GB2622023A - An air treatment apparatus - Google Patents

An air treatment apparatus Download PDF

Info

Publication number
GB2622023A
GB2622023A GB2212580.1A GB202212580A GB2622023A GB 2622023 A GB2622023 A GB 2622023A GB 202212580 A GB202212580 A GB 202212580A GB 2622023 A GB2622023 A GB 2622023A
Authority
GB
United Kingdom
Prior art keywords
air
opening
airflow passage
primary
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
GB2212580.1A
Other versions
GB202212580D0 (en
Inventor
James Hovell Benjamin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyson Technology Ltd
Original Assignee
Dyson Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyson Technology Ltd filed Critical Dyson Technology Ltd
Priority to GB2212580.1A priority Critical patent/GB2622023A/en
Publication of GB202212580D0 publication Critical patent/GB202212580D0/en
Priority to GB2305832.4A priority patent/GB2622127A/en
Priority to PCT/IB2023/058190 priority patent/WO2024047444A1/en
Publication of GB2622023A publication Critical patent/GB2622023A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/10Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provisions for automatically changing direction of output air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/002Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/005Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by changing flow path between different stages or between a plurality of compressors; Load distribution between compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • F04D29/547Ducts having a special shape in order to influence fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • F24F7/013Ventilation with forced flow using wall or window fans, displacing air through the wall or window
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/80Self-contained air purifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • A61L2209/111Sensor means, e.g. motion, brightness, scent, contaminant sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/14Filtering means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/311Air humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/312Air pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/313Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/66Volatile organic compounds [VOC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Geometry (AREA)
  • Ventilation (AREA)

Abstract

An air treatment apparatus 10 comprising a primary airflow passage 11 extending from an inlet 12 to an outlet 13 and a primary air mover 14 disposed in the primary airflow passage to move air along the primary airflow passage from the inlet to the outlet, an air treatment device 15 arranged to treat air flowing along the primary airflow passage, a secondary airflow passage 16 extends between a first opening 17 to the external environment and a second opening 18 connected to the primary airflow passage downstream of the air treatment device, one or more sensors 19 arranged to sense a characteristic of the air flowing along the secondary airflow passage, an airflow director (fig.2a, 20) for directing airflow, and a controller configured to control the airflow director between and ambient configuration wherein air flows from the first opening to the one or more sensors, and a diagnostic configuration wherein air flows from the second opening to the one or more sensors. The air flow director may be a secondary air mover e.g. a bi-directional fan, or a valve. The sensor may be configured to detect temperature, relative humidity, volatile organic compounds, volatile inorganic compounds PM10 or PM2.5 particles.

Description

AN AIR TREATMENT APPARATUS
Technical Field
The present disclosure relates to an air treatment apparatus, such as an air purifying apparatus.
Background
Air treatment apparatuses, such as air purifiers, typically include an air passage extending from an inlet to an outlet, and an air treatment device for treating air flowing along the air passage. In some cases, air may be driven along the air passage by a fan.
Some apparatuses also include sensors that detect characteristics of the surrounding environment. This can be useful for controlling how the air is treated. For example, it can be desirable to sense ambient temperature, humidity, and the presence of pollutants (e.g. particles or gases such as formaldehyde) in the surrounding air. This can lead to treatment that is optimised to the environment in which the apparatus is located.
In some cases, however, the performance of such an apparatus can deteriorate over time.
This can be caused, for example, by clogging of a filter or a fault in a component of the apparatus. There is therefore a general need to identify when an apparatus is underperforming so that maintenance, repair or an adjustment of the operating parameters of the apparatus can be performed to address any issue.
The present disclosure has been devised in light of the above considerations.
Summary
In a first aspect there is provided an air treatment apparatus (e.g. air purifying apparatus) comprising a primary airflow passage extending from an inlet to an outlet, a primary air mover disposed in the primary airflow passage to move air along the primary airflow passage from the inlet to the outlet, an air treatment device arranged to treat air flowing along the primary airflow passage, a secondary airflow passage extending between a first opening to the external environment and a second opening connected to the primary airflow passage downstream of the air treatment device, and one or more sensors arranged to sense a characteristic of the air flowing along the secondary airflow passage, an airflow director for directing airflow, and a controller configured to control the airflow director between an ambient configuration in which air flows from the first opening to the one or more sensors, and a diagnostic configuration in which air flows from the second opening to the one or more sensors.
In the ambient configuration, the air that is sensed by the one or more sensors flows from the first opening, which opens to the external environment. The sensors therefore sense ambient air in this configuration. On the other hand, in the diagnostic configuration, the air that is flowing across the one or more sensors flows from the second opening, which is open to the primary air flow passage downstream of the air treatment device. Thus, in the diagnostic configuration the air that is sensed is air that has been treated by the air treatment device. Accordingly, the airflow director provides for sensing of both ambient air and treated air.
The sensed characteristics of the ambient air can be used for control of the air treatment device and/or the primary air mover. The sensed characteristics of the treated air can be used to determine the performance of the system. In some cases the sensed characteristics of the treated air can be compared with those of the ambient air.
Importantly, these functions are achieved without the need to provide two separate arrangements of sensors (i.e. one for each of the two configurations). This reduces the cost and complexity of the apparatus.
The airflow director may be a secondary air mover arranged to move air along the secondary airflow passage. The secondary air mover may be arranged between the one or more sensors and the first opening. The secondary air mover may alternatively be arranged between the one or more sensors and the second opening.
The secondary air mover may be a bi-directional fan. The controller may be configured to control the fan to drive airflow in a first direction in the ambient configuration and a second direction, opposite to the first direction, in the diagnostic configuration (e.g. the fan may be selectively driven to rotate in two different rotational directions).
As an alternative to a bi-directional fan, the airflow director may comprise two air movers (e.g. fans) configured to drive air in opposite directions to one another. In this case, one air mover may be deactivated while the other is active.
In some embodiments, as will now be described, it may not be necessary to provide a fan that is bi-directional. Instead, the controller may be configured to control the flow speed of the secondary air mover relative to the primary air mover such that, in the diagnostic configuration, the primary air mover moves air from the primary airflow passage to the sensor through the second opening, and in the ambient configuration the secondary air mover moves air from the first opening and across the sensor to the second opening.
For example, the controller may be configured to control the secondary air mover to have a first flow speed in the diagnostic configuration and a second flow speed in the ambient configuration that is different to the first flow speed.
In such arrangements, one of the first and second flow speeds will be lower than the other.
The apparatus may be configured such that when the secondary air mover is at the lower flow speed, the primary air mover overpowers the secondary air mover in the secondary airflow passage (such that flow through the secondary airflow passage is provided by the primary air mover). Likewise, the apparatus may be configured such that when the secondary air mover is at the higher flow speed, the secondary air mover overpowers the primary air mover (in the secondary passage) such that flow through the secondary passage is provided by the secondary air mover. In such arrangements, the secondary air mover may be configured to move air in the secondary passage in an opposite direction to the primary air mover.
As may be appreciated, depending on the configuration of the apparatus (e.g. the location and orientation of the second opening), it is possible for the primary air mover to push air through the second opening or to draw air from the second opening.
For example, the second opening may face at least partly in an upstream direction of the first airflow passage so as to receive air from the first airflow passage (the momentum of the air meaning air flows form the first airflow passage through the second opening). Alternatively, the second opening may face at least partly in a downstream direction of the first airflow passage and air may be drawn from the second opening into the first airflow passage. To promote flow of air into the first airflow passage from the second opening, the first airflow passage may comprise a narrowed portion (i.e. a portion of smaller cross-sectional area) at or proximate to the second opening. In other words, the apparatus may be configured to exploit the venturi effect so as to draw air from the second opening into the primary airflow passage.
When the configuration of the apparatus is such that the primary air mover can push air through the second opening, the secondary air mover may be arranged to move air towards the second opening (i.e. such that the primary and secondary air movers act against one another on air within the secondary airflow passage). In such embodiments, the first flow speed of the secondary air mover On the diagnostic configuration) may be lower than the second flow speed On the ambient configuration). Accordingly, in the diagnostic configuration, the primary air mover may overpower the secondary air mover in the secondary airflow passage such that it pushes are air through the second opening and across the sensors. Likewise, in the ambient configuration (when the flow speed of the secondary air mover is higher) the secondary air mover may instead overpower the primary air mover such that air is moves in the secondary passage in a direction towards the second opening.
On the other hand, when the configuration of the apparatus is such that primary air mover can draw air through the second opening, the secondary air mover may be arranged to move air in a direction away from the second opening (again, such that the primary and secondary air movers act against one another on air within the secondary airflow passage). In such embodiments, the first flow speed of the secondary air mover (in the diagnostic configuration) may be higher than the second flow speed (in the ambient configuration). Accordingly, in the diagnostic configuration, the secondary air mover may overpower the primary air mover such that air moves in a direction away from the second opening. Likewise, in the ambient configuration, the primary air mover may overcome the (lower flow speed of) the secondary air mover such that air is drawn across the one or more sensors and through the second opening.
As may be appreciated from the above, such arrangements can achieve bi-directional flow within the secondary passage with a single unidirectional air mover in the secondary passage.
This can reduce the complexity of the apparatus.
In some embodiments, the "low flow speed" of the secondary air mover may be zero. That is, the controller may be configured to deactivate the secondary air mover in the diagnostic or ambient configuration.
For the avoidance of doubt, the term "flow speed" is a reference to the air flow rate which the air mover would provide in the absence of any external influence (i.e. such as that provided by another air mover). In the example of a fan, the flow speed will be determined by the speed at which the blades of the fan are rotated (i.e. the flow speed will be the fan speed).
The primary air mover may, in use, be active (i.e. operating) in both the ambient and diagnostic configurations. The controller may be configured to control the flow speed of the primary air mover independently of whether the flow diverter is in the ambient or diagnostic configuration. The flow speed of the primary air mover may be the same in ambient and diagnostic configurations.
The controller may be configured to adjust the flow speed of the secondary air mover in response to changes in the flow speed of the primary air mover. The flow speed of the primary air mover may, for example, be user adjustable, or may be adjusted by the controller in response to a detected condition (e.g. a detected ambient condition such as temperature). As may be appreciated, the flow speed of the primary air mover may affect the flow rate of air through the secondary airflow passage. Thus, the flow speed of the secondary air mover may be adjusted to accommodate for this change in flow rate (e.g. in order to maintain a consistent flow rate of air through the secondary passage).
The airflow director may comprise a valve. The valve may be configured to alter the orientation of the second opening. For example, in the ambient configuration, the second opening may face at least partly upstream in the primary airflow passage. In the diagnostic configuration, the valve may be positioned such that the second opening faces in a different direction to that of the ambient configuration (e.g. downstream in the primary airflow passage, or transverse to the primary airflow passage).
Alternatively, the valve may be arranged to divert airflow in the secondary airflow passage (e.g. by at least partly obstructing a portion of the secondary airflow passage). For example, the secondary airflow passage may comprise a first branch that extends to the second opening and a second branch that extends to a further opening. The second opening may be downstream of the primary air mover and may be arranged such that, in use, air is pushed by the primary air mover into the second opening. The further opening may be upstream of the primary air mover and arranged such that, in use, air is drawn from the further opening by the primary air mover. In the ambient configuration, the controller may control the valve to be positioned so as to obstruct the second branch (so that air is pulled from the first opening through to the further opening via the first branch). In the diagnostic configuration, the controller may control the valve to be positioned so as to obstruct the first branch (so that air is pushed from the second opening to the first opening via the second branch).
The primary airflow passage may comprise a narrowed portion (i.e. a region of smaller cross-sectional area than adjacent regions). The second opening may open to the narrowed portion. In use, airflow may increase in speed (and lower in pressure) as it passes through the narrowed portion. This may promote movement of air from the secondary airflow passage into the primary airflow passage (through the second opening).
The apparatus may be configured such that in the ambient configuration air that has passed over the sensor is discharged into the primary airflow passage through the second opening. In this way, the second opening may have dual functionality (i.e. may be an inlet in the diagnostic configuration and an outlet in the ambient configuration). This may simplify the construction of the apparatus.
The apparatus may be configured such that in the diagnostic configuration air that has passed over the sensor is discharged to the external environment though the first opening. In this way, the first opening may have dual functionality (i.e. may be an inlet in the ambient configuration and an outlet in the diagnostic configuration). Again, this may simplify the construction of the apparatus.
The secondary airflow passage may comprise a third opening which is open to the external environment. The apparatus may be configured such that in the ambient configuration air that has passed over the sensor is discharged to the external environment through the third opening (e.g. a branch of the secondary passage may extend to the third opening).
The apparatus may comprise a filter upstream of the one or more sensors in one of the ambient configuration and the diagnostic configuration. For example, the filter may be disposed between the first opening and the one or more sensors (e.g. may be disposed at the first opening). In this way, ambient air received by the sensors may be filtered. Such an arrangement may be particularly desirable when the air subsequently flows from the sensors into the primary airflow passage (i.e. for subsequent discharge through the outlet of the device).
The one or more sensors may comprise one or more of a gas sensor, particle sensor, and environmental condition sensor.
The gas sensor (when present) may be configured to detect volatile organic chemicals and/or volatile inorganic chemicals. The gas sensor may be configured to detect total volatile inorganic compounds.
The particle sensor (when present) may be configured to detect particles that are 10 microns or less in diameter (PM10 particles) or particles 2.5 microns or less in diameter (PM2.5 particles). The particle sensor may be configured to detect particles of other given (maximum) diameters. The gas sensor may be configured to detect one or more of silica, pollen, soot and heavy metals.
The one or more sensors may comprise an environmental condition sensor configured to detect one or more of temperature, relative or absolute humidity, air pressure sensor, a wet bulb temperature and dry bulb temperature.
In some embodiments, the apparatus may comprise sensors in the primary airflow passage.
Such sensors may thus be arranged for detecting a characteristic of ambient air, but will not receive treated air in the diagnostic configuration (i.e. will only receive ambient air in normal use).
The controller (e.g. a microcontroller) may be configured to move or switch the airflow director from the ambient configuration to the diagnostic configuration for a predetermined period of time. The controller may be configured to move or switch the airflow director from the ambient configuration to the diagnostic configuration at predetermined intervals. The apparatus may comprise a user interface configured to generate a signal upon input from a user. The controller may be configured to move or switch the airflow director from the ambient configuration to the diagnostic configuration upon receipt of a signal from the user interface. The controller may be configured to be activated remotely.
The air treatment device may comprise an air purifier. Alternatively or additionally the air treatment device may comprise a heater, humidifier, de-humidifier and/or cooler. For example, the air treatment device may comprise an air purifier and a heater downstream of the air purifier.
Brief Summary of the Figures
Embodiments will now be discussed with reference to the accompanying figures in which: Figures 1A and 1B are schematic views of an air treatment apparatus according to a first embodiment; Figures 2A and 2B are schematic views of an air treatment apparatus according to a second embodiment; Figures 3A and 3B are schematic views of an air treatment apparatus according to a third embodiment; Figures 4A and 4B are schematic views of an air treatment apparatus according to a fourth embodiment; and Figures 5A and 5B are schematic views of an air treatment apparatus according to a fifth embodiment.
Detailed Description
Aspects and embodiments will now be discussed with reference to the accompanying figures.
Further aspects and embodiments will be apparent to those skilled in the art.
Figures 1A and 1B illustrate an air treatment apparatus 10 in the form of an air purifier. The air treatment apparatus 10 includes a primary airflow passage 11 extending from an inlet 12 to an outlet 13. A primary air mover 14 is disposed in the primary airflow passage 11 to move air along the primary airflow passage 11 from the inlet 12 to the outlet 13. An air treatment device 15 is also arranged in the primary airflow passage 11 and is configured to treat (i.e. purify) air flowing along the primary airflow passage 11. The primary airflow passage 11 thus provides for flow of a main (primary) airflow that supports the main function of the air purifier (providing purified air to a user).
The apparatus 10 also includes a secondary airflow passage 16 that extends between a first opening 17 that opens to the external environment, and a second opening 18 that is connected to the primary airflow passage 11. Specifically, the second opening 18 connects to the primary airflow passage 11 at a region of the primary airflow passage 11 that is downstream of the air treatment device 15. One or more sensors 19 are arranged in or adjacent to the secondary airflow passage 16 for sensing various characteristics of the air in the secondary airflow passage 16. The sensors 19 may include one or more gas sensors, particle sensors and/or environmental condition sensors.
The apparatus 10 further includes an airflow director (not shown) and a controller (not shown) configured to control the airflow director between an ambient configuration and a diagnostic configuration.
The ambient configuration is shown in Figure 1A. In this configuration, air flows through the secondary airflow passage 16 from the first opening 17 (which acts as an inlet in this configuration), across the sensors 19 and then to the second opening 18 (which acts as an outlet) so as to join air flowing through the primary airflow passage 11. In other embodiments, instead of flowing to the second opening 18, the air may be diverted elsewhere (e.g. to a further outlet of the apparatus 10). In this ambient configuration, the air that flows across the sensors 19 is ambient air. Hence, the sensors 19 can detect characteristics of the ambient air (i.e. characteristics of the air of the surrounding environment). This may be useful, for example, in control of the apparatus 10 (such as in control of the primary air mover 14 or the air treatment device 15).
The diagnostic configuration is shown in Figure 1B. In this configuration, air flows through the secondary airflow passage 16 from the second opening 18 (which now acts as an inlet), across the sensors 19 and is discharged through the first opening 17 (which now acts as an outlet). In other embodiments, the air may be diverted for discharge elsewhere (e.g. to a further outlet of the apparatus 10). In this diagnostic configuration, the air that flows across the sensors 19 is treated air (i.e. air that has been treated by the air treatment device 15). In this case, the measurements performed by the sensors 19 may be useful in understanding the performance of the air treatment device 15. Measurements taken in the diagnostic configuration may be compared with measurements taken in the ambient configuration to determine the performance of the air treatment device 15.
Accordingly, the arrangement described above and shown in Figures 1A and 1B is capable of providing both ambient and diagnostic measurements with a single arrangement of sensors 19. This can reduce the complexity and cost of the apparatus 10.
The flow director can take various forms. In the embodiment of Figures 2A and 2B (in which the same reference numerals have been used), for example, the flow director is in the form of a bi-directional fan 20 (i.e. a fan that is capable of operating in two opposite directions) provided within the secondary airflow passage 16.
Figure 2A illustrates the ambient configuration of the bi-directional fan 20. In this configuration, the bi-directional fan 20 is controlled to operate in a first direction that moves air from the first opening 17 to the second opening 18, such that the air that flows across the sensors 19 is ambient air. The air the passes into the primary airflow passage 11 and is discharged with the primary airflow through the outlet 13.
In Figure 2B, the bi-directional fan 20 is controlled to operate in a second direction (opposite to the first direction) such that it draws air from the primary airflow passage 11, through the second opening 18. The air drawn into the secondary airflow passage 16 is then drawn across the sensors 19 and is discharged through the first opening 17. Hence, in this configuration, the air that flows across the sensors is treated air that has been treated by the air treatment device In Figures 3A and 3B, the flow director is in the form of a unidirectional fan 21, which is configured to move air through the secondary airflow passage 16 in a direction from the second opening 18 to the first opening 17. This embodiment also differs from that previously described in that the primary airflow passage 11 is provided with a narrowed portion 22 that increases the speed of the airflow, and thus reduces its pressure, in the region of the primary airflow passage 11 which is connected to the secondary airflow passage 16 via the second opening 18..
Figure 3A shows the unidirectional fan 21 in the ambient configuration. In this configuration, the unidirectional fan 21 is deactivated (i.e. it is not driving airflow along the secondary airflow passage 16). Instead, airflow is drawn from the secondary airflow passage 16, through the second opening 18 due to the reduced pressure in the narrowed portion 22 of the primary airflow passage 11. In other words, this arrangement exploits the venturi effect to draw air from the secondary airflow passage 16 into the primary airflow passage 11. In other embodiments, it may not be necessary to provide the narrowed portion 22 (i.e. the pressure drop created by the primary air mover 14 may be sufficient to draw airflow from the secondary airflow passage 16).
As airflow is drawn from the secondary airflow passage 16, it flows in a direction from the first opening 17 to the second opening 18, across the sensors 19. Accordingly, the sensors 19 are able to measure characteristics of the ambient air.
In Figure 3B, the unidirectional fan 21 is shown in the diagnostic configuration. In this configuration, the unidirectional fan 21 is activated. The flow speed of the unidirectional fan 21 is such that it is able to overpower the suction formed by the narrowed portion 22 of the primary airflow passage 11. Accordingly, air is drawn from the primary airflow passage 11 into the secondary airflow passage 16, through the second opening 18, by the unidirectional fan 21. In this way, treated air flows across the sensors 19 for measurement of characteristics thereof, and is subsequently discharged through the first opening 17.
As may be appreciated, the ambient configuration (described above with respect to Figure 3A) may be achieved with the unidirectional fan 21 activated, but at a lower flow speed than in the diagnostic configuration (i.e. the flow speed may be sufficiently low in the diagnostic configuration that air is nevertheless drawn from the secondary airflow passage 16 into the primary airflow passage 11).
In Figures 4A and 4B, the flow director is in the form of a valve 23, which is rotatable to alter the position of the second opening 18 in the primary airflow passage 11. Figure 4A illustrates the valve 23 in the ambient configuration. In this configuration the valve 23 is arranged such that the second 18 opening faces downstream in the primary airflow passage 11. As a consequence of this, air is drawn into the primary airflow passage 11 from the secondary airflow passage 16 (due to the faster air speed, and thus lower pressure in the primary airflow passage 11).
On the other hand, in the diagnostic configuration of the valve 23 (shown in Figure 4B), the second opening 18 faces upstream in the primary airflow passage 11. In this case, the momentum of the airflow in the primary airflow passage 11 causes air to flow into the secondary airflow passage 16 through the second opening 18. Accordingly, in this configuration, air flows across the sensors 19 from the second opening 18 to the first opening 17 (i.e. opposite to that shown in Figure 4A).
A further embodiment is illustrated in Figures 5A and 5B. In this embodiment, the flow director is a valve in the form of a door 24. This embodiment differs from those previously described in that the secondary airflow passage 16 includes a first branch 25 that extends to the second opening 18, and a second branch 26 that extends to a further opening 27, the further opening 27 being connected to the primary airflow passage 11 at a position upstream of the second opening 18. In the ambient configuration (Figure 5A) the door 24 is controlled so as to obstruct the first branch 25 (and open the second branch 26). This causes air to be drawn from the secondary airflow passage 16 into the primary airflow passage 11 via the second branch 26, driven by the primary air mover 14. On the other hand, in the diagnostic configuration (Figure 58), the door 24 is controlled so as to obstruct the second branch 26 (and open the first branch 25). This causes air to flow into the secondary airflow passage 16 from the primary airflow passage 11 via the first branch 25. Accordingly, in the ambient configuration the air flowing over the sensors 19 is ambient air, and in the diagnostic configuration the air flowing over the sensors 19 is treated air.
The exemplary embodiments set forth above are considered to be illustrative and not limiting. Various changes to the described embodiments may be made without departing from the spirit and scope of the invention.
Although not illustrated, the air treatment apparatus may include a filter (e.g. in one or both of the primary and secondary airflow passages). The filter may be a particle filter, gas filter (or both).
Further, in the above-described embodiments, air is discharged through the first opening in the diagnostic configuration, but in other embodiments the air may be discharged through e.g. a third opening.
Likewise, in the embodiments described above, the air treatment device is provided downstream of the primary air mover. It should be appreciated, that the air treatment device may instead be upstream of the primary air mover.
The air treatment device may comprise one or more of an air purifier, heater, humidifier, dehumidifier, cooler. That is, one or more of these components may be provided in primary airflow passage 11. For example, an air purifier and a heater (e.g. downstream of the air purifier) may be provided in primary airflow passage 11.
For the avoidance of any doubt, any theoretical explanations provided herein are provided for the purposes of improving the understanding of a reader. The inventors do not wish to be bound by any of these theoretical explanations.
Any section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.
Throughout this specification, including the claims which follow, unless the context requires otherwise, the word "comprise" and "include", and variations such as "comprises", "comprising", and "including" will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by the use of the antecedent "about," it will be understood that the particular value forms another embodiment. The term "about" in relation to a numerical value is optional and means for example +/-10%.

Claims (19)

  1. Claims 1 An air treatment apparatus comprising: a primary airflow passage extending from an inlet to an outlet; a primary air mover disposed in the primary airflow passage to move air along the primary airflow passage from the inlet to the outlet; an air treatment device arranged to treat air flowing along the primary airflow passage; a secondary airflow passage extending between: a first opening to the external environment; and a second opening connected to the primary airflow passage downstream of the air treatment device; and one or more sensors arranged to sense a characteristic of the air flowing along the secondary airflow passage; an airflow director for directing airflow; and a controller configured to control the airflow director between: an ambient configuration in which air flows from the first opening to the one or more sensors; and a diagnostic configuration in which air flows from the second opening to the one or more sensors.
  2. 2. An air treatment apparatus according to claim 1 wherein the airflow director is a secondary air mover arranged to move air along the secondary airflow passage.
  3. 3 An air treatment apparatus according to claim 2 wherein the secondary air mover is a bi-directional fan and the controller is configured to control the fan to drive airflow in a first direction in the ambient configuration and a second direction, opposite to the first direction, in the diagnostic configuration.
  4. 4 An air treatment apparatus according to claim 2 wherein the controller is configured to control the flow speed of the secondary air mover relative to the primary air mover such that: in the diagnostic configuration the primary air mover moves air from the primary airflow passage to the one or more sensors through the first opening; and in the ambient configuration the secondary air mover moves air from the second opening and across the one or more sensors to the first opening.
  5. An air treatment apparatus according to claim 4 wherein the controller is configured to control the secondary air mover to have a first flow speed in the diagnostic configuration and a second flow speed in the ambient configuration that is different to the first flow speed.
  6. 6. An air treatment apparatus according to claim 4 or 5 wherein the controller is configured to deactivate the secondary air mover in one of the ambient and diagnostic configurations.
  7. 7. An air treatment apparatus according to any one of claims 2 to 6 wherein the controller is configured to adjust the flow speed of the secondary air mover in response to changes in the flow speed of the primary air mover.
  8. 8. An air treatment apparatus according to any one of the preceding claims wherein the airflow director comprises a valve.
  9. 9. An air treatment apparatus according to claim 8 wherein the valve is moveable to alter the orientation of the second opening.
  10. 10. An air treatment apparatus according to claim 8 or 9 wherein in the ambient configuration, the second opening faces at least partly upstream in the primary airflow passage.
  11. 11. An air treatment apparatus according to any one of the preceding claims wherein the primary airflow passage comprises a narrowed portion, and wherein the second opening opens to the narrowed portion of the primary airflow passage.
  12. 12. An air treatment apparatus according to any one of the preceding claims configured such that in the ambient configuration air that has passed over the one or more sensors is discharged into the primary airflow passage through the second opening.
  13. 13. An air treatment apparatus according to any one of the preceding claims configured such that in the diagnostic configuration air that has passed over the one or more sensors is discharged to the external environment though the first opening.
  14. 14. An air treatment apparatus according to any one of claims 1 to 12 wherein the secondary airflow passage comprises a third opening which is open to the external environment, and wherein the apparatus is configured such that in the ambient configuration air that has passed over the one or more sensors is discharged to the external environment through the third opening.
  15. 15. An air treatment apparatus according to any one of the preceding claims comprising a filter upstream of the one or more sensors in one of the ambient configuration and diagnostic configuration.
  16. 16. An air treatment apparatus according to any one of the preceding claims wherein the one or more sensors comprises one or more of a gas sensor, particle sensor, and environmental condition sensor.
  17. 17. An air treatment apparatus according to claim 16 wherein the one or more sensors comprises a gas sensor configured to detect volatile organic chemicals and/or volatile inorganic chemicals.
  18. 18. An air treatment apparatus according to claim 16 or 17 wherein the one or more sensors comprises a particle sensor configured to detect PM 10 particles or PM2.5 particles.
  19. 19. An air treatment apparatus according to any one of claims 16 to 18 wherein the one or more sensors comprises an environmental condition sensor configured to detect temperature and/or relative humidity.
GB2212580.1A 2022-08-31 2022-08-31 An air treatment apparatus Pending GB2622023A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB2212580.1A GB2622023A (en) 2022-08-31 2022-08-31 An air treatment apparatus
GB2305832.4A GB2622127A (en) 2022-08-31 2023-04-20 An air treatment apparatus
PCT/IB2023/058190 WO2024047444A1 (en) 2022-08-31 2023-08-15 An air treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2212580.1A GB2622023A (en) 2022-08-31 2022-08-31 An air treatment apparatus

Publications (2)

Publication Number Publication Date
GB202212580D0 GB202212580D0 (en) 2022-10-12
GB2622023A true GB2622023A (en) 2024-03-06

Family

ID=83931821

Family Applications (2)

Application Number Title Priority Date Filing Date
GB2212580.1A Pending GB2622023A (en) 2022-08-31 2022-08-31 An air treatment apparatus
GB2305832.4A Pending GB2622127A (en) 2022-08-31 2023-04-20 An air treatment apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
GB2305832.4A Pending GB2622127A (en) 2022-08-31 2023-04-20 An air treatment apparatus

Country Status (1)

Country Link
GB (2) GB2622023A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2538217A (en) * 2015-01-19 2016-11-16 Vent-Axia Group Ltd Motorised impeller assemblies
KR20200033147A (en) * 2018-09-19 2020-03-27 엘지전자 주식회사 Control method of dryer and dryer stand
US20220047766A1 (en) * 2020-08-13 2022-02-17 Tomphyzx.Llc Method, apparatus and system for reducing pathogens in a breathable airstream in an environment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011024682A1 (en) * 2009-08-27 2013-01-31 シャープ株式会社 Air cleaner
CN215523672U (en) * 2021-03-10 2022-01-14 宁波方太厨具有限公司 Formaldehyde detection device and air purifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2538217A (en) * 2015-01-19 2016-11-16 Vent-Axia Group Ltd Motorised impeller assemblies
KR20200033147A (en) * 2018-09-19 2020-03-27 엘지전자 주식회사 Control method of dryer and dryer stand
US20220047766A1 (en) * 2020-08-13 2022-02-17 Tomphyzx.Llc Method, apparatus and system for reducing pathogens in a breathable airstream in an environment

Also Published As

Publication number Publication date
GB202212580D0 (en) 2022-10-12
GB202305832D0 (en) 2023-06-07
GB2622127A (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US20170082305A1 (en) An Air Purification Device
US20150354845A1 (en) Optimized airflow distribution system
EP4023949B1 (en) Switchable filtration system
CN109668261A (en) Control method, device and the conditioner of conditioner
EP2202467B1 (en) Rotary type heat exchange apparatus with automatic flow rate exchange modulation
WO2011024682A1 (en) Air cleaner
JP2000249365A (en) Air conditioner
GB2622023A (en) An air treatment apparatus
WO2024047444A1 (en) An air treatment apparatus
US20210207825A1 (en) Air filter with deployment mechanism and control for hvac applications
JP4844991B2 (en) Central exhaust system operation control system
KR101533161B1 (en) Apparatus for air cleaner controlling in vehicle and method thereof
WO2018152858A1 (en) Integrated refrigeration and air purification equipment
JP2012225113A (en) Tunnel ventilation control system
CN219531050U (en) Collective protection system
JP6779105B2 (en) Particle detection system and particle detection method
JP4693114B2 (en) Temperature control device
CN117242305A (en) Air treatment device
KR100680622B1 (en) Air cleaner having ventilating function
US20240230120A9 (en) Air Treatment Device
JPH04113141A (en) Clean room
JP6779106B2 (en) Particle detection system and particle detection method
US20230141272A1 (en) Dynamic air filtration
JPH0678013U (en) Air circulation method
KR20190007205A (en) Air handling unit with filtering equipment