mL (about 1000 nM) in ice-cold PBS (referred to as FACS buffer) supplemented with 2% heat-inactivated FCS and 0.1% sodium azide. After washing 3 times with FACS buffer, cells were incubated on ice for 45 min with 0.1 mL 10 μg/mL mouse monoclonal anti-His antibody clone 13/45/31 in the same buffer. After the second wash cycle, under the same conditions as before, cells were incubated with 0.1 mL 15 μg/mL FITC-conjugated goat anti-mouse IgG antibody. As a control, in the absence of a primary antibody, cells were incubated with anti-His IgG 13/45/31 and then with FITC-conjugated goat anti-mouse IgG antibody. The cells were then washed again and resuspended in 0.2 mL FACS buffer containing 2 μg/mL propidium iodide to exclude dead cells. Fluorescence of 1×10 4 living cells was measured using a Beckman-Coulter FC500 MPL flow cytometer (Beckman-Coulter, Krefeld, Germany) with MXP software or a Millipore Guava EasyCyte flow cytometer (Merck Millipore, Schwalbach, Germany) with Incyte software. The mean fluorescence intensity of the cell samples was calculated using CXP software (Beckman-Coulter, Krefeld, Germany) or Incyte software (Merck Millipore, Schwalbach, Germany). If the Beckman-Coulter FC500 MPL flow cytometer was used for analysis, 0.5×10 6 cells/staining were used, and if the Millipore Guava EasyCyte flow cytometer was used, only 0.25×10 6 cells/staining were used.
在减去单独用二级和三级试剂染色的细胞的荧光强度值后,将荧光强度值和GraphPad Prism软件(用于Windows的GraphPad Prism 6.00版,GraphPad Software,加利福尼亚拉荷亚,美国)的单位点结合的等式(双曲线)用于计算KD值。After subtracting the fluorescence intensity values of cells stained with secondary and tertiary reagents alone, the fluorescence intensity values and the equation (hyperbola) for single-site binding of GraphPad Prism software (GraphPad Prism version 6.00 for Windows, GraphPad Software, La Jolla, CA, USA) were used to calculate KD values.
对于每个分析的串联双抗体,将结合EGFRvIII的KD值和细胞毒性的EC50绘制成结合CD3的KD值的函数。当串联双抗体的结合EGFRvIII的KD值仅显示出很小的可变性时,EC50细胞毒性值显示出了伴随着串联双抗体渐增的CD3结合KD值几乎成线性增加(图11)。For the series connection diabody of each analysis, the KD value in conjunction with EGFRvIII and cytotoxic EC50 are drawn into the function of the KD value in conjunction with CD3.When the KD value in conjunction with EGFRvIII of series connection diabody only demonstrated very little variability, the EC50 cytotoxicity value demonstrated and was accompanied by the CD3 that series connection diabody increases gradually in conjunction with KD value and almost became linear increase (Figure 11).
实施例12:由EGFRvIII/CD3引起的F98EGFRvIII异种移植瘤抑制(体内概念验证)Example 12: Inhibition of F98 EGFRvIII Xenograft Tumors by EGFRvIII/CD3 (In Vivo Proof of Concept)
在第0天(d0),通过皮下(s.c.)注射与来自健康供体的l×107个纯化的人PBMC混合的4×l06个F98npEGFRvIII细胞的悬浮液,对9个实验组的免疫缺陷NOD/scid小鼠(NOD/MrkBomTac-Prkdcscid,Taconic Denmark)进行异种移植。为了解释PBMC可能的供体可变性,将每个实验组再分成两队(cohorts),每队仅接受一个个体供体的PBMC。在肿瘤细胞接种后2h,随后是24h、48h、72h和96h,将100μg、10μg或1μg的各串联双抗体测试项通过尾静脉(i.v.)对动物进行给药。对照组仅接受载体。从d0开始,一周两次用1mg西妥昔单抗(爱必妥)对另一对照进行给药(i.p.)。表6总结了剂量组和供体分配。从第3天至第52天一周3次通过用卡尺测量肿瘤的大直径和小直径来监控肿瘤体积。根据以下公式用直径计算肿瘤体积:体积=(小直径)2×大直径×0.5。On day 0 (d0), nine experimental groups of immunodeficient NOD/scid mice (NOD/MrkBomTac-Prkdcscid, Taconic Denmark) were xenografted with a suspension of 4× 10 F98 npEGFRvIII cells mixed with 1× 10 purified human PBMCs from healthy donors via subcutaneous (sc) injection. To account for possible donor variability of PBMCs, each experimental group was subdivided into two cohorts, each receiving PBMCs from only one individual donor. 2 h after tumor cell inoculation, followed by 24 h, 48 h, 72 h, and 96 h, 100 μg, 10 μg, or 1 μg of each tandem double antibody test item was administered to the animals via the tail vein (iv). The control group received vehicle only. Starting on d0, another control was administered (ip) with 1 mg of cetuximab (Erbitux) twice a week. Table 6 summarizes the dose groups and donor allocation. Tumor volume was monitored by measuring the major and minor diameters of the tumors with calipers three times a week from day 3 to day 52. Tumor volume was calculated from the diameters according to the following formula: Volume = (minor diameter) 2 x major diameter x 0.5.
表7:动物的剂量组Table 7: Animal dose groups
参考文献:References:
Schwarz M,Rottgen P,Takada Y,Le Gall F,Knackmuss S,Bassler N,ButtnerC,Little M,Bode C,Peter.Single-chain antibodies for the conformation-specificblockade of activated platelet integrin alphallbbeta3 designed by subtractiveselection from naive human phage libraries(用于构象特异性封闭由消减选择天然人类噬菌体文库设计的活化血小板整合素αIIbβ3的单链抗体).FASEB J.2004Nov;18(14):1704-6.Schwarz M, Rottgen P, Takada Y, Le Gall F, Knackmuss S, Bassler N, Buttner C, Little M, Bode C, Peter. Single-chain antibodies for the conformation-specific blockade of activated platelet integrin alphallbbeta3 designed by subtractive selection from naive human phage libraries. FASEB J. 2004 Nov; 18(14): 1704-6.
Schier R,McCall A,Adams GP,Marshall KW,Merritt H,Yim M,Crawford RS,Weiner LM,Marks C,Marks JD.Isolation of picomolar affinity anti-c-erbB-2single-chain Fv by molecular evolution of the complementarity determiningregions in the center of the antibody binding site(由抗体结合位点中心的互补性决定区域的分子进化引起的皮摩尔亲和力抗-c-erbB-2单链Fv的分离).J Mol Biol.1996.Schier R, McCall A, Adams GP, Marshall KW, Merritt H, Yim M, Crawford RS, Weiner LM, Marks C, Marks JD. Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol. 1996.
Pini A,Viti F,Santucci A,Carnemolla B,Zardi L,Neri P,Neri D.Designand use of a phage display library.Human antibodies with subnanomolaraffinity against a marker of angiogenesis eluted from a two-dimensional gel(对从二维凝胶上洗脱的血管生成标记具有亚纳摩尔亲和力的人类抗体).J BiolChem.1998.Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, Neri D. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem. 1998.
Boder ET,Midelfort S,Wittrup KD.Directed evolution of antibodyfragments with monovalent femtomolar antigen-binding affinity(具有一价飞摩尔抗原结合亲和力的抗体片段的定向进化).Proc Natl Acad Sci U S A.2000 Sep 26;97(20):10701-5.Boder ET, Midelfort S, Wittrup KD. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A. 2000 Sep 26; 97(20): 10701-5.
Barbas CF 3rd,Hu D,Dunlop N,Sawyer L,Cababa D,Hendry RM,Nara PL,Burton DR.In vitro evolution of a neutralizing human antibody to humanimmunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity(中和人类抗体体外进化为人类免疫缺陷病毒I型以增强亲和力和扩大菌株的交叉反应性).Proc Natl Acad Sci U S A.1994 Apr 26;91(9):3809-13.Barbas CF 3rd,Hu D,Dunlop N,Sawyer L,Cababa D,Hendry RM,Nara PL,Burton DR.In vitro evolution of a neutralizing human antibody to humanimmunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity.Proc Natl Acad Sci U S A.1994 Apr 26;91(9):3809-13.
Parsons HL,Earnshaw JC,Wilton J,Johnson S,Schueler PA,Mahoney W,McCafferty J.Directing phage selections towards specific epitopes(对特定表位的定向噬菌体选择).Protein Eng.1996 Nov;9(l 1):1043-9.Parsons HL, Earnshaw JC, Wilton J, Johnson S, Schueler PA, Mahoney W, McCafferty J. Directing phage selections towards specific epitopes. Protein Eng. 1996 Nov; 9(l 1): 1043-9.
Winkler,Kramer A,Kiittner G,Seifert M,Scholz C,Wessner H,Schneider-Mergener J,Hohne W.Changing the antigen binding specificity by single pointmutations of an anti-p24(HIV-1)antibody(通过抗-p24(HIV-1)抗体的单点突变改变抗原结合特异性).J Immunol.2000 Oct 15;165(8):4505-14.Winkler, Kramer A, Kiittner G, Seifert M, Scholz C, Wessner H, Schneider-Mergener J, Hohne W. Changing the antigen binding specificity by single point mutations of an anti-p24 (HIV-1) antibody. J Immunol. 2000 Oct 15; 165(8): 4505-14.
Safdari Y,Farajnia S,Asgharzadeh M,Omidfar K,Khalili M.humMRl,ahighly specific humanized single chain antibody for targeting EGFRvIII(用于靶向EGFRvIII的高度特异性的人源单链抗体).Int Immunopharmacol.2014Feb;18(2):304-10.Safdari Y, Farajnia S, Asgharzadeh M, Omidfar K, Khalili M. humMRl, a highly specific humanized single chain antibody for targeting EGFRvIII. Int Immunopharmacol. 2014 Feb; 18(2): 304-10.
Lorimer IA,Keppler-Hafkemeyer A,Beers RA,Pegram CN,Bigner DD,PastanI.Recombinant immunotoxins specific for a mutant epidermal growth factorreceptor:targeting with a single chain antibody variable domain isolated byphage display(对突变体表皮生长因子受体具有特异性的重组免疫毒素:用由噬菌体展示分离的单链抗体可变结构域进行靶向).Proc Natl Acad Sci US A.1996 Dec 10;93(25):14815-20.Lorimer IA, Keppler-Hafkemeyer A, Beers RA, Pegram CN, Bigner DD, Pastan I. Recombinant immunotoxins specific for a mutant epidermal growth factor receptor: targeting with a single chain antibody variable domain isolated byphage display. Proc Natl Acad Sci US A. 1996 Dec 10; 93(25): 14815-20.
Beers R,Chowdhury P,Bigner D,Pastan I.Immunotoxins with increasedactivity against epidermal growth factor receptor vlll-expressing cellsproduced by antibody phage display(对由抗体噬菌体展示产生的表皮生长因子受体vIII-表达细胞具有增强的活性的免疫毒素).Clin Cancer Res.2000 Jul;6(7):2835-43.Beers R, Chowdhury P, Bigner D, Pastan I. Immunotoxins with increased activity against epidermal growth factor receptor vlll-expressing cells produced by antibody phage display. Clin Cancer Res. 2000 Jul; 6(7): 2835-43.
Kuan CT,Wikstrand CJ,Archer G,Beers R,Pastan I,Zalutsky MR,BignerDD.Increased binding affinity enhances targeting of glioma xenografts byEGFRvIII-specific scFv(结合亲和力提高通过EGFRvIII-特异性scFv促进了对神经胶质瘤移植瘤的靶向).Int J Cancer.2000 Dec 15;88(6):962-9.Kuan CT, Wikstrand CJ, Archer G, Beers R, Pastan I, Zalutsky MR, Bigner DD. Increased binding affinity enhances targeting of glioma xenografts by EGFRvIII-specific scFv. Int J Cancer. 2000 Dec 15; 88(6): 962-9.
Choi BD,Kuan CT,Cai M,Archer GE,Mitchell DA,Gedeon PC,Sanchez-PerezL,Pastan I,Bigner DD,Sampson JH.Systemic administration of a bispecificantibody targeting EGFRvIII successfully treats intracerebral glioma(双特异性抗体靶向EGFRvIII的系统施用成功治疗颅内脑神经胶质瘤).Proc Natl Acad Sci U SA.2013 Jan 2;110(l):270-5.Choi BD, Kuan CT, Cai M, Archer GE, Mitchell DA, Gedeon PC, Sanchez-Perez L, Pastan I, Bigner DD, Sampson JH. Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. Proc Natl Acad Sci U SA. 2013 Jan 2;110(l):270-5.
Fenstermaker RA,Ciesielski MJ.Deletion and tandem duplication ofexons 2-7 in the epidermal growth factor receptor gene of a human malignantglioma(人类恶性神经胶质瘤的表皮生长因子受体基因中外显子2-7的缺失和串联重复).Oncogene.2000Sep 14;19(39):4542-8.Fenstermaker RA, Ciesielski MJ. Deletion and tandem duplication of exons 2-7 in the epidermal growth factor receptor gene of a human malignant glioma. Oncogene. 2000 Sep 14; 19(39): 4542-8.
Han W,Zhang T,Yu H,Foulke JG,Tang CK.Hypophosphorylation of residueY1045 leads to defective downregulation of EGFRvIII(Y1045残基的过度磷酸化导致EGFRvIII缺陷下调).Cancer Biol Ther.2006 Oct;5(10):1361-8.Han W, Zhang T, Yu H, Foulke JG, Tang CK. Hypophosphorylation of residue Y1045 leads to defective downregulation of EGFRvIII. Cancer Biol Ther. 2006 Oct; 5(10): 1361-8.
Grandal MV,Zandi R,Pedersen MW,Willumsen BM,van Deurs B,PoulsenHS.EGFRvIII escapes down-regulation due to impaired internalization andsorting to lysosomes.Carcinogenesis(由于受损的内化和对溶酶体的排序,EGFRvIII避免下调).2007Jul;28(7):1408-17.Gan HK,Kaye AH,Luwor RB.The EGFRvIII variant inglioblastoma multiforme(胶质母细胞瘤中的EGFRvIII变体).J Clin Neurosci.2009Jun;16(6):748-54.Grandal MV, Zandi R, Pedersen MW, Willumsen BM, van Deurs B, Poulsen HS. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis. 2007 Jul; 28(7): 1408-17. Gan HK, Kaye AH, Luwor RB. The EGFRvIII variant inglioblastoma multiforme. J Clin Neurosci. 2009 Jun; 16(6): 748-54.
Reist CJ,Archer GE,Kurpad SN,Wikstrand CJ,Vaidyanathan G,WillinghamMC,Moscatello DK,Wong AJ,Bigner DD,Zalutsky MR.Tumor-specific anti-epidermalgrowth factor receptor variant III monoclonal antibodies:use of the tyramine-cellobiose radioiodination method enhances cellular retention and uptake intumor xenografts(肿瘤特异性的抗表皮生长因子受体变体III单克隆抗体:使用酪胺-纤维二糖放射性碘化方法增强了细胞滞留和移植瘤中的吸收).Cancer Res.1995 Oct l;55(19):4375-82.Reist CJ, Archer GE, Kurpad SN, Wikstrand CJ, Vaidyanathan G, Willingham MC, Moscatello DK, Wong AJ, Bigner DD, Zalutsky MR. Tumor-specific anti-epidermal growth factor receptor variant III monoclonal antibodies: use of the tyramine-cellobiose radioiodination method enhances cellular retention and uptake in tumor xenografts. Cancer Res. 1995 Oct 1; 55(19): 4375-82.
Foulon CF,Reist CJ,Bigner DD,Zalutsky MR.Radioiodination via D-aminoacid peptide enhances cellular retention and tumor xenograft targeting of aninternalizing anti-epidermal growth factor receptor variant III monoclonalantibody(D-氨基酸肽的放射性碘化增强了细胞滞留和内化抗表皮生长因子受体变体III单克隆抗体的移植瘤靶向).Cancer Res.2000 Aug 15;60(16):4453-60.Foulon CF, Reist CJ, Bigner DD, Zalutsky MR. Radioiodination via D-aminoacid peptide enhances cellular retention and tumor xenograft targeting of an internalizing anti-epidermal growth factor receptor variant III monoclonal antibody. Cancer Res. 2000 Aug 15; 60(16): 4453-60.
Kuan CT,Wikstrand CJ,Archer G,Beers R,Pastan I,Zalutsky MR,BignerDD.Increased binding affinity enhances targeting of glioma xenografts byEGFRvIII-specific scFv(结合亲和力提高通过EGFRvIII-特异性scFv促进了对神经胶质瘤移植瘤的靶向).Int J Cancer.2000 Dec 15;88(6):962-9.Kuan CT, Wikstrand CJ, Archer G, Beers R, Pastan I, Zalutsky MR, Bigner DD. Increased binding affinity enhances targeting of glioma xenografts by EGFRvIII-specific scFv. Int J Cancer. 2000 Dec 15; 88(6): 962-9.
Patel D,Lahiji A,Patel S,Franklin M,Jimenez X,Hicklin DJ,KangX.Monoclonal antibody cetuximab binds to and down-regulates constitutivelyactivated epidermal growth factor receptor vIII on the cell surface(细胞表面上单克隆抗体西妥昔单抗结合并结构性下调活化的表皮生长因子受体vIII).AnticancerRes.2007 Sep-Oct;27(5A):3355-66.Jutten B,Dubois L,Li Y,Aerts H,Wouters BG,Lambin P,Theys J,Lammering G.Binding of cetuximab to the EGFRvIII deletionmutant and its biological consequences in malignant glioma cells(西妥昔单抗与EGFRvIII缺失突变体的结合及其在恶性神经胶质瘤细胞中的生物学后果).RadiotherOncol.2009 Sep;92(3):393-8.Patel D, Lahiji A, Patel S, Franklin M, Jimenez X, Hicklin DJ, Kang X. Monoclonal antibody cetuximab binds to and down-regulates constitutively activated epidermal growth factor receptor vIII on the cell surface. Anticancer Res. 2007 Sep-Oct; 27(5A): 3355-66. Jutten B, Dubois L, Li Y, Aerts H, Wouters BG, Lambin P, Theys J, Lammering G. Binding of cetuximab to the EGFRvIII deletion mutant and its biological consequences in malignant glioma cells. Radiother Oncol. 2009 Sep; 92(3): 393-8.
Dreier A,Barth S,Goswami A,Weis J.Cetuximab induces mitochondrialtranslocalization of EGFRvIII,but not EGFR:involvement of mitochondria intumor drug resistance?(西妥昔单抗诱导EGFRvIII而不是EGFR的线粒体移位:线粒体参与抗肿瘤药物?)Tumour Biol.2012 Feb;33(l):85-94.Dreier A, Barth S, Goswami A, Weis J. Cetuximab induces mitochondrial translocalization of EGFRvIII, but not EGFR: involvement of mitochondria in tumor drug resistance? Tumour Biol. 2012 Feb;33(l):85-94.
Claims (20)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP13179630.2 | 2013-08-07 | ||
| EP13179630 | 2013-08-07 | ||
| EP13189599.7 | 2013-10-21 | ||
| EP13189599 | 2013-10-21 | ||
| PCT/EP2014/002177 WO2015018527A1 (en) | 2013-08-07 | 2014-08-07 | ANTIBODY BINDING SITES SPECIFIC FOR EGFRvIII |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| HK1218552A1 HK1218552A1 (en) | 2017-02-24 |
| HK1218552B true HK1218552B (en) | 2021-09-24 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105555804B (en) | Antibody binding site specific for EGFRvIII | |
| JP7411316B2 (en) | Trispecific binding proteins and methods of use | |
| CN112189021B (en) | Anti-B7-H3 antibodies and uses thereof | |
| JP6879998B2 (en) | Antibody constructs against CD70 and CD3 | |
| KR102404077B1 (en) | Bispecific antibody constructs that bind DLL3 and CD3 | |
| JP6907124B2 (en) | Bispecific antibody construct against CDH3 and CD3 | |
| KR101838786B1 (en) | Monoclonal antibodies to growth and differentiation factor 15 (gdf-15) | |
| CN102186884B (en) | Fibroblast Growth Factor Receptor-3 (FGFR-3) Inhibitors | |
| JP2024167313A (en) | Tumor treatment drugs and their applications | |
| MD3328893T2 (en) | Bispecific antibody constructs binding mesothelin and CD3 | |
| CN108112254A (en) | Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of use thereof | |
| KR20160139005A (en) | Monoclonal antibodies to growth and differentiation factor 15 (gdf-15), and uses thereof for treating cancer cachexia and cancer | |
| US20230192861A1 (en) | Anti-pd-l1/anti-b7-h3 multispecific antibodies and uses thereof | |
| CN116209680A (en) | A novel human antibody that binds to human CD3ε | |
| US12258400B2 (en) | Antibodies having specificity for BTN2 and uses thereof | |
| CN115151572A (en) | Antibodies against ROR1 and uses thereof | |
| HK1218552B (en) | Antibody binding sites specific for egfrviii | |
| BR112016002610B1 (en) | ANTIBODY BINDING TO SPECIFIC SITES FOR EGFRVIII | |
| HK40078027A (en) | Antibodies against ror1 and uses thereof | |
| WO2025113640A1 (en) | Antibody binding to lilrb1/2 or pd1-lilrb1/2 and use thereof | |
| WO2024094159A1 (en) | Single domain antibody targeting human ror1 | |
| WO2025040144A1 (en) | B7-h7 antigen binding molecule and use thereof | |
| HK40076375B (en) | ANTI-SIRPα ANTIBODY AND APPLICATION THEREOF |