GB2613766A - Lima 2.0 - Google Patents

Lima 2.0 Download PDF

Info

Publication number
GB2613766A
GB2613766A GB2113164.4A GB202113164A GB2613766A GB 2613766 A GB2613766 A GB 2613766A GB 202113164 A GB202113164 A GB 202113164A GB 2613766 A GB2613766 A GB 2613766A
Authority
GB
United Kingdom
Prior art keywords
breast
diaphragm
milk
air
nipple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB2113164.4A
Other versions
GB202113164D0 (en
Inventor
O'toole Jonathan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiaro Technology Ltd
Original Assignee
Chiaro Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiaro Technology Ltd filed Critical Chiaro Technology Ltd
Priority to GB2113164.4A priority Critical patent/GB2613766A/en
Publication of GB202113164D0 publication Critical patent/GB202113164D0/en
Publication of GB2613766A publication Critical patent/GB2613766A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • A61M1/062Pump accessories
    • A61M1/064Suction cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • A61M1/062Pump accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/06Milking pumps
    • A61M1/062Pump accessories
    • A61M1/067Pump accessories with means for hands-free operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/08Supports for equipment
    • A61M2209/088Supports for equipment on the body

Abstract

A breast pump system comprising a wearable milk collection hub connected via an air line to a combined external air pump and control unit. The hub comprises a breast shield 21 with a breast flange and a nipple tunnel, a flexible diaphragm 61 to prevent milk reaching the air pump, an outer shell 20 removably attachable to the shield to form a vessel for collecting milk, and a diaphragm cap 22, that may be removable, to secure over the diaphragm, form part of the front face of the shell, and provide a port connectable to the air line. The diaphragm cap may rotate to adjust position of the air port, may latch onto the outer shell with a single push action and comprise features that enable installation and removal with a single hand. A removable perimeter shield 62 may provide an air-tight seal between shield and shell.

Description

Intellectual Property Office Application No G132113164.4 RTM Date:7 April 2023 The following terms are registered trade marks and should be read as such wherever they occur in this document:
TRITAN
Intellectual Property Office is an operating name of the Patent Office www.gov.uk/ipo
WEARABLE BREAST PUMP SYSTEM
BACKGROUND OF THE INVENTION
1. Field of the Invention
The field of the invention relates to a wearable breast pump system.
2. Description of the Prior Art
A breast pump system is a mechanical or electro-mechanical device that extracts milk from the breasts of a lactating woman.
Most portable breast pump solutions that include a discreet design are not readily affordable for most parents. There is a need for a design of a wearable breast pump system with a sleek and discreet design as well as a lower price point.
A fully integrated wearable breast pump system is described in W02018229504A1. The wearable breast pump system includes a housing shaped to fit inside a bra. The housing includes an air-pump that drives a diaphragm to generate negative air pressure. The diaphragm is seated on a diaphragm holder that is positioned away from a side of a breast shield flange A compact and hands-free h.uman breast milk collection device that fits into a mother's existing nursing or standard brassiere is shown in the system of US20080262420A1. The hands-free collection device connects to an external regular pump via a vacuum hose that is also configured to apply a vacuum pressure to the internal volume of the collection device. The vacuum hose attaches to a stem located at a fixed position on the top exterior surface of the collection device. The position of the stern is chosen so that the pump \Nil I not suction breast milk into the external pump. Because it would be inconvenient and difficult to connect the vacuum hose to the stem located at the top of the device after the device has been placed on the breast., the vacuum hose has to be properly con. era -id to the stem before the milk coUectjon device is being placed at breast.
A breast milk col eeti on device is also shown in the system of US20180008758A1. The collection device attaches to a vacuum tube via an opening also located at a fixed position on the rim of the exterior surface of the collection device. The opening communicates with an interior chamber including an inflatable/deflatable flexible barrier that allows vacuum pressure to be applied to a breast. The flexible barrier housing that encloses the flexible barrier has an oval cone like shape and is located at the top of the collection device. Disadvantageously, the position of the flexible barrier obstructs the line of sight to the interior of the collection device and to the nipple.
Wearable hands free breast pumps have entered the market, such as the Freemie cups system. The Freemie cup includes a flexible barrier that sits on top of the cup, thereby obstructing the view of the interior of the cup and of the nipple. Further, the cup is also made of a fairly opaque material, making it difficult to have a clear view of the interior of the device and of the nipple and to achieve a correct nipple alignment.
In view of the above, there is a need for an improved way to provide an easy and flexible connection between a suction tube and a wearable milk collection device. There is also a need to provide an unobstructed view of the interior chamber of the wearable milk collection device, in order to achieve a correct nipple alignment and to ensure the system is properly operating, such that milk is entering the interior of the device.
SUMMARY OF THE INVENTION
The invention is a breast pump system comprising at least one wearable milk collection hub connected via an air line to a combined external air pump and control unit. The milk collection hub(s) each comprise: a breast shield made up of a breast flange and a nipple tunnel; a flexible diaphragm that is configured to prevent milk from reaching the external air pump; an outer shell that is removably attachable to the breast shield, such that the breast shield and outer shell, when attached, form a vessel for collecting milk, and the front face of the outer shell includes a curved portion; a diaphragm cap that is configured to be secured over the diaphragm, and forms part of the front face or forward facing part of the outer shell, and includes a port connected to the air line.
This arrangement enables the air line to be connected to the front face of the outer shell of the milk collection hub; prior art devices position the diaphragm and air line on the top of the milk collection hub, which obscures the users view down into device, which in turn makes correct nipple positioning difficult. By having a diaphragm cap that forms part of the front face of the outer shell, the user's view down into the device is not obscured by a diaphragm that sits over the nipple; correct nipple positioning is easier to achieve.
In one implementation, the diaphragm cap can be rotated against the outer shell to adjust the position of the air port and hence the position and direction of the port and the air line connected to the port; this enables the user to readily adjust the position of the air line so that it lies comfortably under a bra or other clothing. The diaphragm cap may also be removable from the outer shell; then, the user can place the hub on the breast without the diaphragm cap, and without the inconvenience of an air line connected to the air port. Once a proper nipple alignment is achieved, the diaphragm cap and connected air line can then easily be attached back onto the outer shell of the milk collection hub.
BRIEF DESCRIPTION OF THE FIGURES
Aspects of the invention will now be described, by way of example(s), with reference to the following Figures, which each show features of a wearable breast pump system that implements the invention: Figure lA shows a wearable breast pump system, made up of a pair of milk collection hubs, an air line and a separate combined control and air pump unit that is external to the milk collection hubs.
Figure 1B shows the wearable breast pump system with the milk collection hubs connected via the air line to the combined control and air pump unit.
Figure 2 shows a perspective front view of a milk collection hub Figure 3 shows a perspective rear view of a milk collection hub Figure 4 shows a back view of the milk collection hub Figure 5 shows a perspective view of the milk collection hub without the outer shell and without the diaphragm.
Figure 6 shows an exploded view of the milk collection hub.
Figure 7 shows the diaphragm Figure 8 shows a cross section of a milk collection hub in a relaxed state.
Figure 9 shows a cross section of a milk collection hub showing the diaphragm under maximum negative pressure.
Figure 10 shows a perspective view of the removable diaphragm cap without the air tube.
Figure 11 shows a front view of the removable diaphragm cap connected to the air tube Figure 12 shows a perspective view of the removable diaphragm cap including the rigid pressure part.
Figure 13A shows other cross section views of a milk collection hub in a relaxed state, at mid point and under maximum negative pressure Figure 13B shows other cross section views of a milk collection hub including the milk port in a relaxed state, at mid point and under maximum negative pressure.
Figure 14 shows a perspective view of the outer shell, without the removable diaphragm cap.
Figure 15 shows a side view of a milk collection hub.
Figure 16 shows a top down view of the control and air pump unit for the breast pump system.
Figure 17 shows a top down view of the control and air pump unit, with the upper case of the unit removed.
Figure 18 shows an exploded view of the control and air pump unit. Figure 19 shows the components of the pump unit subsystem.
Figure 20 shows a cross section of the airflow block inside the control unit. Figure 21 shows a cross section of the airflow block inside the control unit.
Figure 22 shows a cross section of the airflow block inside the control unit.
Figure 23 shows the sound valve.
Figure 24 shows a plot of the pumping cycle.
Figure 25 shows schematics of the pump unit subsystem illustrating the pumping cycle Figure 26 shows cross-sections of the control unit including the pump unit subsystem illustrating the pumping cycle.
Figure 27 shows a cross section of the control unit including pump unit subsystem. Figure 28 shows a table listing different examples of vacuum levels.
Figure 29 shows diagrams of a control unit including a multifunction mount.
Figure 30 shows pictures of a control unit including accessories.
Figure 31 shows diagrams of a control unit including a multifunction mount. Figure 32 shows the tube connection. Index
Air line leading to milk collection hub 1 Air line leading to milk collection hub 2 Air line leading from combined control and air pump unit 3 Milk collection hub 10 Combined control and air pump unit 11 Air tube connection component 12 User interface on the control and air pump unit 13 Air port or hole in the control and air pump unit 14 Air port or hole in the diaphragm cap 15 Outer shell of a milk collection hub 20 Breast shield 21 Diaphragm cap 22 Cover to milk opening 23 Milk quantity scale on the shell 24 Finger grip features 30 Nipple tunnel part of the breast shield 31 Flange of the breast shield 32 Guide lines on the breast shield 33 Milk hole in the nipple tunnel 41 Milk non-return valve 51 Second milk hole 52 Diaphragm housing 53 Diaphragm housing, annular rear wall 54 Diaphragm housing, cylindrical outer wall 55 Diaphragm housing, cylindrical inner wall 56 Diaphragm housing, front wall 57 Diaphragm 61 Seal between breast shield and outer shell 62 Diaphragm, annular rear wall 63 Diaphragm, cylindrical outer wall 64 Diaphragm, cylindrical inner wall 65 Diaphragm, front wall 66 Central axis through the nipple tunnel 81 Pressure chamber in a relaxed state 82 Pressure chamber under maximum negative pressure 83 Pair of chambers in the diaphragm cap 84 Illustration of end-user breast area 85 Rigid pressure chamber part 91 Ball bearings 100 Cross section in relaxed state 101 Cross section at mid point 102 Cross section at maximum pressure 103 Milk pouring opening 111 Flat portion of the diaphragm cap 120 Dual function pump/pause button 130 Power on/off button 131 Button to switch the pumping profile 132 Pressure decrease button 133 Pressure increase button 134 Pressure level visual indicator LEDs 135 Pumping profile visual indicator LEDs Battery status LED 137 USB-C charging socket 138 Chassis 140 Upper case 151 Lower case 152 PCB 153 Air pump unit subsystem 154 Rechargeable battery 155 Pump unit 161 Solenoid air bleed valve 162 Sound attenuating motor mount 163 Airflow block 164 Solenoid foam cap 165 Sound valve 166 Sound valve cap 167 Solenoid valve inlet 171 Solenoid valve outlet 172 Seal member 173 Motor exhaust 181 Tube wrap accessory 241 Battery accessory 242 Milk drawn from nipple into chamber 251 Removable waistband clip 261 Tube splitter 261 Bung or stopper in the tube splitter 262 0-ring 290 Control unit and o-ring in portrait mode 291 Control unit and o-ring in landscape mode 292 First phase of pumping cycle (pumping time) Second phase of pumping cycle (bleed time)
DETAILED DESCRIPTION
An implementation of the invention is a breast pump system for extracting and collecting breast milk. The system comprises a pair of milk collection hubs 10, a combined control and air pump unit 11, and an air tube connection component 12, as shown in Figure IA In normal use, as shown in Figure 1B, air tubes 1, 2 connect each milk collection hub 10 to the air tube connection component 12; the air tube connection component 12 connects air tubes 1, 2 to a single air tube 3, that in turn leads to the control and air pump unit 11.
The milk collection hubs may also be connected to any external control and air pump unit, including any external regular electric or manual control and air pump unit.
An intended use case involves the user placing either one or two milk collection hubs 10 onto their breast(s), connecting one or both collection hubs to the combined control and air pump unit 11 via the air tubes 1, 2 and 3 and the tube connection component 12.
The user controls the device using a user interface 13 located on the control unit 11. Starting the breast pump system, via the user interface 13, activates an air suction pump within the control and air pump unit 11 (also referred as control unit). An air port or hole 14 on the control and air pump unit 11 connects to a tube 3 which splits via a tube splitter in the air tube connection component 12 into two tubes 1, 2, which then deliver suction to the milk collection hubs 10 via air ports or holes 15 in each milk collection hub 10. When the pump in unit 11 is activated, negative air pressure is created between the control unit 11 and the milk collection hub(s) 10, thereby applying negative pressure to the nipple, drawing milk from the breast, and collecting it inside the milk collection hubs 10.
The breast pump system can be operated using either one (single pumping) or two (double pumping) milk collection hubs 10. The breast pump system can generate pressures in the range of 150 to 350 mmHg depending on the level of stimulation selected by the user.
Figures 2 and 3 show perspective views of a milk collection hub. The milk collection hubs 10 are both identical and are configured to be discreet and to be comfortably held inside a bra, with the outer shell 20 having a curved shape that is configured to contact the inner surface of the bra. The outer shell 20 fits or latches onto a breast shield 21 that forms the rear surface of the hub 10. The breast shield 21 is made up of a breast flange 32 and a nipple tunnel 31; the interior volume between the outer shell 20 and the breast shield 21 defines a chamber in which milk is collected. The breast flange 32 contacts the user's breasts. The outer shell 20 is directly removable from the breast shield in normal use or normal dis-assembly to enable cleaning of the interior volume in which milk is collected.
The outer shell 20 also includes a removable diaphragm cap 22 that covers and seals a diaphragm located inside the milk collection hub. The diaphragm cap 22 is located at the front of the outer shell 20, and forms a central region on the front surface of the outer shell 20. The diaphragm cap 22 includes the air port or hole 15 which provides the air connection to the control unit 11 via a tube. Because the diaphragm cap 22 is positioned at the front of the outer shell 20, it does not block the user's view down through the transparent outer shell 20 into the interior of the milk collection hub; it hence enables the user to see whether the collection hub 10 is correctly positioned on a breast and whether milk is being successfully expressed into the collection hub 10.
The diaphragm cap 22 is easily removable with one hand from the outer shell 20 of the hub in normal use or normal disassembly. Because the air line 1, 2 is connected to the air hole 15 in the diaphragm cap 22, removing the diaphragm cap 22 from the outer shell 20 provides a robust, easy, quick release of the suction connection between the hub 10 and the control unit 11, and, similarly, a robust, easy, quick installation of the suction connection between the hub 10 and the control unit 11 Generally, air lines 1, 2 remain fixed to their respective diaphragm cap 22, so the user does not have to worry about the potentially difficult process of attaching the air lines to the air port 15 in each collection hub 10 The removable diaphragm cap 22 can be rotated against outer shell 20 to adjust the position of the air port on the outer shell and hence the position and direction of the air lines 1, 2; this enables the user to readily adjust the position of the air lines 1, 2 so that they lie comfortably under a bra or other clothing. The user can place the hub 10 on the breast without the diaphragm cap and without the inconvenience of an air tube 1, 2 connected to the air port 15 Once a proper nipple alignment is achieved, the diaphragm cap 22 and connected tube can easily be attached on the hub 10.
In Figure 3, the breast shield 21 includes a nipple tunnel 31 shaped to receive a nipple and a flange 32. Preferably, the breast shield 21 including the flange 32 and the nipple tunnel 31 is a single piece item made of a single moulding with a single smooth internal surface. There are no joins along the nipple tunnel; joins may aggravate the delicate nipple tissue as the nipple extends and contracts during pumping The breast shield 21 may be configured to slide onto the outer shell using a single push action. The breast shield 21 and outer shell 20 may also attach using magnets.
Preferably, the breast shield 21, and the outer shell 20 and the diaphragm cap 22 are all substantially rigid and optically clear or substantially transparent, e.g. in order to provide an unobstructed view of the nipple and the inside of the hub 10. The breast shield 21, the diaphragm cap 22 and the outer shell 20 may for example all be made substantially of clear, rigid, dishwasher-safe material such as polypropylene, or a polycarbonate, or a co-polyester like TritanTm, or include sections of those materials sufficient to enable the user to clearly see inside the milk collection hub O. Being dishwasher-safe is important as it enables these components to all be easily cleaned in a normal dish-washing cycle. This also allows different components of the wearable breast pump system to be easily washed and/or sterilised. This rigidity and transparency helps achieve correct nipple alignment when placing the entire milk collection hub 10 onto the breast, as well as to enable the user to readily check whether the alignment is maintained while pumping. Milk collection hubs made of very flexible silicone can be harder to correctly position on breast. The nipple tunnel is also clearly visible to the user through the substantially transparent walls of the hub 10, further ensuring that the spacing between the nipple and the side walls of the nipple tunnel 31 is correctly maintained while pumping.
During a pumping session, the user is also able to view the inside of the milk collection hub 10 and is able to ensure milk is being expressed inside the hub 10 and have an indication of the level of collected milk inside the hub. A scale 24 located on the outer shell 20 indicates the volume of milk inside the hub 10.
The breast shield 21 may also include guide lines 33 running parallel to the sides of the breast shield in order to help with nipple alignment; these guide lines 33 are designed to be positioned generally horizontally in use, and to be easily seen by the user when looking down at the breast shield 21 when positioned on breast, the lines enable the user to correctly position the breast shield 21 so that the nipple is positioned generally along the centre-line leading through the nipple tunnel (e.g. central axis 81 shown in Figure 8) The outer shell also includes a milk pouring opening which can be closed using a removable part 23 to cover the milk pouring opening during pumping and general handling.
The breast shield 21 and/or outer shell 20 may be made of a substantially rigid polypropylene material, or a polycarbonate or a co-polyester material such as the Tritan material that is optically clear and dishwasher safe. The material may be particularly chosen as a balance of cost and acceptable achievable transparency.
Figure 4 shows a back view of the milk collection hub. As shown, the nipple tunnel 31 includes a milk hole 41 through which expressed milk flows onto the milk collection hub. Guide lines 33 are positioned above the central axis of the nipple tunnel 31 and are not aligned with that central axis; this compensates for the slight parallax arising when viewing the guide lines 33 and nipple from above.
Figure 5 shows a perspective view of the one-piece, rigid breast shield 21 but without the outer shell and without the diaphragm. Breast shield 21 includes an annular diaphragm housing 53; diaphragm housing 53 has an outer, approximately cylindrical side wall 55 that is generally parallel to the nipple tunnel 31, and a generally concentric, approximately cylindrical inner side wall 56 that forms the outer wall of the nipple tunnel 3L Diaphragm housing 53 has a front wall 57 that forms the end of the nipple tunnel; it also has an annular rear wall 54 that joins the concentric inner wall 56 and the outer wall 55.
Figure 8 provides a cross-section showing these features. A flexible membrane 61 (see Figures 6-9 and Figures 13A and 13B) sits flush against these walls of the annular diaphragm housing 53 in the relaxed state (i.e. when no negative air pressure is applied) and hence has a similar shape, with a generally cylindrical outer membrane wall 64 that sits flush against housing cylindrical outer wall 55; a concentric inner membrane wall that sits flush against housing cylindrical inner wall 56; a front wall 66 that sits over the end of the housing front wall 57 that forms the end of the nipple tunnel; and an annular rear wall 63 that sits flush against the diaphragm housing rear wall 54.
Diaphragm cap 22 sits over the flexible diaphragm or membrane 61 and a negative pressure chamber is hence formed between diaphragm cap 22 and one side of the flexible diaphragm 61. The diaphragm 61 hence moves within an air-pump chamber formed on one side by the diaphragm housing 53 and on the other side by the diaphragm cap 22; flexible diaphragm 61 is pulled forwards, along the direction of central axis 81, moving through this negative pressure chamber when suction is applied. As the flexible diaphragm 61 is pulled forwards, it creates a low air pressure region on the other side of the flexible diaphragm 61, i.e. the side between the flexible diaphragm 61 and the diaphragm housing 53. This in turn reduces the air pressure inside the nipple tunnel 31, since milk hole 41 in the nipple tunnel 31 ensures air pressure equivalence between the inside of the nipple tunnel 31 and the inside of the diaphragm housing 53; the pressure reduction draws the nipple forward and causes milk to be expressed from the nipple. Milk passes through the milk hole 41 of the nipple tunnel 31, and then passes through a second milk hole or opening 52 located on the diaphragm housing 53, and then flows inside the collection hub via a non-return valve 51 that is mounted on the second milk hole or opening 52. The non-return valve enables milk to pass into the milk container in one direction. Note that the diaphragm housing 53, and hence the diaphragm 61, is placed towards the end of the nipple tunnel 31, away from the breast shield 21. Diaphragm 61 in fact extends over the end of nipple tunnel 31. This structure has the benefit of giving the user a clearer view down through the nipple tunnel 31 when positioning the nipple inside the nipple tunnel 31: if the diaphragm housing 53 were closer to the breast shield 21, then that view would be blocked. The downside however is that the milk collection hub 10 is not compact in the direction of the nipple tunnel and is shaped to fit inside an inner portion of a bra.
Preferably, the non-return valve is removable for easy cleaning When the outer shell 20 is fitted on the breast shield 21, the collection hub forms a vessel in which milk is collected after it passes through the non-return valve with a capacity to collect approximately 5 fluid ounces (148m1) The hub also includes a vent hole located for example at the top of the outer shell such that atmospheric pressure is maintained inside the vessel, even during negative pressure cycles.
Figure 6 shows an exploded view of the milk collection hub 10. In this example, the wearable milk collection hub 10 comprises the following user-removable parts: the breast shield 21, the outer shell 20, the diaphragm 61 and the diaphragm cap 22. The diaphragm cap 22 fits over with an air-tight seal to the flexible diaphragm 61. An air tight seal between the breast shield 21 and outer shell 20 is provided by a removable seal member 62.
The flexible diaphragm 61 may either be fully removable from the hub 10 or may form an integral part of the outer shell 20. When it is removable, it push-fits into the outer shell 20, forming an air and liquid tight seal. When it is an integral part of the outer shell, the flexible diaphragm 61 is typically laser welded at its single outer, circular edge, to a single, circular edge in the outer shell 20.
As noted above, the breast shield 21 includes a diaphragm housing portion 53, in which the flexible diaphragm 61, can move in and out, when assembled. The diaphragm housing portion 53 includes an air hole that transfers negative air pressure to the nipple tunnel 31; this may be the milk hole 41 in the nipple tunnel 31 or another hole (not shown). The diaphragm 61 flexes when negative air pressure is applied to it by the external air pump unit subsystem located in the control unit and transfers negative air-pressure to pull the breast and/or nipple against the breast shield and apply suction to the nipple, to cause milk to be expressed.
Figure 7 shows the diaphragm 61 in side view and also perspective view. The diaphragm 61 is configured to prevent milk from reaching the pump unit housed inside the control unit 11.
The overall dimensions of the diaphragm are about 77.3 mm in diameter and 24 mm in height (ie depth along the long axis 81 of the nipple tunnel). The volume of air displaced 5 by the diaphragm when under maximum suction is approximately 17550mm3. Typical variants may have dimensions that are ± 25% of these dimensions.
The shape of the diaphragm 61 is not a substantially flat or ridged, convex membrane, as for example found in the Elvie Pump. Instead, it has an outer, approximately cylindrical side wall 64 that is generally parallel to the nipple tunnel 31, and an inner, approximately cylindrical side wall 65 that is also is generally parallel to the nipple tunnel 31. Diaphragm 61 has a front wall 66 that caps the inner side wall 65 and lies over the end of the nipple tunnel 31. It also has an annular rear wall 63 that joins the outer and the inner sides walls 64, 65 Figure 8 is a cross section of a breast 85 inserted inside a milk collection hub in a relaxed state, showing the diaphragm 61 in relation to the axis of the nipple tunnel 81, milk port 41 and the pressure chamber 82. The flexible diaphragm 61 includes outer side wall 64 and inner side wall 65, which each substantially run parallel to the center axis of the nipple tunnel 81, and some portions, which substantially run perpendicular to the center axis of the nipple tunnel 81. As illustrated, the diaphragm 61 includes inner annular wall 63 and end cap wall 66 which are perpendicular to the centre axis 81. Much of the flexible diaphragm 61 lies over milk port 41 and also to the right (i.e. away from the breast) of the milk port 41. Milk collection hub 10 is therefore not designed to be compact in the direction of the axis of the nipple tunnel 81. Further, inside the nipple tunnel, the entire volume or space to the right of the nipple and breast is subject to negative pressure; the negative pressure zone hence starts at the skin/air boundary and so flexible diaphragm 61 is entirely to the right (i.e. away from the breast) of the negative pressure zone that is adjacent to the breast. Again, this leads to milk collection hub 10 not being compact in the direction of the axis of the nipple tunnel 81. But that compromise is necessary in order to give the user a clear view down through the clear material of the breast shield 21 nipple and outer shell 20 so that the nipple can be correctly positioned within nipple tunnel 31: correct positioning is very important for comfort and also effective milk expression.
Figure 9 is a cross section of the breast 85 inserted inside a milk collection hub showing the diaphragm 61 under maximum negative pressure. During a negative air pressure phase the flexible diaphragm 61 flexes and moves towards the right; even the rear wall 63 moves past the milk port 41. The central section 66 of the diaphragm 61 is at all times located substantially to the right of (i.e. extending beyond) the end of the nipple tunnel 31. During suction, the central section 66 also moves forward into a pair of chambers 84 in the diaphragm cap 22; this additional movement of the diaphragm 61 contributes significantly to the suction achieved inside the nipple tunnel, and hence the milk pumping efficacy.
The diaphragm 61 and associated diaphragm cap 22 are also positioned at the front of the hub 10 so as not to obstruct the mother's view of the nipple when placing the collection hub 10 onto her breast Figure 10 shows perspective views of the removable diaphragm cap 22. The diaphragm cap 22 includes a pair of hollow or recessed finger grip features 30, making it easily handled using only two fingers. The diaphragm cap 22 is easily rotated so as to adjust the position of the air port 15 and hence the position of air tube 1, 2 (not shown) that would be connected to the air port 15.
Figure 11 shows a front view of the removable diaphragm cap 22 connected to an air tube 1. The air tube 1 may pass through a passage way located at the center of the diaphragm cap 22, providing an additional protection for the air tube 1 so that it is not, in use, easily pulled out, and so that the direction of the tube 1 conforms with the surface of the inner bra. The diaphragm cap 22 may also be configured to attach to the outer shell 20 by means of a latch system. The diaphragm cap 22 may latch into the outside shell when spring plungers, such as ball bearings 100 in the diaphragm cap, locate into small indents in the outer shell 20. An audible and/or haptic feedback may confirm that the removable diaphragm cap 22 and air tube 1 are properly assembled.
Figure 12 shows a side view of the removable diaphragm cap 22 including an additional rigid part 91. The additional part 91 is removable from the diaphragm cap 22 and is also shown in isolation. Alternatively, the additional part 91 may be an integral part of the diaphragm cap 22. Additional part 91 reduces the volume of the pump chamber and hence leads to an improved pumping efficiency.
Figure 13A shows cross sections of a breast 85 inserted in the milk collection hub 10 including the additional rigid part 91 located in the pressure chamber. Figure 138 shows similar cross sections of the milk collection hub, but without the nipple. Note that the nipple sizing is approximate and that there are considerable variations in nipple size and in how nipples extend when under suction. Note also that these device cross sections are just one example and commercially available devices may differ.
Diaphragm 61 is positioned over the end of nipple tunnel 31 and extends beyond the milk port 41 in the direction of axis 81 for the reasons given earlier, namely to provide a clear view of the nipple in the clear nipple tunnel 31. Cross sections illustrate the diaphragm 61 movements from a relaxed state 101, to a mid-point 102 and finally under maximum suction 103. The diaphragm 61 is shown in a relaxed state, in relation to the axis of the nipple tunnel 81, milk port 41 and the pressure chamber. The rigid pressure chamber part 91 reduces the volume of air inside the pressure chamber by limiting the movement of the diaphragm 61 under negative pressure, for example by blocking the pair of chambers 84 in the diaphragm cap 22. The central section 66 of the diaphragm 61 is at all times located substantially to the right of (i.e. extending beyond) the end of the nipple tunnel 31. When suction is applied, the member 61 moves forward along the direction of the central axis 81 of the wearable hub through the negative pressure chamber, as shown in the mid-point illustration 102. The diaphragm 61 becomes flush with the rear surface of the rigid pressure chamber part 91 when it is fully displaced under maximum negative pressure.
In this configuration, by minimizing the volume of air in the pressure chamber, a faster response time and faster cycle time is achieved for single and double pumping, as well as greater peak negative pressure. In one implementation, using single pumping, the minimum pressure is 50mmHg at cycle time of 75 cycles/min, and the maximum pressure is 350mmHg at cycle time 30 cycles/min. Using double pumping, the minimum pressure is 30mmHg at cycle time of 75 cycles/min and the maximum pressure is 280mmHg at cycle time 30 cycles/min.
Figure 14 shows a perspective view of the outer shell 20 including the milk pouring opening 111 Figure 15 shows a side view of a milk collection hub. The overall width dimension of the milk collection hub 10 along the central axis of the nipple tunnel is about 5.7cm; it is not designed to be particularly thin or compact in the direction of the axial arrow and has a width dimension that is similar or greater than earlier breast collection hubs, such as the Playtex EmbraceTm. The milk collection hub 10 includes a flat portion 120 located on the diaphragm cap 22, so that the entire milk collection hub 10 can rest on a flat surface with the breast shield 21 uppermost Alternatively, the milk collection hub 10 may also include a flat portion on the base of the outer shell 20 such that the entire milk collection hub 10 can rest on a flat surface with the milk opening 111 uppermost.
Control unit The control unit 11 is configured to generate negative air pressure for the breast pump system. The control unit 11 has a discreet form and is shaped to comfortably fit in the palm of the hand and be readily gripped by a single hand The control unit 11 is shaped to fit inside a pocket (or even a bra). Preferably, the control unit is less than 120mm in length, less than 70mm in width and less than 45mm in height. Preferably, the control unit is less than 0.2kg.
A user interface 13, provided on the control unit 11, may include buttons, haptic feedback, sliders, any form of display, lights, or any other componentry necessary to control and indicate the use of the breast pump system. The user interface is configured to be intuitive and easy to use.
A particular example of the user interface 13 is provided in Figure 16 showing the top view of the control unit 11. A power on/off button 131 powers on or off the breast pump system. One button 132 switches the pumping profile, such as between stimulation or expression modes. The buttons 133 and 134 adjust the pressure generated by the pump and hence the vacuum pressure applied to the user's breast(s). A dual function pump/pause button 130 is also provided for the user to intermpt the pumping process without turning the device off.
A visual indicator includes a series of LEDs 135 that change appearance, with more LEDs being illuminated, as the pressure generated by the pump increases. Another visual indicator includes an LED 136 that changes appearance when the pumping profile changes. For example, one color indicates stimulation and another color indicates expression. As another example, the LED is turned off to indicate stimulation and is on to indicate expression. Another visual indicator includes an LED 137 that indicates the battery status. For example, the color red indicates low battery; orange indicates that the battery is charging; while green indicates when the battery is fully charged.
The battery is a rechargeable battery which can be charged via USB. Hence the control unit includes a USB charging socket 138 for transferring power to a power charging circuit housed inside the control unit.
The information provided through the user interface may also be supplemented by or alternatively conveyed solely through haptic feedback. The user interface may also take the form of a touch screen.
Figure 17 shows the control unit with the upper case removed. The visual indicators 135 136 and 137 including LEDs are mounted or attached on the chassis 140.
Figure 18 shows an exploded view of the control unit 11 with some of the key internal elements. The outside surface of the control unit is made of an upper case 151 and a lower case 152, which when assembled together are adapted to house, hold and protect the internal components of the control unit 11.
The control unit 11 houses an air pump unit subsystem 154 for generating a negative pressure in the milk collection hub(s), as well as a battery 155 and control electronics on PCB 153. The chassis 140 holds in place the main components such as the air pump unit 154, the battery 155 and the PCB 153. The chassis also includes the actuators between the user interface and the PCB switches The breast pump system has been configured to deliver quiet operation in normal use In particular, the control unit has been configured to both reduce motor vibration and attenuate sound from the pump unit subsystem 154.
The components of the pump unit subsystem 154 are shown in Figure 19. A pump unit 161, including a pump driven from a motor, is configured to generate negative air pressure. The pump unit 161 is connected to a bleed valve, such as a solenoid valve 162 that is configured to reset the system to ambient pressure when the motor stops.
Reduction of motor vibration and attenuation of sound The breast pump system is designed to be more discreet compared to available solutions with respect to volume and sharpness of noise. This is enabled by one or more of the following: reducing the sound generated by the pump unit 161; soundproofing the control unit 11; reducing the power of the pump unit 161, reducing the bleed sound by slowing down the airflow speed during rapid return to ambient air pressure after each pumping cycle, and absorbing the vibration of the pump motor in the pump unit subsystem 154.
The motor vibrations are reduced by holding the pump unit 161 in place between two silicone parts: a sound attenuating motor mount 163 and an airflow block 164. The sound attenuating motor mount 163 holds the back of the pump motor and absorbs part of the vibration of the pump motor. The airflow block 164 includes an air port or hole for routing the airflow from the pump unit 161 to the tube connector 14 and also absorbs part of the vibration of the pump unit. By using the two silicone parts, the vibration transmitted to the hard plastic case 151, 152 is greatly reduced and hence the unit is significantly quieter than other pumping units; a major advantage when discretion is sought, and to reduce disturbance to baby.
Both the sound attenuating motor mount 163 and the airflow block 164 are one-piece items made of either compression-moulded or ISR moulded silicone.
Figures 20 to 22 provide cross sections of the airflow block that illustrates the air paths inside the airflow block. The airflow block 164 is a multifunctional block that: * routes or directs the airflow from the tube connector 14 or inlet to the pump unit 161 (see Figure 20) * directs the air from the motor exhaust 181 to the atmosphere through a simple straight hollow tube with an exit path at one end (see Figure 21).
* provides the mounting for the solenoid valve inlet 171 and outlet 172 (see Figures 20 and 22).
* provides an isolation barrier for motor vibrations.
The airflow block 164 therefore is configured to both attenuate sound and to reduce motor vibration.
A number of components may be used to further reduce the sound generated by the pump unit subsystem including, but not limited to: * A solenoid foam cap 165 to reduce bleed flow as well as bleed sound.
* A sound valve 166 (as shown also in Figure 23) located in the lower portion of the case 152. The sound valve 166 allows the internal pressure of the control unit 11 to remain at ambient pressure without high levels of sound escaping from the control unit 1 L A sound valve cap 167 is also used to protect the sound valve 166 from the external environment.
* Sealing the control unit 11 so as to further attenuate sound. For example, a seal member 173 (see Figure 23) is included in between the upper part 151 and lower part 152 of the case, around the periphery of the control unit 11, hence allowing no air to escape from the control unit II, to reduce the pump unit 161 sounds from travelling outside the control unit 11. Optionally, the airflow block 164 may also be integrated with a portion of the seal member 173.
* Mufflers or silencers can also be used reduce the airborne noise emitted from air inlets and/or exhausts. One silencer can be connected to the solenoid 162 and another silencer can be connected to the pump motor.
The sound valve 166 located on the lower part 152 of the case is shown in Figures 19 and 23. The sound valve 166 is a silicone part configured to deform under pressure.
Hence it allows the air to pass in and out of the control unit 11, whilst significantly attenuating the motor and pump noise from travelling out of the control unit 11. The sound valve 166 also ensures that the inside of the control unit 11 remains at ambient pressure and that the pump unit 161 is working in the right conditions The sound valve may include a small cross section cut The pumping cycle is now described in Figures 24 to 26.
Once the system is activated, a pumping cycle begins: the air-pressure pump turns on and creates negative air pressure during a first phase of the pumping cycle, referred to as the pumping time (P). When negative air pressure is applied to the milk collection hubs 10, the flexible diaphragm 61 flexes and negative air pressure is conveyed to the inside of the nipple tunnel 31, to pull the breast and/or nipple, thus drawing milk 251 from the nipple. During this first phase of the pumping cycle (P), the air-pressure pump 161 is configured to be on for a pre-defined amount of time in order to provide a target negative air pressure. During this first phase, the solenoid valve 162 is configured to be turned off After the target negative air pressure has been reached, the air-pressure pump 161 turns off and air is bled into the system via the solenoid valve 162 during the second phase of the pumping cycle referred to as bleed time (B). At the end of the bleed time, the system is therefore reset to ambient pressure.
During this second phase of the pumping cycle, the solenoid valve 162 opens to reset the pressure in the milk collection hubs 10 to ambient, which causes a rush of air into the solenoid valve 162 and generates a sound, such as a sharp, high frequency sound.
As discussed above, using a solenoid foam cap 165, as shown in Figure 27, reduces the rush of air entering the solenoid valve 162 and therefore reduces the overall sound generated by the solenoid valve 162. The solenoid foam cap 165 includes one or more small openings or holes that are configured to reduce and control air speed when entering the solenoid valve 162. The solenoid foam cap 165 may be a one-piece item made of plastic.
The pumping cycle may be programmed to follow different modes, such as a stimulation mode and an expression mode, by controlling the pumping time and the bleed time The pumping cycle and/or modes may also be programmed to reach different vacuum levels.
Stimulation mode is configured to encourage milk flow and expression mode is configured to maximize pumping efficiency. Each mode contains a number of different vacuum levels, such as 10 different vacuum levels, which can be selected via the user interface on the control unit.
Figure 28 lists an example of 10 different vacuum levels for stimulation and expression modes and for single and double pumping. This is one example and commercially available devices may differ. Adjusting the power delivered to the pump motor also reduces the sound generated by the system.
Hence a desired vacuum level and sound for a particular mode may be achieved by controlling the time of both phases of the pumping cycle and the power delivered to the pump motor.
The perimeter of the control unit has a complete seal 173 (see Figure 23), dramatically reducing the airborne noise leaving the unit. This seal creates a significantly quieter product for the user.
Overall, in operation, the noise level is less than 50dB and preferably less than 45dB.
A number of removable accessories may be used that attach to the control unit 11 to improve the user experience. These may include for example: * a removable, auxiliary battery pack for increasing the length of time a user can pump for between charges.
* a tube wrap device that clips to the back of the control unit, allowing the user to neatly store the tubes by wrapping them. This may also allow the user to customise the length of their tubes during use.
* a belt clip that allows the user to attach the control unit to their clothing, wearing it on their waistline or elsewhere.
* a lanyard that clips to the control unit, allowing the user to wear the control unit by hanging it around their neck.
The attachment method for accessories may involve an 0-ring style loop that stretches over the control unit in multiple positions, allowing a control unit to be mounted in either portrait or landscape orientation.
Accessories for the control unit The control unit may also include a number of easily removable accessories Figure 29 shows diagrams of a control unit 11 including a multifunction mount such as an 0-ring 290 The multifunction mount enables the control unit 11 to be easily held by the user's fingers in different modes, such as portrait 291 or landscape mode 292.
Figure 30 shows pictures of the control unit 11 including a tube wrap accessory 241 located under the bottom case of the control unit 11, and of the control unit including a battery accessory 242 located under the bottom case of the control unit 11, such as a battery pack Figure 31 shows a picture of a control unit]] including an o-ring 290 mount extending around a periphery of the control unit 11. The mount including a removable waistband clip 261 enabling the control unit to be, for example, clipped to a belt or trousers.
Tube connection Figure 32 shows the tube connection 12 including the tube splitter 261. The tube splitter 12 in effect splits the air line 3 that comes from the combined control and air pump unit 11 into two separate air lines 1, 2 that attach to the two milk collection hubs 10. Tube splitter 12 attaches to one end of the air lines 1, 2 that are connected at their other end to the air port 14 in each milk collection hub 10. The tube splitter attaches to one end of the air line 3 that is connected at its other end to the combined control and air pump unit 11. Tube splitter 12 includes a bung or stopper 262 that can be rotated in order to configure the breast pump system for single pumping or double pumping, by creating an air path that leads from air line 3 into either the left airline 1 or the right air line 2 to activate respectively just the left hub or the right hub; or it can create an air path that leads from air line 3 into both left airline 1 and also right air line 2, for double pumping.
Application running on a connected device Pump system related data may be sent by the system to a connected smartphone or other computer device. The data may be further analysed by a data analysis subsystem. The data may also be displayed on an application running on the computing device.
The application may provide one or more of the following features: * Discreet/Remote control of device, such as: play/pause, mode change, intensity setting change.
* Battery life indication * Session time and date tracking.
* Milk volume tracking.
* Integration with other devices, such as other breast pump system.
Appendix 1 Key features of the breast pump system are now generalized into the following categories: A User experience: Nipple Visibility B Cost Engineering: Simplicity C User Experience: Low Noise D User experience: Product Handling Note that any feature can be combined with any one or more other features. The invention is however defined in the appended claims. Note further that, whilst the implementation described above is a breast pump system with one or two in-bra wearable milk collection hubs, each connected to an external air pump, it is possible to integrate an air pumping mechanism, rechargeable battery and control electronics inside each milk collection hub, in much the same way as the Elvie Pump (see WO 2018/229504) integrates an air pump, rechargeable battery and control electronics into an in-bra wearable unit that includes a user-attachable milk collection container. The following features do not, unless otherwise explicitly stated, require an external air pump, but should be expansively construed to cover breast pump systems that can utilise an external or internal air pump. Similarly, whilst the implementation described above is a breast pump system with a closed-loop air pump (i.e. the pump is protected from any possibility of milk contamination through the flexible membrane), the following features do not, unless otherwise explicitly stated, require a closed-loop air pump, but should be expansively construed to cover breast pump systems that are both closed loop and also open loop.
A. User experience innovations: nipple visibility Feature 1: visibility of the nipple One implementation of this invention envisages a wearable milk collection hub for a breast pump system that provides a clear and unobstructed view of the nipple for easy nipple alignment. This ensures that a correct alignment is maintained while pumping. The breast shield and outer shells are both substantially clear providing a clear and unobstructed view of the nipple when the assembled system is placed on the breast. This further enables the user to ensure proper nipple suction when the breast pump system is placed on the breast and while pumping.
We can generalize to: A wearable milk collection hub for a breast pump system comprising: (a) a breast shield made up of a breast flange and a nipple tunnel; (b) a flexible diaphragm that is configured to prevent milk from reaching an external air pump subsystem; (c) an outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form a vessel for collecting milk; in which the breast shield and the outer shell are substantially transparent, providing, to the mother placing the collection hub onto her breast, a clear and unobstructed view of the nipple to facilitate correct nipple alignment Feature 2: visibility of the nipple and of the flexible diaphragm In addition to the clear and unobstructed view of the nipple, the system also provides a clear and unobstructed view of the diaphragm inside the hub A user is able to see any movement of the diaphragm while pumping and ensure the system is correctly operating. The diaphragm is placed so as not to obstruct the line of sight to the nipple, hence providing both a view of the nipple and of the flexible diaphragm.
We can generalize to: A wearable milk collection hub for a breast pump system comprising: (a) a breast shield made up of a breast flange and a nipple tunnel, (b) a flexible diaphragm that is configured to prevent milk from reaching an external air pump subsystem; (c) an outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form a vessel for collecting milk; in which the breast shield and the outer shell are substantially transparent, providing simultaneously to the mother placing the collection hub onto her breast (i) a clear and unobstructed view of the nipple to facilitate correct nipple alignment and (ii) a view of the diaphragm to ensure the breast pump system is operating correctly.
Feature 3: visibility of the nipple and of a substantial part of nipple tunnel The system is also able to provide an unobstructed view of the nipple tunnel for easy nipple alignment when the system is placed on the breast and while pumping. This further ensures that the spacing between the nipple and the side walls of the nipple tunnel is correctly positioned and maintained while pumping.
We can generalize to: A wearable milk collection hub for a breast pump system comprising: (a) a breast shield made up of a breast flange and a nipple tunnel, (b) a flexible diaphragm that is configured to prevent milk from reaching an external air pump subsystem; (c) an outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form a vessel for collecting milk, in which the breast shield and the outer shell are substantially transparent, providing to the mother placing the collection hub onto her breast (i) a clear and unobstructed view of the nipple to facilitate correct nipple alignment and (ii) a clear and unobstructed view of a substantial part of the nipple tunnel.
Feature 4: Diaphragm is removably mounted.
The wearable milk collection hub also includes a removable diaphragm that is configured to separate the air pump side from the milk side located in the hub, and thus prevents any contamination of the air pump unit by any milk. The diaphragm is shaped so that it includes portions which are either substantially parallel to the center axis of the nipple tunnel or substantially perpendicular to the center axis of the nipple tunnel We can generalize to: A wearable milk collection hub for a breast pump system comprising: (a) a substantially transparent breast shield made up of a breast flange and a nipple tunnel, (b) a flexible diaphragm that is configured to prevent milk from reaching an external air pump subsystem; (c) a substantially transparent outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form a vessel for collecting milk; in which the diaphragm is removably mounted onto the breast shield and/or the outer shell, and in which the diaphragm includes a portion that is arranged over the end or tip of the nipple tunnel.
Feature 5: specific shape and location of the diaphragm The diaphragm is also positioned so that it does not obstruct a mother's view of the nipple when placing the collection hub onto her breast. Hence a mother is able to see any movement of the diaphragm when the air pump is activated, thereby further ensuring the proper function of the breast pump system.
We can generalize to: A wearable milk collection hub for a breast pump system comprising: (a) a breast shield made up of a breast flange and a nipple tunnel, (b) a flexible diaphragm that is configured to prevent milk from reaching an external air pump subsystem; (c) an outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form a vessel for collecting milk, in which the diaphragm is removably mounted onto the breast shield and/or the outer shell and is positioned behind a diaphragm cap that forms part of the front or forward facing part of the outer shell, so as not to obstruct a mother's view of the nipple when placing the collection hub onto her breast B. Cost Engineering Innovations: Simplicity Feature 6: Removable diaphragm cap The wearable milk collection hub includes a removable diaphragm cap that is configured to cover and seal the diaphragm The diaphragm cap is easily removable or attachable with a single push action when the collection hub has been placed onto the breast. The diaphragm cap includes an air port or hole to connect a tube between the milk collection hub and an external control unit housing a pump unit subsystem.
Hence a mother can place the collection hub on her breast first without the diaphragm cap and without the inconvenience of a tube connected to the air port. Once the milk collection hub is correctly placed on the breast, the mother can easily attach the diaphragm cap together with the tube with a single push action.
We can generalize to: A wearable milk collection hub for a breast pump system comprising: (a) a breast shield made up of a breast flange and a nipple tunnel; (b) a flexible diaphragm that is configured to prevent milk from reaching an external air pump subsystem; (c) an outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form a vessel for collecting milk; in which the outer shell includes a removable diaphragm cap that covers and seals the diaphragm and in which the diaphragm cap forms part of the front or forward facing part of the outer shell and includes an air port configured to transfer negative air pressure from the external air pump subsystem to the diaphragm.
Feature 7: Removable diaphragm cap is omnidirectional A further advantage of the diaphragm cap is that it is omnidirectional and can be easily rotated on the rear surface of the outer shell, therefore providing the user with the ability to change or rotate the position of the air port on the diaphragm cap. This also helps the user modify the placement of a tube connected to the diaphragm cap. This feature also provides added versatility and/or flexibility to be used by different users and body shape with different clothing to achieve comfort and/or discretion.
We can generalize to: A wearable milk collection hub for a breast pump system comprising: (a) a breast shield made up of a breast flange and a nipple tunnel; (b) a flexible diaphragm that is configured to prevent milk from reaching an external air pump subsystem; (c) an outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form a vessel for collecting milk; in which the outer shell includes a removable diaphragm cap that covers and seals the diaphragm and in which the diaphragm cap forms part of the front or forward facing part of the outer shell and includes an air port configured to transfer negative air to pressure from the external air pump subsystem to the diaphragm; and in which the removable diaphragm cap is configured to rotate to enable the position of the air port on the outer shell to be adjusted by a user.
Feature 8: 3 user-removable parts from the breast shield We can generalize to: A wearable milk collection hub for a breast pump system comprising: (a) a breast shield made up of a breast flange and a nipple tunnel; (b) a flexible diaphragm that is configured to prevent milk from reaching an external air pump subsystem; (c) an outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form a vessel for collecting milk; (d) a diaphragm cap that forms part of the front or forward facing part of the outer shell; and in which the only user removable items from the breast shield are: the outer shell, the diaphragm, and the diaphragm cap, in normal use or normal disassembly.
C. User experience innovations: low noise Feature 9: Airflow block We can generalize to: A control unit for generating negative air pressure for a breast pump system, the control unit including: (a) a rechargeable battery; (b) a power charging circuit for controlling the charging of the rechargeable battery; (c) control electronics powered by the rechargeable battery, (d) a pump powered by the rechargeable battery and generating negative air pressure; and (e) a motor for driving the pump; (f) a casing; in which the control unit further includes an airflow block that is configured to transfer suction from the pump to a suction or air port on the control unit and is further configured to attenuate sound from the pump and/or the motor reaching from reaching the casing Feature 10: Sound valve We can generalize to: A control unit for generating negative air pressure for abreast pump system, the control unit including: (a) a rechargeable battery; (b) a power charging circuit for controlling the charging of the rechargeable battery; (c) control electronics powered by the rechargeable battery; (d) a pump powered by the rechargeable battery and generating negative air pressure; and (e) a motor for driving the pump; and in which the control unit further includes a sound valve that is configured to air to pass in and out of the control unit sufficient for pressure equalisation between 30 the inside and outside of the control unit, while minimizing sound from the pump and/or motor escaping from the control unit.
Feature 11: Solenoid foam cap We can generalize to: A control unit for generating negative air pressure for abreast pump system, the control unit including: (a) a rechargeable battery; (b) a power charging circuit for controlling the charging of the rechargeable battery; (c) control electronics powered by the rechargeable battery; (d) a pump powered by the rechargeable battery and generating negative air pressure and; (e) a motor for driving the pump; (f) a solenoid valve for controlling the generated negative air pressure; and in which the control unit further includes a cap or other structure that is configured to reduce the speed of air that enters the solenoid valve when the solenoid valve opens to ambient air pressure.
D. User experience innovations: product handling Feature 12: Multifunction mount We can generalize to: A control unit for generating negative air pressure for a breast pump system, the control unit including: (a) a rechargeable battery; (b) a power charging circuit for controlling the charging of the rechargeable battery; (c) control electronics powered by the rechargeable battery; (d) a pump powered by the rechargeable battery and generating negative air pressure and; (e) a motor for driving the pump; and in which the control unit further includes a removable multifunction mount configured to attach to the control unit in at least two different positions, such that the control unit can be held in either upright/portrait or longwi se/landscape mode.
Feature 13: Tube management feature We can generalize to: A control unit for generating negative air pressure for abreast pump system, the control unit including: (a) a rechargeable battery; (b) a power charging circuit for controlling the charging of the rechargeable battery; (c) control electronics powered by the rechargeable battery; (d) a pump powered by the rechargeable battery and generating negative air pressure and; (e) a motor for driving the pump; and in which the control unit further includes or, is removably attached to a tube management structure configured to enable an air tube attachable to the control unit to be wound around that tube management structure.
Generally applicable optional features that can be combined with any one or more of the above features and can themselves be combined with one another: Breast shield * breast shield is rigid or semi-rigid.
* breast shield is made up of a breast flange and a nipple tunnel; in which the nipple tunnel is configured to receive a nipple.
* breast shield comes in different sizes, each of which are configured to attach to the same outer shell.
* different sizes of the breast shield each provide a different spacing of the nipple from side walls of the nipple tunnel, when the breast shield is positioned onto a breast.
* breast shield integrates the breast flange and nipple tunnel as a single one-piece item with no joins.
* nipple tunnel includes a milk hole through which express milk flows into the milk collection hub via a non return valve.
* breast shield includes a diaphragm housing that has sides that are parallel to the nipple tunnel.
* diaphragm housing includes an air hole that transfers negative air pressure to the nipple tunnel.
* air-pump chamber is a substantially annular chamber with walls that are parallel to the long or central axis of the nipple tunnel and those parallel walls lie over a region of the nipple tunnel that is subject in use to negative air pressure * diaphragm housing has an outer, approximately cylindrical side wall that is generally parallel to the nipple tunnel, and an inner, approximately cylindrical side wall that is also is generally parallel to the nipple tunnel.
* diaphragm housing has a front wall that forms the end of the nipple tunnel.
* diaphragm housing has an annular rear wall that joins the outer and the inner sides walls and that annular rear wall lies over a region of the nipple tunnel that is subject in use to negative air pressure.
* diaphragm moves within an air-pump chamber formed on one side by the diaphragm housing with walls that are parallel to the long or central axis of the nipple tunnel and on another side by the diaphragm cap.
* breast shield is integrated with the diaphragm housing portion as a single, one piece moulded item.
* breast shield includes a removable perimeter seal that provides an air-tight seal between an outer edge of the breast shield and the outer shell.
* breast shield is a transparent or optically clear, dishwasher safe polypropylene, polycarbonate or copolyester, such as TritanTm, breast shield Outer shell * outer shell is rigid.
* the outer shell removably attaches, fits or latches onto the breast shield and so the breast shield provides a rear surface that is in contact with milk.
* outer shell is attachable to the breast shield with a single push action.
* outer shell attaches to the breast shield using magnets.
* outer shell includes an air opening or vent hole such that atmospheric pressure is maintained inside the milk collection hub * outer shell is directly removable from the breast shield in normal use or normal disassembly * outer shell is removable from the breast shield together with a flexible diaphragm that is attached, permanently or removably, to the outer shell * outer shell is an integral part of the breast shield.
* outer shell includes a diaphragm cap that sits over a diaphragm.
* outer shell and diaphragm are together a single item * outer shell includes a pouring opening which can be closed for transportation of the milk collection hub.
* outer shell has a front surface that is curved to fit inside a bra and to contact the inner surface of the bra.
* outer shell is a transparent or optically clear, dishwasher safe polypropylene, polycarbonate or copolyester, such as TritanTm, outer shell.
* outer shell is a self-contained milk collection hub and so the breast shield does not provide a surface in contact with milk.
Diaphragm * diaphragm is flexible, and deforms to create negative pressure * diaphragm is not sufficiently flexible to deform to create negative pressure but serves instead solely to prevent milk from passing through it and filling the air lines or reaching the motor.
* diaphragm is substantially rigid and serves instead solely to prevent milk from passing through it and filling the air lines or reaching the motor.
* diaphragm includes inner and outer side walls that are substantially parallel to the center axis of the nipple tunnel.
* diaphragm includes substantially cylindrical inner and outer side walls that are substantially parallel to the center axis of the nipple tunnel.
* diaphragm, when under negative pressure, moves past a milk opening in the nipple tunnel towards the over the end or tip of the nipple tunnel.
* diaphragm includes portions which are substantially parallel to the center axis of the nipple tunnel and includes portions which are substantially perpendicular to the center axis of the nipple tunnel.
* diaphragm is shaped to be flush to a diaphragm housing that has an outer, approximately cylindrical side wall that is generally parallel to the nipple tunnel, and an inner, approximately cylindrical concentric side wall that is also is generally parallel to the nipple tunnel.
* diaphragm flexes when negative air pressure is applied to it by an air pump subsystem, and transfers that negative air-pressure to pull the breast and/or nipple against the breast shield to cause milk to be expressed.
* diaphragm is positioned such as not to obstruct a mother's view of a substantial part of the nipple tunnel when placing the collection hub onto her breast; * diaphragm is moulded as part of or otherwise attached to, the outer shell.
* the outer shell and diaphragm are formed or joined together to form a single item.
* diaphragm includes portions that run substantially parallel to the center axis of the nipple tunnel.
* diaphragm is a single flexible membrane shaped to include inner and outer substantially cylindrical walls that are generally parallel to the center axis of the nipple tunnel * diaphragm includes a portion that sits over the end of the nipple tunnel, facing away from the breast.
* diaphragm is removably attached to the outer shell.
* diaphragm is removable from the outer shell for cleaning.
* diaphragm is configured to self-seal under the negative air pressure to a diaphragm holder that is part of the breast shield.
* diaphragm is a one-piece item devoid of any holes or openings.
* diaphragm is permanently fixed to the outer shell.
* diaphragm is a single flexible membrane shaped to include inner and outer substantially cylindrical walls that are generally parallel to the center axis of the nipple tunnel, an annular wall that joins the inner and outer substantially cylindrical walls, and an end wall that sits over the end of the nipple tunnel.
Diaphragm cap * diaphragm cap is removable.
* diaphragm cap forms the front of the outer shell * diaphragm cap includes an air port that is configured to deliver air pressure to the milk collection hub.
* diaphragm cap is configured to fit or latch onto the outer shell with a single push action.
* diaphragm cap includes recesses or features configured to be gripped with the fingers of one hand.
* diaphragm cap includes a pair of recesses configured to enable the cap to be gripped and removed from the outer shell, and installed into the outer shell, with a single hand.
* diaphragm cap is rotatable in the outer shell to adjust the position of the air port on the diaphragm cap.
* diaphragm cap includes a passage way for the air tube.
* diaphragm cap includes a flat portion such that the milk collection hub can rest on a flat surface positioned on this flat portion.
* diaphragm cap is is shaped to fit inside an inner portion of a bra.
* diaphragm cap is a transparent or optically clear, dishwasher safe polypropylene, polycarbonate or copolyester, such as TritanTm, diaphragm cap.
Entire system * the system is a closed system.
* the system has a capacity of approximately 5 fluid ounces (148m1).
* width of the milk collection hub is of about 5.7cm in the direction of the central axis of the nipple tunnel.
* each milk collection hub is, in-use, bra-worn, for example is shaped to be worn inside a maternity bra.
* the system makes less than 50dB noise at maximum power when the motor is running, and preferably less than 45dB Control Unit * control unit is configured to control suction delivered to one or two wearable milk collection hubs.
* control unit houses an air pump subsystem that is configured to generate negative air pressure and transfer negative air pressure to a wearable milk collection hub.
* control unit does not house an air pump subsystem but controls an air pump that is external to the control unit * air pump subsystem is held in place between a sound attenuating motor mount and an airflow block, each configured to absorb vibration from the pump unit.
* control unit includes a wireless data communications system powered by a rechargeable batten:, * control unit includes one or more buttons which are configured to control at least one wearable collection hub.
* control unit includes a visual and/or haptic indicator that Indicates whether milk is flowing or not flowing into the hub.
* control unit includes a visual and/or haptic indicator that indicates the activated pumping profile or pattern.
* control unit includes a visual and/or haptic indicator that indicates the rechargeable battery status.
* control unit includes a USB charging socket connected to the power charging circuit; * multifunction mount is an o-ring. 20 Airflow block * airflow block is configured transfer air or suction from the pump unit and also to absorb vibrations from the pump unit.
* airflow block is made of a compression moulded silicone.
* airflow block is directly connected to the air pump subsystem outlet.
* airflow block is located near a solenoid valve.
* airflow block is a one-piece item.
* control unit is sealed such as to further attenuate sound.
* control unit includes an housing with a top portion and a bottom portion.
* the bottom and top portions are sealed together using a seal perimeter.
* airflow block is integrated with a portion of the seal perimeter.
* airflow block connects to an air port or hole for a tube that delivers air to a wearable milk collection hub.
Sound valve * sound valve is configured to regulate the pressure inside the control unit so that the inside of the control unit remains at ambient pressure and also to attenuate noise from the pump unit escaping from inside the control unit.
* sound valve is located on the bottom portion of the control unit.
* sound valve includes a small cut that is configured to deform under pressure.
* sound valve is made of silicone.
Foam cap * solenoid foam cap is configured to reduce the speed of air that enters the solenoid valve when the solenoid valve opens to ambient air pressure and hence to reduce the sound of that air entering the solenoid valve.
* solenoid foam cap is a one piece item made of plastic.
* foam cap includes one or more small opening or holes.
* control unit also includes two silencers (or muffler) in which one silencer is connected to the solenoid valve and the other silencer is connected to the motor. 20 Note It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred example(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.
A portion of the disclosure of this patent document contains material, which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
APPENDIX 2 Further concepts for the breast pump system are now described. Each additional concept can be combined with any or more of the concepts described in the sections below, and in particular with any or more of the key features of the breast pump system provided in Appendix 1 below.
Milk-impermeable, air-permeable barrier An additional concept envisages a wearable milk collection hub for a breast pump system including a milk barrier that is milk-impermeable but air-permeable, therefore eliminating the need of a conventional flexible membrane or diaphragm that is entirely air-impermeable (i.e. the typical closed loop system described earlier). Unlike the conventional flexible membrane or diaphragm, the milk barrier is not able to create negative pressure.
Hence the air pump is configured to directly drive the pressure change in the nipple tunnel with the milk barrier being positioned along the air path such that it lets air through, but not liquid. Milk is then prevented from reaching the pump unit or the motor. Because the air pump directly creates the negative pressure in the nipple tunnel, higher negative pressures may be reached, with higher efficiency, compared to a conventional closed loop system. One consequence is that smaller, quieter, less powerful motors can be used, leading to smaller, quieter products with enhanced battery life.
With reference to Figure 33, a cross section of a milk collection hut) is provided including a disc 331. The disc 331 is configured to be air permeable but liquid (e.g. milk) impermeable. It provides a straight through air path From the pump to the inside of the nipple tunnel, but prevents milk flowing back to the pump unit or motor.
As illusttated, the disc 331 sits entirely away from the end of the nipple tunnel 31 (i.e. away from the breast) and does not surround any part of the nipple tunnel 31. The disc 331 is configured to substantially not move while in use and is fixed on a retaining feature 332.
The disc 331 may be made of or include a PTFE membrane. The PTFE may have an average pore size of about 0.22 to 1.2 um which is optimized to prevent a drop in pressure during pumping. Optimal pore size is determined experimentally and may be a function of the power of the air pump: a more powerful motor can be used with BTFE membranes with smaller pores. The overall dimensions of the disc 331 may range from lOmm to 32mm in diameter. Diameters of this range assist with preventing or minimizing pressure drop through the PTFF, membrane, even with some level of milk residue blinding. Typical variants may have dimensions that arc ± 25% of these dimensions.
Because the disc 331 does not overlap or lie over the nipple tunnel, the user has a clear view of the nipple through the clear material of the breast shield 21, nipple tunnel 31 and outer shell 20, in order to facilitate providing a correct positioning and alignment of the nipple in the nipple tunnel.
With reference to Figure 34, a perspective view of the milk collection hub without the outer shell is provided. It shows the one-piece rigid breast shield 21, including an annular retaining feature 332 that supports the PT FE disc 331.
Additionally, the milk barrier may not necessarily be substantially circular.
With reference to Figure 35, an example of disc assembly is shown, including a silicone overmold, polypropylene layer. PTFF, layer and fine mesh layer.
The disc assembly is configured to be easily assembled onto the breast pump system.
The disc assembly is also configured to be easily removable from the breast pump system in order to be easily washed and/or sterilised.
in the case that the pores of the PTFF, disc include some milk residue after use, the air pump may also be reversed at the end of a milking session (or at any suitable time) to clear the pores and ensure efficient delivery of negative air pressure to the nipple tunnel, even before the disc assembly is removed from the breast pump system.
The outer shell may also include a removable milk barrier cap (not shown) that covers and seals the PTFE disc 331. The barrier cap may include an air port, which provides the air connection to an external pump unit via a tube. 'the milk barrier cap provides similar advantages as the diaphragm cap of Figures 1 and 2.
Flexible membrane that sits at the end of the nipple tunnel The disc 331 of Figures 33 and 34, may also he a flexible air impermeable membrane 361, as shown in Figure 36 in a relaxed state, that deforms in response to changes in air pressure caused by the pump, therefore causing negative air pressure to be created in the nipple tunnel.
10T -fence, the overall system is configured to work substantially in the same dosed loop way as the system of Figures 1 and 2 described in the sections below, but with the flexible membrane unit being placed at the end of the nipple tunnel.. 't his has advantages in that the nipple tunnel may be substantially reduced in length (i.e. making the milk collection hub more compact in that dimension) or increasing the volume available within the collection cup for greater milk collection. As with the Figures 33 and 34 embodiments, the membrane sits entirely forward of the nipple tunnel and does not overlap with the nipple tunnel.
Because the size of the pressure chamber 362, in a relaxed state and under maximum negative pressure, is more compact in the dimension parallel to the nipple tunnel than the system of Figures 1 and 2, has been substantially reduced compared to the Figures 1 and 2 system, potentially increasing the pumping efficiency. The membrane 361 is substantially circular and lies entirely to the left of the nipple tunnel and of the milk port 41 (i.e. away from the breast), in a relaxed state as well as under maximum negative pressure.
Because the membrane 361 does not overlap with the nipple tunnel, the user also has a clear view of the nipple through the clear material of the breast shield 21, nipple tunnel 31 and outer shell 20, in order to provide correct positioning and alignment of the nipple.
The removable membrane or diaphragm cap 363 is also illustrated and provides sanula advantages as the diaphragm cap of Figures 1 and 2.
Membrane held between two casings With reference to Figure 37, the flexible air-impermeable membrane 371 may also be held between two membrane housing portions or casings 372, 373.
Each diaphragm housing portion includes an air hole or opening, with one air hole configured to transfer negative pressure from the pump to the flexible membrane causing the membrane to deform and another air hole transferring negative air pressure to the nipple tunnel.
The flexible membrane 371 is held securely in place along the circumference or edge of the membrane housing portions 372, 373 and is configured to deform inside the cavity formed by the membrane housing portions assembled together and to prevent milk from reaching the pump unit or motor.
The membrane housing portions may be either located, in use, inside the milk collection hub such as in front of the nipple tunnel or it may be located outside of the milk collection hub, such as along the tube that connects the milk collection hub to an external control unit housing a pump unit subsystem, as shown in Figure 38.
The membrane housing portions are configured to be easily assenthled and dis-assembled onto the breast pump system in order to be easily washed and/or sterilised.
The membrane housing portions may also be configured to be substantially rigid and optically clear or substantially transparent, e.g. in order to enable the user to see inside the membrane housing portions to ensure correct movement of the flexible membrane.
Note that the above concepts can be either implemented as part of a breast pump system with one or two in-bra wearable milk collection hubs, each connected to an external air pump. The milk collection hubs may also include an air pumping mechanism, rechargeable battery and control electronics, in much the same way as the Elvie Pump (see WO 2018/229504) that integrates an air pump, rechargeable battery and control electronics into an in-bra wearable unit and that includes a user-attachable milk collection container.
The key features are now generalised. We list also various optional sub-features for each feature. Note that any feature can be combined with one or more other features, including all the features or sub-features provided in Appendix 1 below; any feature can be combined with any one or more sub-features (whether attributed to that feature or not) and every sub-feature can be combined with one or more other sub-features.
Feature 1: Milk-impermeable, air-permeable barrier An in-bra wearable milk collection hub for a breast pump system comprising: (a) a breast shield made up of a breast flange and a nipple tunnel; (b) a milk barrier that is configured to prevent milk from reaching an air pump subsystem; in which the milk barrier is configured to be milk-impermeable and air-permeable; and (c) a milk container that is configured to collect milk.
Milk barrier * milk barrier is positioned along an air path that connects the air pump to the nipple tunnel.
* milk barrier sits entirely forward of the nipple tunnel, away from a breast.
* milk barrier does not overlap with the nipple tunnel when positioned upright for normal use.
* milk barrier is made of or includes a PTFF. membrane.
* pmil is selected to have an average pore size that is a function of one or more of the following: pumping profiles required, air pump parameters such as minimal and optimal power, dimensions of the milk barrier and of the P111± membrane.
* PTFE has an average pore size of 0.22 to 1.2 um.
* milk barrier is substantially circular.
* milk barrier diameter is between 10mm and 30 mm.
* milk barrier is not configured to create negative pressure.
* milk barrier is configured to be easily removable from the breast pump system in order to be easily washed and/or sterilised.
* milk barrier is positioned to form part of a front of the hub.
Air pump subsystem * air pump subsystem is external to the milk collection hub.
* air pump subsystem is integral to the milk collection hub.
* air pump is configured to directly drive the pressure change in the nipple tunnel.
* a cleaning pumping profile is configured to clear the pores of the milk barrier by pumping air through the milk barrier to dislodge any milk droplets adhering to the milk barrier.
* visual and/or haptic indicator indicates when the cleaning pumping profile is activated. 10 Outer shell * wearable milk collection hub includes an outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form the milk container.
* outer shell is substantially transparent, providing to the mother placing the collection a clear and unobstructed view of the nipple to facilitate correct hub on her breast nipple alignment.
* outer shell includes a removable barrier.
ailk barrier cap that covers Id seals the milk * milk barrier cap forms part of the front or forward-facing part of the outer shell and includes an air port configured to transfer negative air pressure from the air pump subsystem to the nipple tunnel.
* the in-bra wearable milk collection hub s shaped or configured at least in part th curved front surface to fit inside a bra.
* the in-bra wearable milk collection hub, comprises an outer shell that is shaped or configured at least in part with a curved front surface to fit inside a bra.
Feature 2: Flexible membrane that sits at the end of the nipple tunnel An in-bra wearable milk collection hub for a breast pump system comprising: (a) a breast shield made up of a breast flange and a nipple tunnel; (b) a flexible diaphragm that is configured to prevent milk from reaching an air pump subsystem; and (c) an outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form a vessel for collecting milk; and in which the flexible diaphragm sits entirely forward of the nipple tunnel, away from a breast, such that the flexible diaphragm does not overlap with the nipple tunnel when positioned upright for normal use.
Optional features * the in-bra wearable milk collection hub is shaped or configured at least in part with a curved front surface to fit inside a bra.
* the outer shell is shaped or configured at least in part with a curved front surface to tit inside a bra.
Feature 3: Membrane held between two casings An in-bra wearable milk collection hub for a breast pump system comprising: (a) a breast shield made up of a breast flange and a nipple tunnel; (b) an outer shell that is configured to removably attach to the breast shield, such that the breast shield and outer shell form a vessel for collecting milk; and (c) a diaphragm housing that houses i flexible diaphragm that is configured to prevent milk From reaching an air pump subsystem; and in which the diaphragm housing sits entirely forward of the nipple tunnel, away from the breast, and does not overlap with the nipple tunnel when positioned upright for normal use.
Optional features * flexible diaphragm is configured to deform inside the diaphragm housing.
* flexible diaphragm is held securely in place along the circumference or edge of the diaphragm housing.
* flexible diaphragm is configured to be easily removable from the flexible diaphragm to be easily washed and/or sterilised * diaphragm housing includes two diaphragm housing portions that form a cavity or chamber when assembled together.
* each diaphragm housing portion includes an air hole or opening.
* one air hole is configured to transfer negative pressure from the external air pump to the flexible membrane causing the membrane to deform and another air hole is configured to transfer negative air pressure to the nipple tunnel.
* diaphragm housing is located inside the wearable milk collection hub.
* diaphragm housing is located externally to the wearable milk collection hub.
* diaphragm housing is located along a tube that connects the wearable milk collection hub to the air pump subsystem.
* diaphragm housing is configured to be easily assembled and dis-assembled in order to be easily washed and/or sterilised.
* diaphragm housing is configured to be substantially rigid and optically clear or substantially transparent, in order to enable a user to see inside the diaphragm housing to ensure correct movement of the flexible diaphragm.

Claims (20)

  1. CLAIMS1. A passive milk collection device for storing milk comprising: (i) a flexible inner member including a nipple hole for receiving a nipple, and in which, in use, part of the rear surface of the inner member is configured to securely seal onto a user's breast; and (ii) a removable rigid outer member configured to attach onto the front surface of the inner member and to provide a free air space around the nipple area for storing milk from the nipple, and in which, the circumference of the outer edge of the rear surface of the flexible inner member is substantially larger than the circumference of the rigid outer member.
  2. 2 The device of Claim I, in which part of the rear surface of the flexible inner member around or near the nipple hole seals or self-seals against the breast, providing a generally leak proof milk collection vessel C\I
  3. 3 The device of any preceding Claim, in which the flexible inner member in use provides C\I a substantially continuous contour or surface with the breast.
  4. 4. The device of any preceding Cairn, in which the flexible inner member is made substantially of a soft silicone.
  5. 5. The device of any preceding Claim, in which the flexible inner member is configured at least in part to deforni outwards when pressed against the breast to create a low negative air pressure inside the device sufficient to adhere the device to the breast.
  6. 6. The device of any preceding Claim, in which the flexible inner member is stable in two different orientations: a first orientation in which it continues the curve of the outer member; and a second orientation in which it is flipped back through at least 45 degrees and preferably at least 90 degrees 7.
  7. The device of any preceding Claim, in which the flexible inner member or rigid outer member includes one or more ventilation holes or openings.
  8. The device of Claim 7, in which the ventilation hole or opening is configured to be plugged using an elastic feature built into the inner member, or a separate plugging member.
  9. 9. The device of any preceding Claim, in which the flexible inner member is shaped or configured to fit comfortably against the breast
  10. 10. The device of any preceding Claim, in which the flexible inner member is not circular in a frontal view but elongated at the top
  11. 11. The device of any preceding Claim, in which the flexible inner member is not circular in a frontal view but truncated or flattened at its base.
  12. 12. The device of any preceding Claim, in which the rear or outermost edge of the inner member is not parallel with the rear edge of the central outer member, but instead the top of the rear or outermost edge of the inner member is further away from the rear edge of the central outer member than the bottom of the edge of the skirt.
  13. 13. The device of any preceding Claim, in which the nipple hole is configured to C\I comfortably seal against the breast around the nipple area. o C\I
  14. 14. The device of any preceding Claim, in which the nipple hole has an asymmetrical shape.LO
  15. 15. The device of any preceding Claim, in which the nipple hole has a non-circular shape.
  16. 16. The device of any preceding Claim, in which the nipple hole is configured to allow easy pouring of collected milk out of the device.
  17. 17. The device of any preceding Claim, in which the nipple hole is configured to maximise the milk collection volume of the device.
  18. 18. The device of any preceding Claim, in which the nipple hole is configured to allow a choice of fit orientation for comfort and integration to the varying breast forms.
  19. 19. The device of any preceding Claim, in which the nipple hole is located, in use, above the height mid-point line of the rear surface of the inner member.
  20. 20. The device of any preceding Claim, in which the outer member is configured to collect any let-down milk.
GB2113164.4A 2021-09-15 2021-09-15 Lima 2.0 Withdrawn GB2613766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2113164.4A GB2613766A (en) 2021-09-15 2021-09-15 Lima 2.0

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2113164.4A GB2613766A (en) 2021-09-15 2021-09-15 Lima 2.0

Publications (2)

Publication Number Publication Date
GB202113164D0 GB202113164D0 (en) 2021-10-27
GB2613766A true GB2613766A (en) 2023-06-21

Family

ID=78149248

Family Applications (1)

Application Number Title Priority Date Filing Date
GB2113164.4A Withdrawn GB2613766A (en) 2021-09-15 2021-09-15 Lima 2.0

Country Status (1)

Country Link
GB (1) GB2613766A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180008758A1 (en) * 2016-07-08 2018-01-11 DAO Health Submersible Breast Pump Protection Mechanism for a Breast Milk Collection Device with Self-Contained Reservoir
US20180104396A1 (en) * 2015-05-19 2018-04-19 Cho Hee PARK Breast pump
CN212699863U (en) * 2020-07-08 2021-03-16 方国峰 Milk bowl and breast pump thereof
EP4126097A1 (en) * 2020-03-26 2023-02-08 Chiaro Technology Limited Wearable breast pump system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180104396A1 (en) * 2015-05-19 2018-04-19 Cho Hee PARK Breast pump
US20180008758A1 (en) * 2016-07-08 2018-01-11 DAO Health Submersible Breast Pump Protection Mechanism for a Breast Milk Collection Device with Self-Contained Reservoir
EP4126097A1 (en) * 2020-03-26 2023-02-08 Chiaro Technology Limited Wearable breast pump system
CN212699863U (en) * 2020-07-08 2021-03-16 方国峰 Milk bowl and breast pump thereof

Also Published As

Publication number Publication date
GB202113164D0 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
US11806454B2 (en) Wearable breast pump system
AU2012286462B2 (en) Breastshield unit
ES2951176T3 (en) Breast pump system
TWI636802B (en) Breastshield unit with media separation
RU2548792C2 (en) Device and method for human breast milk pump-out
US9333283B2 (en) Breast pump
TW201634066A (en) Adapter with media separating diaphragm for a breast shield
US20180303985A1 (en) Pump arrangement for a double breast pump, double breast pump and method of operatioon
US8915880B2 (en) Funnel for a breast pump
EP4205775A1 (en) Breast pump
US20220111128A1 (en) Breastmilk collection system
GB2613766A (en) Lima 2.0
US20160158424A1 (en) Hidden and wearable breast-milk pumping system
TW201617101A (en) Hidden and wearable breast-milk pumping system
CN107715199B (en) Soft multifunctional electric neonate sputum aspirator
KR20210086320A (en) Thermo massage breast pump
KR101519881B1 (en) Breast Milk Sucker Having Function Massage
RO131093B1 (en) Nasal aspirator

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)