GB2621347A - A pitot tube sensing apparatus - Google Patents

A pitot tube sensing apparatus Download PDF

Info

Publication number
GB2621347A
GB2621347A GB2211569.5A GB202211569A GB2621347A GB 2621347 A GB2621347 A GB 2621347A GB 202211569 A GB202211569 A GB 202211569A GB 2621347 A GB2621347 A GB 2621347A
Authority
GB
United Kingdom
Prior art keywords
pitot tube
sensing apparatus
channel
tube sensing
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
GB2211569.5A
Other versions
GB202211569D0 (en
Inventor
Dhandhania Anmol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus SAS
Original Assignee
Airbus SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus SAS filed Critical Airbus SAS
Priority to GB2211569.5A priority Critical patent/GB2621347A/en
Publication of GB202211569D0 publication Critical patent/GB202211569D0/en
Publication of GB2621347A publication Critical patent/GB2621347A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/46Pitot tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

A pitot tube sensing apparatus 12 and method are disclosed which can determine the presence or absence of a foreign object within the pitot tube sensing apparatus 12. The pitot tube sensing apparatus 12 includes a pitot tube comprising a channel 13, a pressure sensor coupled to the channel 13, and a capacitor 16. The capacitor 16 comprises two electrodes 17a, 17b on opposing sides of the channel 13. A parameter indicative of a capacitance between the two electrodes 17a, 17b is measured and the presence or absence of a foreign object within the channel 13 based on the parameter is determined.

Description

A PITOT TUBE SENSING APPARATUS FIELD OF THE INVENTION
[0001] The present invention relates to a pitot tube sensing apparatus and a method of determining the presence or absence of a foreign object within the pitot tube sensing apparatus. In particular, the pitot tube sensing apparatus is suitable for use with an aircraft
BACKGROUND OF THE INVENTION
[0002] A pitot tube sensing apparatus typically comprises a pitot tube coupled to a pressure sensor. A pitot tube sensing apparatus may be used to measure pressure to determine fluid flow speed.
[0003] Pitot tube sensing apparatus is widely used to determine the airspeed of an aircraft; the water speed of a boat; or the flow velocity of liquids, air, and gases in industry. A generic prior art pitot tube sensing apparatus comprises a pitot tube directly coupled to a pressure sensor. The pitot tube is arranged with an opening which points directly into a fluid flow, the fluid then stagnates in the pitot tube as there is no outlet to allow the flow to continue. The pressure sensor then measures the total pressure in the pitot tube.
[0004] The total pressure can be described as the static pressure plus the dynamic pressure. The speed of the fluid can be calculated from the dynamic pressure. For many applications the static pressure is a pre-defined and known pressure. However, the static pressure can vary for aircraft when changing altitude. In such applications where the static pressure is not pre-defined or known, a static pressure sensor can be added to the pitot tube sensing apparatus to measure the static pressure.
[0005] A pitot tube comprises a channel which can be blocked by foreign objects such as ice, dust, dirt, sand, insects, protective covers, and other debris This can lead to an erroneous pressure measurement at the pressure sensor.
[0006] A pitot tube sensing apparatus is typically used with aircraft as a primary source of total pressure to determine airspeed. Before take-oft the pitot tube should ideally be clear of foreign objects.
[0007] There is therefore a desire to ensure that a pitot tube is clear of foreign objects. SUMMARY OF THE INVENTION [0008] A first aspect of the invention provides a pitot tube sensing apparatus comprising: a pitot tube comprising a channel; a pressure sensor coupled to the channel; a capacitor comprising two electrodes on opposing sides of the channel; and a system configured to: measure a parameter indicative of a capacitance between the two electrodes; and determine the presence or absence of a foreign object within the channel based on the parameter.
[0009] The pitot tube sensing apparatus may comprise electrical shielding between the capacitor and the pitot tube.
[0010] The parameter may comprise a voltage between the two electrodes.
[0011] Optionally the system is configured to measure the parameter by applying current across the capacitor.
[0012] The determination of the presence or absence of a foreign object may be based on a comparison of the parameter to a detection threshold.
[0013] The system may be further configured to calculate a rate of change in the parameter. The determination of the presence or absence of a foreign object may be based on a comparison of the rate of change in the parameter to a detection threshold.
[0014] The two electrodes may conform to the shape of an inner surface of the channel.
[0015] The channel may be in the shape of a cylinder. Each electrode may be in the shape of a cylindrical arc [0016] The pitot tube sensing apparatus may further comprise a trap. The capacitor may be between an opening of the channel and the trap. The trap may be arranged to block foreign objects from reaching the pressure sensor.
[0017] The pitot tube sensing apparatus may be further configured to generate an alert upon determining the presence of a foreign object within the channel.
[0018] The pitot tube sensing apparatus may be configured to determine a fluid speed based on an output of the pressure sensor.
[0019] The electrodes may be positioned in the channel between an opening of the channel and the pressure sensor.
[0020] The pressure sensor may be configured to measure a total pressure in the channel. The pitot tube sensing apparatus may further comprise a static pressure sensor configured to measure a static pressure. The pitot tube sensing apparatus may be further configured to calculate a fluid speed based on a difference between the total pressure and the static pressure.
[0021] A further aspect of the invention provides an aircraft comprising the pitot tube sensing apparatus of the first aspect [0022] The pitot tube sensing apparatus may be configured to determine an air speed of the aircraft based on an output of the pressure sensor.
[0023] A further aspect of the invention provides a method of determining the presence or absence of a foreign object within a pitot tube sensing apparatus, wherein the pitot tube sensing apparatus comprises: a pitot tube comprising a channel with an opening; a pressure sensor coupled to the channel, and a capacitor comprising two electrodes on opposing sides of the channel, the method comprising: measuring a parameter indicative of a capacitance between the two electrodes; and determining the presence or absence of a foreign object within the channel based on the parameter.
[0024] The parameter may comprise a voltage between the two electrodes [0025] Determining the presence or absence of a foreign object may be based on a comparison of the parameter to a detection threshold.
[0026] The method may further comprise calculating a rate of change in the parameter. The determination of the presence or absence of a foreign object may be based on a comparison of the rate of change in the parameter to a detection threshold.
[0027] The method may further comprise generating an alert upon determining the presence of a foreign object within the channel.
BRIEF DESCRIPTION OF THE DRAWINGS
[0028] Embodiments of the invention will now be described with reference to the accompanying drawings, in which: [0029] Figure 1 a shows a front view of an aircraft; [0030] Figure lb shows a port-side view of the front portion of the aircraft of Figure 1 a; [0031] Figure 2 shows a cross section port-side view of a pitot tube sensing apparatus; [0032] Figure 3 shows a cross section port-side view of a pitot tube of the pitot tube sensing apparatus of Figure 2, [0033] Figure 4 shows a cross section front view of a pitot tube of the pitot tube sensing apparatus of Figure 2; [0034] Figure 5a shows a graph of voltage against time; and [0035] Figure 5b shows a graph of rate of change in voltage against time. DETAILED DESCRIPTION OF EMBODIMENT(S) [0036] Like reference numerals refer to like parts throughout the specification. With reference to Figures la and lb, a passenger aircraft 1 is shown. The aircraft 1 comprises a fuselage 2 for holding passengers and/or cargo, a starboard wing 3 and a port wing 4.
[0037] Figure lb shows a port-side view of the front portion of the passenger aircraft 1. A pitot tube opening 5 of a pitot tube sensing apparatus 10 is positioned such that when the aircraft 1 is in flight a pressure sensor of the pitot tube sensing apparatus 10 is arranged to measure the total pressure. For example, the axis of the pitot tube can be approximately in the same direction as the direction of travel of the aircraft 1 [0038] A static pressure sensor opening 6 of a static pressure sensor is positioned such that when the aircraft 1 is in flight the static pressure sensor is arranged to measure the static pressure. For example, the axis of the static pressure sensor can be approximately perpendicular to the axis of the pitot tube.
[0039] Figure 2 shows a cross sectional side view of the pitot tube sensing apparatus 10. The pitot tube sensing apparatus 10 comprises: a pitot tube 12 comprising a channel 13; a total pressure sensor 14 coupled to the channel 13; a capacitor 16; and a system 18 [0040] The channel 13 has a channel opening 5 which, when in use, points into an air flow. The air in the pitot tube 12 then stagnates as there is no substantial outlet to allow the air flow to continue. The total pressure sensor 14 then measures the total pressure in the pitot tube 12.
[0041] The total pressure is the static pressure plus the dynamic pressure. The aircraft 1 comprises a static pressure sensor 22 to measure the static pressure of the air outside of the aircraft 1. The static pressure sensor 22 is connected to the outside of the aircraft I by a static channel 24 comprising an opening 6 through the skin 26 of the aircraft 1.
[0042] The system 18 is in communication with the total pressure sensor 14 and the static pressure sensor 22. The system 18 is configured to receive the total pressure measurement from the total pressure sensor 14, and the static pressure measurement from the static pressure sensor 22. The system 18 is configured to calculate the airspeed based on a difference between the total pressure measurement and the static pressure measurement.
[0043] The capacitor 16 is arranged such that if a foreign object is present in the channel 13 then the capacitance of the capacitor 16 will change [0044] The system 18 is electrically connected to the capacitor 16 The system 18 is configured to determine the presence or absence of a foreign object within the channel 13 based on measuring a parameter indicative of a capacitance of the capacitor 16.
[0045] Figure 3 shows a magnified view of Figure 2. Specifically, Figure 3 shows a cross-section port-side view of the pitot tube 12 of the pitot tube sensing apparatus 10.
[0046] The capacitor 16 comprises two electrodes 17a, 17b, on opposing sides of the channel 13. Electric field lines 31 are shown between the two electrodes 17a, 17b of the capacitor 16. The capacitance of the capacitor 16 is: (1) Where A is the effective overlap area of the two electrodes 17a, 17b; d is the effective distance between the two electrodes 17a, 17b, and C is the permittivity of the medium between the two electrodes 17a, 17b.
[0047] When the channel is clear of foreign objects then e is relatively stable, since the permittivity of air is relatively stable However, when a foreign object enters the channel 13 then e changes, such that a change in capacitance of the capacitor 16 can be detected either directly or indirectly by the system 18 Therefore, the capacitor 16 is configured as a sensor to detect the presence or absence of a foreign object within the channel 13.
[0048] The capacitor 16 may be adhered to the inner surface of the channel 13. Alternatively, the capacitor 16 can be integrated into the pitot tube 12. The capacitor 16 of the pitot tube sensing apparatus 10 may be positioned around, positioned at, or integrated into the pitot tube 12 in any way in which it can detect the presence or absence of a foreign object within the channel 13 [0049] The pitot tube sensing apparatus 10 comprises electrical shielding 27 between the capacitor 16 and the pitot tube 12. The electrical shielding 27 is arranged to insulate the two electrodes 17a, 17b from the pitot tube 12 and/or from each other. The electrical shielding 27 may result in a more accurate measurement from the capacitor 16. The electrical shielding 27 may be necessary if the pitot tube 12 is made from a conductive material which could short the two electrodes 17a, 17b together. However, if the pitot tube 12 is made of an insulating material (e.g., plastic), then electrical shielding 27 may not be necessary.
[0050] Optionally the pitot tube sensing apparatus 10 comprises a trap 28 which is arranged to block foreign objects from reaching the pressure sensor 14. The capacitor 16 can be located between the opening 5 and the trap 28.
[0051] Optionally the pitot tube sensing apparatus 10 comprises one or more drain holes 30. The drain holes 30 are arranged to allow liquids to drain out of the channel 13. This can prevent liquid build-up in the channel 13 from damaging (and/or blocking the channel 13) the pitot tube sensing apparatus 10, for example, when water freezes. The capacitor 16 is between the opening 5 and the one or more drain holes 30.
[0052] Figure 4 shows a cross section front view of the pitot tube 12, the capacitor 16, and the electrical shielding 27. Electric field lines 31 are shown between the two electrodes 17a, 17b of the capacitor 16 [0053] The two electrodes 17a, 17b, conform to the shape of the inner surface 32 of the channel 13. A benefit of the two electrodes 17a, 17b, conforming to the shape of the inner surface 32 of the channel 13 is that it maximises the detection volume of the capacitor 16 which can be used to detect foreign objects. In addition, the capacitor 16 is beneficially not obstructing the pitot tube 12.
[0054] As shown in Figure 4, the cross section of the pitot tube 12 is circular because the pitot tube 12 and its channel 13 are cylindrical. Each electrode 17a, 17b is therefore in the shape of a cylindrical arc (with an arc cross-section as shown in Figure 4). Each electrode 17a, 17b can be described as conforming to the shape of the channel 13 because the channel 13 is in the chape of a cylinder and each electrode 17a, 17b is in the shape of a cylindrical arc [0055] Turning to the functionality of the pitot tube sensing apparatus 10, system 18 is configured to measure the parameter indicative of a capacitance of the capacitor 16. The parameter may comprise a voltage between the two electrodes 17a, 17b.
[0056] The system 18 can be configured to apply a current across the capacitor 16 and measure the voltage change caused by a blocking event. The blocking event is the event of a foreign object entering the channel 13 and getting lodged in the pitot tube 12. The blocking event causes a change in the permittivity of the medium between the two electrodes 17a, 17b, which results in a change in capacitance of the capacitor 16. The system 18 can be configured to apply a Direct Current (DC) or an Alternating Current (AC) to the capacitor 16 to detect a blocking event. In the case of DC the capacitor 16 will need to be polarized and in the case of AC the capacitor 16 will not need to be polarized.
[0057] The change in capacitance causes a change in an impedance of the capacitor 16. For a constant current if the impedance changes then the measured voltage also changes.
[0058] Figures 5a and 5b show graphs of voltage against time, and rate of change of voltage against time respectively, for the blocking event The blocking event occurs at time ti, [0059] Figure 5a shows the voltage received by the system 18. At time tl, a blocking event occurs, and the voltage received by the system 18 raises as a result. The system 18 can determine the presence or absence of a foreign object based on a comparison of the measured parameter 35 and a detection threshold 36. The system 18 can determine the presence of a foreign object if the voltage raises above the detection threshold 36. The system 18 can determine the absence of a foreign object if the voltage does not rise above the detection threshold 36. As shown in Figure 5a, the detection threshold 36 is breached shortly after tl, thus the system 18 can determine the presence of a foreign object shortly after ti.
[0060] Figure 5b shows the rate of change of the voltage received by the system 18. At time ti, a blocking event occurs, and the rate of change of the voltage received by the system 18 raises as a result. The system 18 can determine the presence or absence of a foreign objected based on a comparison of the rate of change in the parameter 37 to a detection threshold 38. The system 18 can determine the presence of a foreign object if the rate of change of voltage raises above the detection threshold 38. The system 18 can determine the absence of a foreign object if the rate of change of voltage does not raise above the detection threshold 38. In Figure 5b, the detection threshold 38 is breached shortly after ti, thus the system 18 can determine the presence of a foreign object shortly after tl.
[0061] The system 18 can be configured to determine the presence or absence of a foreign object based on the voltage received and/or the rate of change of the voltage received.
[0062] The system 18 can generate an alert upon determining the presence of a foreign object within the channel 13. For example, in the aircraft 1, the alert may be a warning light in the cockpit and/or an audible alarm.
[0063] The system 18 can be one or more processing systems, controllers, computers, etc. or any combination.
[0064] In an alternative example, the pitot tube may be a pitot-static tube wherein the static pressure sensor opening may be integrated into the pitot tube. A pitot-static tube comprises a second channel co-axial with the channel of the pitot tube, wherein the second channel comprises one or more static pressure sensor openings along the sides of the pitot-static tube.
[0065] The static pressure may be considered to be a constant for certain applications, for example in motor vehicles, boats, or other applications with an approximately constant altitude. Therefore, in an alternative example, no static pressure sensor (e.g. static pressure sensor 22) or static pressure sensor opening (e.g. static pressure sensor opening 6) may be present in the pitot tube sensing apparatus.
[0066] The pressure sensor of the pitot tube sensing apparatus may be arranged to measure the dynamic pressure (i.e. the difference between the total pressure and the static pressure). For example, such pressure sensors may comprise a diaphragm between a total pressure chamber and a static pressure chamber, wherein the diaphragm position/deformation may be indicative of the dynamic pressure. In another example, the pressure sensor may be a manometer to provide a dynamic pressure measurement. Therefore, the system of the pitot tube sensing apparatus can be configured to determine a fluid speed based on an output of the pressure sensor, if the pressure sensor measures dynamic pressure and/or the static pressure is (or can be assumed to be) a known constant.
[0067] Although the pitot tube sensing apparatus has been described for use with air, it can also be used to measure the pressure in any fluid. For example, the fluid may be water when the pitot tube sensing apparatus 10 of Figure 2 is used on a boat.
[0068] The two electrodes of the capacitor of the pitot tube sensing apparatus may be positioned in the channel between the opening of the channel and the pressure sensor. The capacitor may extend along the full length of the channel or a partial length of the channel.
[0069] The pitot tube sensing apparatus may comprise one or more additional capacitors which may be applied adjacent to each other within the channel of the pitot tube and/or along each of the one or more drain holes of the pitot tube.
[0070] The capacitor 16 is shown in Figure 3 to be between the opening 5 and the one or more drain holes 30. In an alternative example, the capacitor may be positioned between the one or more drain holes and the pressure sensor.
[0071] The capacitor of the pitot tube sensing apparatus may not conform to the shape of the inner surface of the channel. The capacitor may instead be an alternative shape so long as it performs the function of detecting the presence or absence of a foreign object For example, the capacitor's two electrodes may be two parallel plates, such that the cross section of the inner surface of the channel is between the two electrodes [0072] In an alternative example, the cross section of the pitot tube may not be circular (a circular pitot tube cross section is shown in Figure 4). The pi tot tube of the pitot tube sensing apparatus may be any shape which allows a channel from an opening of the channel to a pressure sensor. For example, the pitot tube and/or the channel may have a substantially rectangular cross section shape. The capacitor may conform to the shape of the substantially rectangular cross section shape.
[0073] In an alternative example, the parameter indicative of a capacitance of a capacitor of the pitot tube sensing apparatus may not be voltage. For example, the parameter may be current, charge, or any combination of parameters (which may include voltage).
[0074] Where the word 'or' appears this is to be construed to mean 'and/or' such that items referred to are not necessarily mutually exclusive and may be used in any appropriate combination.
[0075] Although the invention has been described above with reference to one or more preferred embodiments, it will be appreciated that various changes or modifications may be made without departing from the scope of the invention as defined in the appended claims

Claims (20)

  1. CLAIMSI. A pitot tube sensing apparatus comprising: a pitot tube comprising a channel; a pressure sensor coupled to the channel; a capacitor comprising two electrodes on opposing sides of the channel; and a system configured to: measure a parameter indicative of a capacitance between the two electrodes; and determine the presence or absence of a foreign object within the channel based on the parameter.
  2. 2 The pitot tube sensing apparatus of claim 1, further comprising electrical shielding between the capacitor and the pitot tube.
  3. 3. The pitot tube sensing apparatus of any of claims 1 or 2, wherein the parameter comprises a voltage between the two electrodes.
  4. 4. The pitot tube sensing apparatus of any preceding claim, wherein the system is configured to measure the parameter by applying current across the capacitor.
  5. 5. The pitot tube sensing apparatus of any preceding claim, wherein the determination of the presence or absence of a foreign object is based on a comparison of the parameter to a detection threshold.
  6. 6. The pitot tube sensing apparatus of any preceding claim, wherein the system is further configured to calculate a rate of change in the parameter, wherein the determination of the presence or absence of a foreign object is based on a comparison of the rate of change in the parameter to a detection threshold.
  7. 7 The pitot tube sensing apparatus of any preceding claim, wherein the two electrodes conform to the shape of an inner surface of the channel.
  8. 8. The pitot tube sensing apparatus of any preceding claim, wherein the channel is in the shape of a cylinder, and each electrode is in the shape of a cylindrical arc.
  9. 9. The pitot tube sensing apparatus of any preceding claim, wherein the pitot tube sensing apparatus further comprises a trap, the capacitor is between an opening of the channel and the trap, and the trap is arranged to block foreign objects from reaching the pressure sensor.
  10. 10. The pitot tube sensing apparatus of any preceding claim, wherein the pitot tube sensing apparatus is further configured to generate an alert upon determining the presence of a foreign object within the channel.
  11. 11 The pitot tube sensing apparatus of any preceding claim, wherein the pitot tube sensing apparatus is configured to determine a fluid speed based on an output of the pressure sensor.
  12. 12. The pitot tube sensing apparatus of any preceding claim, wherein the electrodes are positioned in the channel between an opening of the channel and the pressure sensor.
  13. 13 The pi tot tube sensing apparatus of any preceding claim, wherein the pressure sensor is configured to measure a total pressure in the channel; the pitot tube sensing apparatus further comprises a static pressure sensor configured to measure a static pressure; and the pitot tube sensing apparatus is further configured to calculate a fluid speed based on a difference between the total pressure and the static pressure.
  14. 14. An aircraft comprising the pitot tube sensing apparatus of any preceding claim.
  15. 15. An aircraft according to claim 14, wherein the pitot tube sensing apparatus is configured to determine an air speed of the aircraft based on an output of the pressure sensor.
  16. 16. A method of determining the presence or absence of a foreign object within a pi tot tube sensing apparatus, wherein the pitot tube sensing apparatus comprises: a pitot tube comprising a channel with an opening; a pressure sensor coupled to the channel; and a capacitor comprising two electrodes on opposing sides of the channel, the method comprising: measuring a parameter indicative of a capacitance between the two electrodes; and determining the presence or absence of a foreign object within the channel based on the parameter.
  17. 17. The method of claim 16, wherein the parameter comprises a voltage between the two electrodes
  18. 18. The method of claim 16 or 17, wherein determining the presence or absence of a foreign object is based on a comparison of the parameter to a detection threshold.
  19. 19. The method of any of claims 16 to 18, further comprising calculating a rate of change in the parameter, wherein the determination of the presence or absence of a foreign object is based on a comparison of the rate of change in the parameter to a detection threshold.
  20. 20. The method of any of claims 16 to 19, further comprising generating an alert upon determining the presence of a foreign object within the channel
GB2211569.5A 2022-08-09 2022-08-09 A pitot tube sensing apparatus Pending GB2621347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2211569.5A GB2621347A (en) 2022-08-09 2022-08-09 A pitot tube sensing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2211569.5A GB2621347A (en) 2022-08-09 2022-08-09 A pitot tube sensing apparatus

Publications (2)

Publication Number Publication Date
GB202211569D0 GB202211569D0 (en) 2022-09-21
GB2621347A true GB2621347A (en) 2024-02-14

Family

ID=84546084

Family Applications (1)

Application Number Title Priority Date Filing Date
GB2211569.5A Pending GB2621347A (en) 2022-08-09 2022-08-09 A pitot tube sensing apparatus

Country Status (1)

Country Link
GB (1) GB2621347A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060334B1 (en) * 2010-09-03 2011-11-15 Philip Onni Jarvinen Aircraft pitot-static tube with ice detection
US20200361597A1 (en) * 2019-05-14 2020-11-19 Airbus Operations S.L. Aerodynamics improvement device for an aircraft and aircraft equipped with such device
EP3822642A1 (en) * 2019-11-18 2021-05-19 The Boeing Company Air data system for an aircraft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060334B1 (en) * 2010-09-03 2011-11-15 Philip Onni Jarvinen Aircraft pitot-static tube with ice detection
US20200361597A1 (en) * 2019-05-14 2020-11-19 Airbus Operations S.L. Aerodynamics improvement device for an aircraft and aircraft equipped with such device
EP3822642A1 (en) * 2019-11-18 2021-05-19 The Boeing Company Air data system for an aircraft

Also Published As

Publication number Publication date
GB202211569D0 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
US4766369A (en) Ice detector
US10422680B2 (en) Method for monitoring at least one media-specific property of a medium
EP2453245B1 (en) System and method for detecting blocked Pitot-Static Ports
CN108431594B (en) Detecting clogging in porous members
US9366555B2 (en) Air data system
US11385632B2 (en) Sensor fault detection and identification using residual failure pattern recognition
CA2672813A1 (en) Device and method for monitoring the particle contamination in flowing hydraulic fluids
KR20110017457A (en) Method and apparatus for volumetric gas in-line sensing
JP7324035B2 (en) Systems and methods for deriving airspeed from particle sensors
WO2015071170A1 (en) Vehicle having wade sensing display and system therefor
US6218948B1 (en) Bilge sentry
US9688107B2 (en) Tire pressure decrease detection apparatus and method, and computer readable medium therefor
EP4296689A1 (en) A pitot tube sensing apparatus
GB2506992A (en) Method for detecting malfunction of an ultrasound transducer
CN106556439B (en) Entrained flow detection diagnostics
GB2621347A (en) A pitot tube sensing apparatus
US20190178906A1 (en) System and method for pitot tube blockage detection
CN109683028A (en) A kind of electrostatic detection methods and device
US3147169A (en) Apparatus for determining thickness during chemical milling
US5623252A (en) Liquid level detector using audio frequencies
US20160054122A1 (en) Method for determining the layer thickness of a connecting layer between two packaging layers
US20200168429A1 (en) Collision avoidance for particle beam instruments
SE538227C2 (en) Capacitive sensor system
EP3822642B1 (en) Air data system for an aircraft
JP3571701B2 (en) Capacitive flow velocity detector using temperature fluctuation and capacitance flow detector using temperature fluctuation