GB2609043A - Method for internal stress regulation in superalloy disk forgings by pre-spinning - Google Patents

Method for internal stress regulation in superalloy disk forgings by pre-spinning Download PDF

Info

Publication number
GB2609043A
GB2609043A GB2110443.5A GB202110443A GB2609043A GB 2609043 A GB2609043 A GB 2609043A GB 202110443 A GB202110443 A GB 202110443A GB 2609043 A GB2609043 A GB 2609043A
Authority
GB
United Kingdom
Prior art keywords
spinning
disk
forgings
disk forgings
internal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
GB2110443.5A
Other versions
GB202110443D0 (en
Inventor
Zhang Beijiang
Zhang Wenyun
Tian Chenggang
Huang Aihua
Zhang Guodong
Xuan Haijun
Chen Chuanyong
Huang Shuo
Qin Heyong
Tian Qiang
Duan Ran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Hiro Aviation Tech Co Ltd
Central Iron and Steel Research Institute
AECC Commercial Aircraft Engine Co Ltd
Gaona Aero Material Co Ltd
Original Assignee
Zhejiang Hiro Aviation Tech Co Ltd
Central Iron and Steel Research Institute
AECC Commercial Aircraft Engine Co Ltd
Gaona Aero Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Hiro Aviation Tech Co Ltd, Central Iron and Steel Research Institute, AECC Commercial Aircraft Engine Co Ltd, Gaona Aero Material Co Ltd filed Critical Zhejiang Hiro Aviation Tech Co Ltd
Priority to GB2110443.5A priority Critical patent/GB2609043A/en
Publication of GB202110443D0 publication Critical patent/GB202110443D0/en
Publication of GB2609043A publication Critical patent/GB2609043A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/25Manufacture essentially without removing material by forging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)

Abstract

A method of reducing the internal stress in a superalloy disc forging by pre-spinning includes the following steps: Step S1, simulating pre-spinning at different rates to determine a target pre-spinning revolution rate required to reduce stress in the disc forging below 400 MPa which produces a target magnitude of plastic deformation in the range 0.05-1.95 %. Step S12: pre-spinning of the disc at a predicted revolution rate and monitoring the magnitude of deformation. Either Step S131: if the monitored magnitude of deformation reaches the target magnitude of plastic deformation then the predicted revolution rate is the target revolution rate or Step S132: if the monitored magnitude of deformation is lower than the target magnitude of plastic deformation, then gradually increasing the pre-spinning revolution rate until the monitored magnitude of deformation reaches the target magnitude of plastic deformation and the final revolution rate is the target revolution rate. The disc can be a wrought, powder or cast superalloy.

Description

Description
Method for Internal Stress Regulation in Superalloy Disk forgings by Pre-spinning
Technical Field
The present application relates to the field of materials, in particular to a method for internal stress regulation in superallov disk forgings by pre-spinning
Background Art
The hot-end turning parts of aero-engine are mainly made of superallov, including high-pressure and low-pressure turbine disks, compressor disks, middle-seal disks, etc. In order to obtain the predetermined mechanical properties on these superalloy disk pieces, it is necessary to perform organizational regulation on the forgings with a highly precisely controlled heat treatment system. In the heat treatment procedure, when the required mechanical properties arc obtained, certain internal stress is inevitably introduced to the disk piece. The heat treatment stress on the forgings can be gradually released in the subsequent procedures of part machining, surface treatment, and machine service.
Excessive internal stress level can cause a relatively large deformation to a disk piece in machining, making it difficult to achieve a predetermined precise dimension on the part. At the same time, excessive and improperly distributed internal stress will degrade the dimensional stability of the members and parts in the service procedure, affecting the engine efficiency or evening causing a failure. Therefore, effective regulation of the heat treatment internal stress on a forgings is the premise and foundation for ensuring the dimensional stability of rotor disks during machining and service.
Summary
The present application proposes a method for implementing a high-speed spinning treatment on disk forgings, namely acquiring a predetermined micro plastic deformation on the disk forgings by using centrifugal force load, to effectively regulate and control the stress distribution state in the disk forgings on the premise of not influencing the subsequent machining and service performance of the disk forgings. According to the method, excessive internal stress formed in the heat treatment procedure can be fully released, so as to avoid the occurrence of harmful deformation of the disk forgings in subsequent part machining procedure. Moreover, the internal stress distribution can be regulated and optimized concerning the service working conditions of the disk forgings, so as to ensure that the disk forgings do not suffer from a harmful deformation under 115% or 120% high-stress state during a procedure of a part over-spinning test, while having a long-term dimensional stability in service on a machine. The method includes a spinning operation performed on the disk forgings after heat treatment and before part machining, and thus is called billet disk pre-spinning. It is a novel technology, aiming at die disk forgings, for actively regulating die internal stress by inducing micro plastic deformation to disk forgings by a rotary centrifugal force.
In order to achieve the above object, the present application provides a method for internal stress regulation in a superalloy disk forging by pre-spinning. The method includes: Step Si. determining a target revolution for regulating internal stress in the disk forgings, and determining a target deformation magnitude of plastic deformation required for regulating the internal stress by the pre-spinning of the disk forgings; and Step S2, performing the pre-spinning of the disk forgings by the target revolution, monitoring the deformation magnitude of the disk forgings, and stopping die pre-spinning when a monitored deformation magnitude of die disk forgings reaches the target deformation magnitude.
Preferably, Step S1 includes: Step S11, obtaining a predicted revolution for regulating the internal stress in the disk forgings by simulated calculation; Step S12, performing the pre-spinning of the disk forgings by the predicted revolution, and monitoring the deformation magnitude of the disk forgings; and Step S13, adjusting the predicted revolution according to a monitored deformation magnitude of the disk forgings to determine the target revolution.
Preferably, Step S13 includes: Step S131, determining the predicted revolution as the target revolution if the monitored deformation magnitude of the disk forgings reaches the target deformation magnitude when performing the pro-spinning of the disk forgings by the predicted revolution; or Step S132, if the monitored deformation magnitude of the disk forgings is lower than the target deformation magnitude when performing the pre-spinning of the disk forgings by the predicted revolution, gradually increasing the revolution of the pre-spinning until the monitored deformation magnitude of the disk forgings reaches the target deformation magnitude when performing a final revolution of pre-spinning, and determining the final revolution as the target revolution.
Preferably, Step S132 includes: gradually increasing the revolution of the pre-spinning by a step of 25-100 rotations per minute if the monitored deformation magnitude of the disk forgings is lower than the target deformation magnitude when performing the pre-spinning of the disk forgings by the predicted revolution.
Preferably, Step S11 includes: Step S111, simulating heat treatment of the disk forgings to obtain a internal stress distribution of die disk forgings; and Step S112, simulating the pre-spinning of the disk forgings by different revolutions to determine the predicted revolution, in which the pre-spinning by the predicted revolution enables the internal stress in the disk forgings to be regulated to be 400MPa or below and enables the residual deformation magnitude of the disk forgings to be 0.05%-1.95%.
Preferably, Step Sill includes: obtaining a internal stress distribution of the disk forgings after heat treatment by detecting an actual internal stress in the disk forgings and correcting a simulation result of the disk forgings by using the actual internal stress.
Preferably, Step S3 is further included: drawing a internal stress distribution diagram of the disk forgings after pre-spinning. Preferably, Step S3 includes: Step S31 simulating the pre-spinning of the disk forgings by the target revolution to obtain the internal stress distribution of the disk forgings after the pre-spinning; and Step 532: detecting an actual internal stress at a feature site of the disk forgings, and correcting a simulated result of the disk forgings after pre-spinning by using the actual internal stress to obtain the internal stress distribution of the disk forgings after pre-spinning; Preferably, the target deformation magnitude is 0.05%-1.95%.
Preferably, the deformation magnitude of the disk forgings is monitored after keeping a current revolution for at least 30 seconds when performing the pre-spinning.
Preferably, when monitoring the deformation magnitude of the disk forgings, a stable value is taken as the monitored deformation magnitude of the disk forgings; and/or Step 52 includes: gradually decreasing the revolution of the pre-spinning to zero when it is monitored that the deformation magnitude of the disk forgings reaches the target deformation magnitude.
Preferably, the superalloy is a wrought superalloy, a powder superalloy, or a cast superalloy.
Preferably, the disk forgings is a disk structure without obvious stress concentration before pre-spinning, and the disk forgings includes annular disk forgings, compressor disk forgings and turbine disk forgings.
Preferably, the operating temperature of the pre-spinning is -50°C-750°C.
Preferably, the method performs the pre-spinning by a high-speed spinning test platform and a matched tool for positioning the disk forgings on the high-speed spinning test platform.
According to the technical solution, the internal stress within the disk forgings can be effectively regulated, while the mechanical property of the disk forgings is maintained. Therefore, the deformation degree of subsequent part machining can be alleviated so as to shorten the part machining period and reduce the cost. No harmful deformation occurs in subsequent ovcrspeed test and service life of the machined part, and thus the dimensional stability of the part can be guaranteed. By forming internal stress distribution beneficial to the working condition of the disk piece after the pre-spinning, compressive stress is placed into the hub, and the fatigue life of the disk piece can be effectively prolonged.
Brief Description of the Drawings
FIG. la is a schematic structural diagram in which disk forgings is a turbine disk, and FIG. lb is a schematic structural diagram in which disk forgings is an annular disk (for the purpose of showing a cross section, FIG. la and FIG. lb are views with a portion removed, and the disk forgings are of a complete annular shape); FIG. 2a to FIG. 2c respectively simulate internal stress distribution states in different heat treatment process parameters according to Example 1 of the present application, in which: FIG. 2a is a state in a low internal stress level: the maximum tensile stress in the central region of the cross section of the disk forgings is 286MPa, FIG. 2b is a state in a medium internal stress level: the maximum tensile stress in the central region of the cross section of the disk forgings is 517M Pa; and FIG. 2c is a state in a low internal stress level: the maximum tensile stress in the central region of the cross section of die disk forgings is 681MPa, FIG. 3a to FIG. 3d simulate distribution states of the stress and deformation of a disk forgings during pre-spinning under 0 internal stress condition according to a method of the present application, in which: FIG. 3a shows a Von mises equivalent stress distribution state in the dish forgings when reaching a maximum spinning speed; FIG. 3b shows a distribution state of chordwise internal stress in the disk forgings after the spinning is stopped; FIG. 3c shows Vonmises equivalent plastic strain distribution in the disk forgings after the spinning is stopped; and FIG. 3d shows a chordwise component of the residual plastic strain after the spinning is stopped; FIG. 4a to FIG. 4f shows a stress and strain distribution of a disk forgings during pre-spinning under a condition of superimposed heat treatment internal stress stimulated according to a method of the present application, in which: FIG. 4a shows a Vonmises equivalent stress distribution in a disk forgings with medium heat treatment stress when reaching a maximum spinning speed; FIG. 4b shows a chordwise stress distribution in the disk forgings with medium heat treatment stress when the spinning speed is maximum; FIG. 4c shows a Vonmises equivalent stress distribution in the disk forgings after the spinning is stopped; FIG. 4d shows a chordwise stress component after the spinning is stopped, transited from a compressive stress of -250M Pa at an inner diameter to a tensile stress of 150MPa at an outer diameter; FIG. 4e shows a Vomniscs equivalent plastic strain distribution in the disk forgings after the spinning is stopped; and FIG. 4f shows a slight plastic deformation of 0.05%-0.25% introduced into an actual part region of the disk forgings by the pre-spiaming; FIG. 5a to FIG. 5d show the variation of dimensions of a feature member of a disk forgings during pre-spinning according to a method of the present application, in which: FIG. 5a shows the relationship between the change in dimension of the disk forgings and the maximum spinning speed of the pre-spinning when there is no initial heat treatment stress (final= 0); FIG. 5b shows the effect of heat treatment stress on the change in the outer diameter of the disk forgings, in which the greater the initial stress is, the lower the critical spinning speed required for yielding is; FIG. 5c shows the change in the dimension of the disk forgings during spinning under different initial stresses; and FIG. 5d shows that heat treatment stress has already started to have a significant effect on the variation of the outer diameter dimension of the disk forgings during increasing the spinning speed; FIG. 6 shows a stress release curve during pre-spinning according to Example 1 of the present application; FIG. 7 shows a internal stress result obtained by simulating pre-spinning by a predicted revolution before and after pre-spinning according to Example 1 of the present application; FIG. 8a and FIG. 8b show a change in mechanical properties before and after pre-spinning according to Example 1 of the present application; FIG. 9a to FIG. 9d show a regulation effect of the pre-spinning treatment on the stress state of a high scroll according to Example 2 of the present application; and FIG. 10a and FIG. 10b show a stress release curve during pre-spinning and a internal stress result obtained by simulating pre-spinning by a predicted revolution before and after pre-spinning according to Example 2 of the present application, and FIG. 10c shows the dimensional change in Example 2 during an overspeed spinning test.
Detailed Description
Specific implementation modes of the present application will be described in detail below with reference to the accompanying drawings. It is to be understood that the specific implementation modes described herein is illustrative and explanatory of the present application only and is not restrictive of the present application.
In the present application, orientation wordings such as "upper, lower, left, right" are generally used to refer to upper, lower, left, and right as shown with reference io the drawings, if (hey are not described to the contrary; by "inner, outer" is meant the inner and outer relative to the contours of the members themselves. Hereinafter, the present application will be described in detail with reference to the accompanying drawings and implementation modes.
The present application provides a method for internal stress regulation in superalloy disk forgings by pre-spiiming. The method hicludes: Step Si, determining a target revolution for regulating an internal stress in the disk forgings, and determining a target deformation magnitude of plastic deformation required for regulating the internal stress by the pre-spinning of the disk forgings; and Step 52, performing the pre-spinning of the disk forgings by the target revolution, monitoring the deformation magnitude of the disk forgings, and stopping the pre-spinning when the deformation magnitude of the disk forgings reached the target deformation magnitude.
According to the method disclosed by the present application, the internal stress in the disk forgings can be effectively regulated, while the mechanical property of the disk forgings is maintained. Therefore, the deformation degree of subsequent part machining can be alleviated so as to shorten the part machining period and reduce the cost. There is no harmful deformation occurred in subsequent overspeed test and the service life of the machined part, and thus the dimensional stability of the part is guaranteed. By forming internal stress distribution beneficial to the working condition of the disk forgings after pre-spinning, compressive stress is planted into the hub, and the fatigue life of the disk forgings can be effectively prolonged Specifically, according to the method provided by the present application, pre-spinning can be performed at a high-speed spinning platform so that the whole disk forgings are subjected to yielding, resulting in micro plastic deformation, thereby regulating the internal internal stress in the disk forgings.
In addition, by regulating the internal stress in the disk forgings, the possibility of part warping and deformation during subsequent machining is avoided, facilitating the improvement of the machining efficiency and dimension precision.
In addition, because the disk forgings without obvious stress concentration is adopted for pre-spinning, in order to achieve yielding of the whole disk, the internal stress is regulated under a revolution of the pre-spinning much higher than the revolution in service. Therefore, in subsequent overspeed strength test, it can be ensured that no harmful deformation exceeding design requirements occurs under 115% or 120% high-stress state. Likewise, harmful deformation will not occur in service so that the dimension control of the parts is facilitated.
Moreover, by stopping the pre-spinning, the spinning speed of the disk forgings is decreased, so that a stress distribution of internal pressure and external tension is formed along the radial direction of the disk forgings, which is favorable for working conditions during service (compressive stress is planted in the hub of the disk piece), thereby effectively prolonging the fatigue life of the disk forgings.
Compared with the traditional method for decreasing the internal internal stress in the disk forgings merely by controlling the cooling speed of the heat treatment, the present method can not only solve the problem of machining deformation, but also ensure that no more harmful deformation exceeding a designed deformation occurs in the overspeed strength test state and in subsequent service life because the internal stress is regulated in advance.
In the present application, the target revolution for regulating the internal stress in the disk forgings can be determined according to an appropriate manner, for example, a simulation. According to a preferred embodiment of the present application, the target revolution can be obtained by performing correction according to the simulation result. Specifically, Step Si includes: Step S11, obtaining a predicted revolution for regulating the internal stress in the disk forgings by simulated calculation; Step S12, performing the pre-spinning of the disk forgings by the predicted revolution, and monitoring the deformation magnitude of the disk forgings, mid Step S13, adjusting the predicted revolution according to a monitored deformation magnitude of the disk forgings to determine the target revolution.
In other words, in the preferred implementation of the present application, the predicted revolution is firstly determined in Step S11, then pre-spinning is performed by the predicted revolution in Step S12, and finally, the revolution is adjusted in Step S13 according to the deformation magnitude of the disk forgings to correct die predicted revolution and obtain die target revolution. After the target revolution is determined by the disk forgings, a disk forgings having the same specification and state as those of the disk forgings can be pre-spun by the determined target revolution.
In Step 511, in order to obtain the predicted revolution, the internal stress in the disk forgings can be obtained by simulated calculation, and the target internal stress to be regulated can be set as required. In particular, when regulating the internal stress, it is necessary to control the deformation magnitude of micro plastic deformation in order to maintain the mechanical properties of disk forgings. To this end, Step S1 1 may include: Step 5111, simulating heat treatment of the disk forgings to obtain a internal stress distribution of the disk forgings; and Step S112, simulating the pre-spinning of the disk forgings by different revolutions to determine the predicted revolution; in which the pre-spinning by the predicted revolution enables the internal stress in the disk forgings to be regulated to be 400MPa or below and enables the deformation magnitude of the disk forgings to be 0.05%495%.
In particular, in order to obtain a more precise internal stress distribution of the disk forgings, the simulation result can be corrected by the actually detected internal stress distribution of the disk forgings. Specifically, Step Sill may include: obtaining the internal stress distribution by detecting an actual internal stress in the disk forgings, and correcting a simulation result of the disk forgings by using the actual internal stress.
Those skilled in the art will appreciate that the heat treatment and pre-spinning of the disk forgings can be simulated in a variety of appropriate manners. For example, the material, dimension, and heat treatment process of the disk forgings can be set, and finite element simulation (e.g., using
S
ansys software) can be performed to simulate the heat treatment of the disk forgings. For example, the heat treatment can be simulated with reference to "Progresses in Research of Numerical Simulation of Heat treatment on Steel" (Journal of lianfin University of lechnology and Education. Vol. 24, No. 3, September 2014). Correspondingly, the pre-spinning of the disk forgings can be simulated by increasing spinning movements according to parameters such as the revolution of the pre-spinning and the like.
Under a condition not taking initial heat treatment stress (ciuu(si1=0) into consideration, in the whole process of simulating the pre-spinning treatment mid after stopping the spinning when the treatment is completed, the stress-strain values at individual positions on the disk forgings are generally a function of the diameter of the disk forgings, independent of the specific geometric dimension feature of the cross section of the disk forgings, as shown in FIGs. 3A-3d. When the pre-spinning reaches a maximum spinning speed, as shown in FIG. 3a, the yield point has been reached in the region between the inner diameter Dinner and the contour line numbered A (the yield strength of the material at room temperature is set to 11501\4Pa). In the process of increasing the revolution, thc plastic deformation firstly starts from thc inner diameter Dim," of thc disk forgings and gradually expands outwards radially. Accordingly, by precisely controlling the maximum spinning speed of thc pre-spinning, the range in which the yield point is reached on the disk forgings can be precisely controlled, and the specific plastic deformation magnitude can be acquired. As can be scan from FIGs. 3c and 3d, for a low scroll with (Doer-Dueer)/Dieteri<<1, the plastic deformation magnitude of the disk forgings from the inner diameter pullet to the outer diameter Dottier, i.e. an overall plastic deformation magnitude of the disk forgings, can be controlled within a small range of 0.05%-0.25%.
FIGs. 4a to 4f show thc results of pre-spinning simulation in the presence of heat treatment stress (i.e. an actual state of the disk forgings). By comparison, it can be seen that, in the presence of heat treatment internal stress, the stress distribution and deformation behavior of thc disk forgings during pre-spinning arc greatly different from thosc in an ideal state without initial stress given in FIGs. 3a to 3d. The reason lies in that, due to the presence of the internal stress of the initial heat treatment, the initial chordwise tensile stress is superimposed with a pre-spinning centrifugal force at a position where (he (ensile stress is formed inside (he disk forgings, so that (he critical pre-spinning speed required for the corresponding region to reach the yield point is much lower than that for a situation where there is no initial stress, as shown in FIG. 5b. The greater the initial chordwisc tensile stress introduced by heat treatment is, the lower the critical spinning speed required by the disk forgings for reaching the yield point during the pre-spinning is. In addition, a position on the disk forgings which reaches the yield point at the earliest time is no longer at the inner diameter D1,10. but at the position with an initial maximum tensile stress formed in the inner region of the cross section due to heat treatment. As the spinning speed increases, the range in which the yield point is reached gradually expands from the position with maximum tensile stress to adjacent regions. Under a constant maximum spinning speed, with the increase of the heat treatment internal stress, the change in the outer diameter of the disk forgings after spinning treatment is increased. The reason lies in that, the more the heat treatment stress as regulated as a whole is, the more the elastic deformation magnitude of individual positions in the disk forgings recovered duc to the loss of stress constraint is. Specifically, along with the heat treatment stress of the disk forgings, the tensile stress in the tensile stress region is regulated by generating local plastic deformation, and the compressive stress region which is in a balanced state with the tensile stress region due to mutual constraint can be synchronously and elastically stretched due to the loss of the constraint, macroscopic manifestation of which is that, the higher the internal stress of the heat treatment is, the larger a permanent increase in the value of the outer diameter Dome, of the disk forgings after pre-spinning treatment is. FIG. 5c shows the dynamic variation of the outer diameter Dome, of the disk forgings vs. the spinning speed during the whole process of loading and unloading in pre-spinning by a maximum spinning speed of 9750 rotations pcnnin. For one specific pre-spinning, the disk forgings is directly proportional to the square of the spinning speed in the elastic deformation stage. Comparing FIG. Sc with FIG. 5d, it can be seen that the increasing speed of the outer diameter of the disk forgings is accelerated after the yielding starts, however, in the unloading stage after reaching thc maximum spinning speed, the outer diameter of the disk forgings remains a linear relationship with the square of the spinning speed. With the increase of the heat treatment internal stress, under the same pre-spinning condition, the initial yielding time of disk forgings becomes earlier, and the permanent deformation magnitude of the outer diameter after unloading becomes larger. In particular, FIG. 5d, which is a partially enlarged view of the spinning speed increasing stage in FIG. Sc, shows that the magnitude of the heat treatment internal stress has a significant influence on the deformation behavior of the disk forgings at the early stage of the spinning speed increase.
When the disk forgings is of the low scroll structure as shown in FIG, lb, in which the disk forgings has a dimension feature that the diameter Dinner of an inner hole is close to the diameter Do",e, of an outer circle and both of them are relatively large, namely (Domer-Dimier)/Domm<<1, individual gradients of the stress-strain amounts formed on the cross section of the disk forgings by the pre-spinning arc relatively small, and the overall distribution is relatively even. Such a feature of a low scroll configuration makes it possible to realize complete yielding of the disk forgings and acquire a trace amount of permanent plastic deformation by the technology of pre-spinning the disk forgings, by which the internal stress distribution state of "internal pressure and external tension" caused by heat treatment can be completely reconstructed. In fact, all the configurations of turning pieces with annular features like the low scroll are suitable for regulating the stress distribution state of the disk forgings by adopting a pre-spinning method.
Compared with parts such as a low scroll, a labyrinth disk, and a baffle or the like having small cross sections, when the disk forgings is of the high scroll structure as shown in FIG. la, a higher level of internal stress is often formed in the disk forgings during heat treatment due to features of usually heavy weight of the high scroll and large thickness at a site such as a hub or the like. The overall structural features of the high scroll part are that the outer contour is relatively: thick and large and the structure has high rigidity, therefore, the problem of affecting the dimension of the parts by the heat treatment internal stress in the machining process is often not as serious as that in other thin-wall disk pieces.
However, during the procedure of over-spinning test and service on a machine, if the tensile stress in the heat treatment internal stress is superimposed with a service load, it is possible for a specific position of the disk forgings to reach the yield point within the spinning speed range much lower than the nominal load. In the working process of the disk forgings, once a local yielding phenomenon occurs in the residual tension region, the overall regulation of the internal stress of the heat treatment will be resulted in, which is manifested as harmful deformation in macroscopic dimension of the disk forgings beyond expectation. In fact, excessive heat treatment internal stress is one of the leading reasons for the loss of dimensional stability for a high scroll in service under a working condition with a strength much lower than a designed strength.
The difference between the inner diameter and the outer diameter of the high scroll is large, namely (Do","-Dinli")/Dnn",>>1. Therefore, if a spinning speed for yielding the whole of the high scroll is adopted for pretreatment, the plastic deformation magnitude at the inner diameter position will be too large, negatively influencing the structural performance of the material.
However, due to the high heat treatment tensile stress present in a specific region of the hub position of the high scroll, a maximum tensile stress position on the disk forgings reaches the yield point in a low spinning speed range, even at a spinning speed lower than that required for the yielding at the inner hole Dinner, so that the heat treatment internal stress is effectively regulated.
As can be seen from FIGs. 9a and 9b, the heat-treated high scroll has very high internal stress, the maximum tensile stress therein appears in the inner region of the hub, the maximum tensile stress reaches up to 700-900MPa, and accordingly, the maximum compressive stress on the surface of the disk forgings can reach 1000MPa or higher. If the yield strength of the material is 1200MPa at room temperature"the hub position will actually enter a yielding state when the working load at the hub position in service reaches 500MPa or higher, so that the internal stress on the disk forgings is regulated. At this time, a harmful deformation beyond expectation will be generated in the disk forgings under a working condition with a yield strength much lower than the nominal yield strength.
Different from a pre-spinning of a low stroll which can achieve a yielding for the whole disk forgings, for the purpose of preventing excessive plastic deformation magnitude, a plastic deformation will be usually introduced to the high scroll only at the hub position at the highest pre-spinning speed so as to ensure that the tensile stress of the hub region is sufficiently regulated. The web and the rim region will not be subjected to plastic deformation at all during pre-spinning, therefore, the microstructure states such as dislocation density and the like at the rim position will be not influenced. As such, it is ensured that the yield strength and the fatigue performance of the hub position are improved, and the high-temperature creep endurance performance of the rim position is not attenuated.
By implementing the pre-spinning, as shown in FIGs. 9c and 9d, the chordwise tensile stress region in the inner region of the hub is substantially eliminated, the heat treatment internal stress in the disk forgings is effectively regulated, and meanwhile, the compressive stress which is distributed in gradients from the inner hole along the diameter direction covers a region corresponding to the web of the disk forgings. The internal stress distribution state adjusted by the pre-spinning, particularly the chordwise compressive stress implanted in the hub region, can significantly improve the fatigue performance of the disk forgings. More importantly, due to the elimination of excessive chordwise tensile stress in the hub, the disk forgings can be prevented from reaching the yield point too early in subsequent service due to the residual tension superposed with a working stress, which otherwise would lead to harmful deformation of the disk forgings due to internal stress regulation. Therefore, the pre-spinning treatment of the disk forgings is an effective stress regulation means, and has very important engineering application value for ensuring dimensional stability of a high scroll in subsequent service life.
In addition, in Step 5112, in order to properly set the predicted revolution, the required degree of regulation can be set according to the internal stress distribution obtained by simulation, that is, the internal stress of the pre-spun disk forgings is regulated to be 400M Pa or below. Specifically, different pre-spinning revolutions can be set for simulating the pre-spinning, mid a finally determined predicted revolution shall be the one enabling the internal stress of the pre-spun disk forgings to be regulated to be 400MPa or below. Tn particular, the predicted revolution determined by the simulated pre-spinning further entails a deformation magnitude of the disk forgings of 0.05')/0-1.95%, so that the disk forgings is prevented from generating excessive plastic deformation and influencing the mechanical properties of the disk forgings.
In the above Step S13, the revolution of the pre-spinning can be adjusted adaptively according to comparison result between the monitored deformation magnitude of the disk forgings and the target deformation magnitude. Specifically, Step S13 includes: S131 determining the predicted revolution as the target revolution if the monitored defonnation magnitude of the disk forgings reaches the target deformation magnitude when performing the pre-spinning of the disk forgings by the predicted revolution; or Step 5132, if the monitored deformation magnitude of the disk forgings is lower than the target deformation magnitude when performing the pre-spinning of the disk forgings by the predicted revolution, gradually increasing the revolution of the pre-spinning until the monitored deformation magnitude of the disk forgings reaches the target deformation magnitude when performing the pre-spinning by a final revolution, and determining the final revolution as the target revolution.
Step S131 is applicable to a case where the predicted revolution is relatively precise, i.e., a required target deformation magnitude can be reached by pre-spinning by the predicted revolution. Step 5132 is applicable to a case where the predicted revolution is not precise enough (i.e., pre-spun by the predicted revolution can not reach the target deformation magnitude) and the modification is required, in which a specific modification is to gradually increase the revolution of the pre-spinning. In order to precisely determine the target revolution, it is possible to properly set the revolutions increased each time. Preferably, Step S132 includes: gradually increasing the revolution of the pre-spinning by a step of 25-100 rotations per minute if the monitored deformation magnitude of the disk forgings is lower than the target deformation magnitude when performing the pre-spinning of the disk forgings by the predicted revolution.
In addition, in order to avoid the influence of excessive plastic deformation of the disk forgings caused by pre-spinning on mechanical properties, the target deformation magnitude can be properly set such that only slight plastic deformation of the disk forgings occurs, and preferably, the target deformation magnitude is 0.05%-1.95%. When monitoring the deformation magnitude of the disk forgings, the deformation magnitude of a specific position (for example, at the outer diameter) on the disk forgings is often monitorcd. However, the deformation magnitudes varies at different positions on the overall disk forgings. For example, the deformation magnitude at the inner diameter is larger than that at the outer diameter. Therefore, the range of the deformation magnitude at individual positions shall be guaranteed to be within the range of the target deformation magnitude.
Further, in order to precisely monitor the deformation magnitude of lhe disk forgings, it is preferable to monitor the deformation magnitude of the disk forgings after keeping the current revolution of the pre-spinning for at least 30 seconds so as to ensure that the monitoring is performed while the plastic deformation generated by the pre-spinning has been stabilized.
In addition, during the plastic deformation of the disk forgings due to pre-spinning, the disk forgings is subject to a change from elastic deformation to plastic deformation, therefore, the deformation magnitude of the disk forgings will be continuously changed until reaching a stable value. In order to precisely monitor the deformation magnitude, preferably, when monitoring the deformation magnitude of the disk forgings, a stable value is taken as the monitored deformation magnitude of the disk forgings. In particular, when the monitored deformation magnitude fluctuates in the range of ± 0.01mm within 15s, it could be considered that a stable value is reached.
According to the method of the present application, in order to finally form a stress distribution state of internal pressure and external tension beneficial to a working condition during service along the radial direction of the disk forgings, Step S2 includes: gradually decreasing the revolution of the pre-spinning to zero when it is monitored that the deformation magnitude of the disk forgings reaches the target deformation magnitude. Specifically, the revolution may be gradually decreased by 1-200 rotations per second until the pre-spinning stops.
The method of the present application is applicable to various superalloy disk forgings with high internal stress. In particular, the superalloy includes a wrought superalloy, a powder superalloy, or a cast superalloy.
In addition, in order to verify the effect of the method provided by the present application, step S3 is included: drawing a internal stress distribution diagram of the disk forgings after pre-spinning. By drawing a internal stress distribution diagram after pre-spinning, the technical effect of the present application can be more visually seen. In particular, the internal stress distribution diagram after pre-spinning can be drawn in a variety of suitable manners, for example drawing by simulation. To improve the efficiency, preferably, step S3 includes: S31, simulating the pre-spinning of the disk forgings by the target revolution to obtain the internal stress distribution of the disk forgings after the pre-spinning; and S32, detecting the actual internal stress at a feature site of the disk forgings (for example, a position with small fluctuation of the stress distribution selected according to a simulated result), and correcting the simulated result of the disk forgings after pre-spinning by using the actual internal stress so as to obtain the internal stress distribution of the disk forgings after pre-spinning.
In the present application, the actual internal stress of the feature position of the disk forgings can be detected in an appropriate manner For example, 0.2mm or more below the surface of the feature site of the disk forgings can be measured by an X-ray diffraction method.
In order to ensure the final effect, the disk forgings applicable to the present application is a disk structure without obvious stress concentration before pre-spinning, including, but not being limited to, annular disk forgings, compressor disk forgings, turbine disk forgings and the like. Further, the pre-spinning operating temperature suitable for the present application is -50°C-750 °C, in particular, room temperature. Particular operating temperature depends primarily on the ratio of the tensile strength of the material to the yield strength of the material.
In the present application, various suitable high-speed spinning equipment can be adopted for pre-spinning as long as the conditions of spinning speed control, temperature, and the like required by pre-spinning the disk forgings can be met. The deformation magnitude in the pre-spinning process can be monitored by using suitable equipment, for example, by infrared displacement detection.
The method of the present application will be illustrated by the following Examples.
Example 1
An annular low-pressure turbine disk forgings of GH4065 alloy was used, and the structure thereof was as shown in FIG. lb. The inner diameter was (D618mm, the outer diameter was (1)829mm, the height was 85mm, and the weight was 130kg. After standard heat treatment, the chordwise internal stress in the disk forgings was the main stress. The X-ray diffraction method was adopted to detect 0.2 mm or more below the feature site. The chordwise internal stress at the hub was -384MPa, the chordwise internal stress at the web was -641MPa, and the chordwise internal stress at the rim was -740MPa, showing a high-stress level.
The internal stress distribution of the disk forgings was obtained by simulating the heat treatment of the disk forgings, and as shown in FIG. 2c, the simulated result was consistent with the detection result.
The pre-spinning was then simulated. For a low scroll with (D0me1-Di.")/Di."<<1, the plastic deformation magnitude of the disk forgings from the inner diameter Dinner to thc outer diameter Douter, i.e. the overall plastic deformation magnitude of the disk forgings, was controlled within a small range of 0.05%-0.25%.
As shown in FIGs. 4a to 4f, the stress-strain distribution of the disk forgings during the pre-spinning by different revolutions in the presence of heat treatment stress was simulated, the maximum chordwisc tensile stress in the disk forgings was regulated to be 400MPa or below, and the predicted revolution corresponding to an overall deformation of 0.15%-0.25% is 9400 rotations per minute.
The pre-spinning was performed on the disk forgings at 9400 rotations per minute for 60 seconds. As shown in FIG. 6, the deformation magnitude of the disk forgings was monitored, the residual deformation at the outer diameter was detected to be 0.75mm, and the overall deformation magnitude corresponding to the disk forgings is 0.184).24%, reaching the target deformation magnitude, therefore, the predicted revolution was determined as the target revolution. The internal stress can be regulated by the pre-spinning of 9400 rotations per minute for a batch of disk forgings with the same specification.
In order to verify the effect of the present application, the X-ray diffraction method was adopted to measure internal stress (the result was shown in FIG. 7) 0 2 mm or more below the surface of a feature site (for example, a region with small fluctuation of stress distribution selected according to a simulated result) of the disk forgings before and after the pre-spinning. The test result was substantially consistent with the simulated result. Finally, the internal stress distribution diagram after the pre-spinning was drawn, ready for a subsequent disk piece machining process.
No abnormality was found in the pre-spun disk forgings by ultrasonic inspection. Further dissection was carried out on the disk piece, showing that the microstructure of the disk piece and mechanical properties at various positions (results shown hi FIGs. 8a and lib) were not significantly different from those of a disk piece without subjecting to the pre-spinning.
Example 2
A typical alloy turbine disk forgings of powder superalloy FGH96 (hereinafter also referred to as a high scroll) was treated using the method of Example 1. The structure was shown in FIG. la, with an inner diameter of (1)125mm, an outer diameter of 0550mm, a hub height of 215mm, and a rim height of 60mm. The disk forgings was subjected to standard heat treatment. The internal stress distribution of the disk forgings was obtained by simulating the heat treatment of the disk forgings. The result was shown in FIGs. 9a and 9b, in which the maximum chordwise tensile stress in the dish piece reached above 700MPa, which was relatively high.
The pre-spinning of the disk forgings by different revolutions was simulated, the maximum chordwise tensile stress in the disk forgings was reduced to 400MPa or below, and the predicted revolution corresponding to the overall deformation of 0.15-1.0% was 23500 rotations per minute. The test piece of the disk forgings was pre-spun at 23500 rotations per minute for 60 seconds. The deformation magnitude of the test piece was monitored. The residual deformation was measured to be 0.70mm, and the corresponding deformation magnitude was 0.12-0.88%, therefore, the target deformation magnitude cannot be reached. The revolution was increased by 50 rotations each time. When a final revolution was 23550 rotations per minute, the residual deformation reached 0.82mm, reaching a target deformation magnitude of 0.15-0.98%, therefore, the final revolution was determined as the target revolution. The internal stress can be regulated by the pre-spinning of 23550 rotations per minute for a batch of disk pieces with the same specification. In order to verify the effect of the present application, the internal stress was measured 0.2mm or more below the surface of a feature site of the disk forgings before and after the pre-spinning (the result was shown in FIG. 10b). The test result was consistent with the simulated result. By ultrasonic inspection to the pre-spun disk piece and an overall dissection performance test to the disk forgings, no significant change was found.
In addition, in order to verify the effect of the present application in terms of dimensional stability, an overspeed test was performed for the pre-spun piece and the non-pre-spun piece. The test result was shown in FIG. 10c. The dimension of the pre-spun disk piece was substantially unchanged in 122% overspeed test.
The preferred implementation modes of the present application are described in detail above with reference to the accompanying drawings, but the present application is not limited thereto. NI any simple variations of the technical scheme of dm present application are possible within the scope of the technical idea of the present application. The present application includes the combination of various specific technical features in any suitable manner. In order to avoid unnecessary repetition, the present application will not be further described with respect to various possible combinations. However, such simple variations and combinations should also be considered as the disclosed content of the present application, falling within the scope of the present application.

Claims (8)

  1. Claims I. A method for internal stress regulation in superalloy disk forgings by pre-spinning, comprising: Step Si determining a target revolution for regulating internal stress in the disk forgings, and determining a target deformation magnitude of plastic deformation required for regulating the internal stress by the pre-spinning of the disk forgings; wherein Step Si comprises: Step S1 1 obtaining a predicted revolution for regulating the internal stress in the disk forgings by simulated calculation; Step Sll comprising: Step S111 obtaining internal stress distribution of the disk forgings by simulating heat treatment of the disk forgings; Step S111 comprising: obtaining a internal stress distribution of the disk forgings after heat treatment by detecting an actual internal stress in the disk forgings and correcting a simulated result of the disk forgings by using the actual internal stress; and Step S112 simulating the pre-spinning of the disk forgings by different revolutions to determine the predicted revolution; wherein the pre-spinning by the predicted revolution enables the internal stress in the disk forgings to be regulated to be 400MP or below and enables residual deformation magnitude of the disk forgings to be 0.05%-1.95%; Step S12 performing the pre-spinning of the disk forgings by the predicted revolution, and monitoring the deformation magnitude of the disk forgings; and Step S13 adjusting the predicted revolution according to a monitored deformation magnitude of the disk forgings to determine a target revolution; Step S13 comprising: S131 determining the predicted revolution as the target revolution if the monitored deformation magnitude of the disk forgings reaches the target deformation magnitude when performing the pre-spinning of the disk forgings by the predicted revolution; or 5132 if the monitored deformation magnitude of the disk forgings is lower than the target deformation magnitude when performing the pre-spinning of the disk forgings by the predicted revolution, gradually increasing the revolution of the pre-spinning until die monitored deformation magnitude of the disk forgings reaches the target deformation magnitude when performing a final revolution of pre-spinning, and determining the final revolution as the target revolution; Step S132 comprising: gradually increasing the revolution of the pre-spinning by a step of 25-100 rotations per minute if the monitored deformation magnitude of the disk forgings is lower than the target deformation magnitude when performing the pre-spinning of the disk forgings by the predicted revolution; Step S2 performing the pre-spinning of the disk forgings by the target revolution, monitoring the deformation magnitude of the disk forgings, and stopping the pre-spinning when a monitored deformation magnitude of the disk forgings reaches the target deformation magnitude; and Step S3: drawing a internal stress distribution diagram of die disk forgings after pre-spinning, preferably, Step 53 comprising: Step S31 simulating the pre-spinning of the disk forgings by the target revolution to obtain the internal stress distribution of the disk forgings after the pre-spinning; and Step S32: detecting an actual internal stress at a feature site of the disk forgings, and correcting a simulated result of the disk forgings after pre-spinning by using the actual internal stress to obtain the internal stress distribution of the disk forgings after pre-spinning.
  2. 2. The method for internal stress regulation in superalloy disk forgings by pre-spinning according to claim 1, wherein the target deformation magnitude is 0.05%1.95%.
  3. 3. The method for internal stress regulation in superalloy disk forgings by pre-spinning according to claim 1, wherein the deformation magnitude of the disk forgings is monitored after keeping a current revolution for at least 30 seconds when performing the pre-spinning.
  4. 4. The method for internal stress regulation in superalloy disk forgings by pre-spinning according to claim 1, wherein: when monitoring the deformation magnitude of the disk forgings, a stable value is taken as the monitored deformation magnitude of the disk forgings; and/or Step S2 comprises: gradually decreasing the revolution of the pre-spinning to zero when it is monitored that the deformation magnitude of the disk forgings reaches the target deformation magnitude.
  5. 5. The method for internal stress regulation in superalloy disk forgings by pre-spinning according to claim 1, wherein the superalloy is a wrought superalloy, a powder superalloy, or a cast superalloy.
  6. 6. The method for internal stress regulation in superalloy disk forgings by pre-spinning according to claim 1, wherein the disk forgings is a disk structure without obvious stress concentration before the pre-spinning, and the disk forgings comprises annular disk forgings, compressor disk forgings and turbine disk forgings.
  7. 7. The method for internal stress regulation in superalloy disk forgings by pre-spinning according to claim 1, wherein a pre-spinning operating temperature is -50°C-750°C.
  8. 8. The method for internal stress regulation in superalloy disk forgings by pre-spinning according to claim 1, wherein the pre-spinning is performed by using a high-speed spinning test platform and a matched tool for positioning the disk forgings on the high-speed spinning test platform.
GB2110443.5A 2021-07-20 2021-07-20 Method for internal stress regulation in superalloy disk forgings by pre-spinning Pending GB2609043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2110443.5A GB2609043A (en) 2021-07-20 2021-07-20 Method for internal stress regulation in superalloy disk forgings by pre-spinning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2110443.5A GB2609043A (en) 2021-07-20 2021-07-20 Method for internal stress regulation in superalloy disk forgings by pre-spinning

Publications (2)

Publication Number Publication Date
GB202110443D0 GB202110443D0 (en) 2021-09-01
GB2609043A true GB2609043A (en) 2023-01-25

Family

ID=77443453

Family Applications (1)

Application Number Title Priority Date Filing Date
GB2110443.5A Pending GB2609043A (en) 2021-07-20 2021-07-20 Method for internal stress regulation in superalloy disk forgings by pre-spinning

Country Status (1)

Country Link
GB (1) GB2609043A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100212422A1 (en) * 2009-02-25 2010-08-26 Jeffrey Scott Allen Method and apparatus for pre-spinning rotor forgings
CN112342368A (en) * 2020-10-16 2021-02-09 中国航发北京航空材料研究院 Process method for reducing residual stress of deformed high-temperature alloy disc by rotation method
WO2021044098A1 (en) * 2019-09-04 2021-03-11 Safran Aircraft Engines Method for relieving stresses by rotation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100212422A1 (en) * 2009-02-25 2010-08-26 Jeffrey Scott Allen Method and apparatus for pre-spinning rotor forgings
WO2021044098A1 (en) * 2019-09-04 2021-03-11 Safran Aircraft Engines Method for relieving stresses by rotation
CN112342368A (en) * 2020-10-16 2021-02-09 中国航发北京航空材料研究院 Process method for reducing residual stress of deformed high-temperature alloy disc by rotation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
https://www.columbusmckinnon.com/en-us/resources/blog/forging-vs-casting-which-is-better/#:~:text=Forging%20and%20casting%20are%20two,although%20it%20is%20frequently%20heated. *
Introduction to PM HIP Technology, pub. 2013, European Powder Metallurgy Association *

Also Published As

Publication number Publication date
GB202110443D0 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
CA3124871C (en) Method for internal stress regulation in superalloy disk forgings by pre-spinning
CN107092728B (en) Fatigue test method for tensioning shaft of turbofan engine
RU2737127C1 (en) Increased service life of power turbine disk subjected to corrosion damage during operation (embodiments)
CN110595709B (en) Method for determining allowable amplitude of turbine engine blade
US20090308506A1 (en) Methods for heat treating and manufacturing a thermomechanical part made of a titanium alloy, and thermomechanical part resulting from these methods
US20190194789A1 (en) Nickel-Based Alloy Regenerated Member and Method for Manufacturing Same
US10619233B2 (en) Nickel-based alloy regenerated member, and method for manufacturing same
Lee et al. Life prediction of IN738LC considering creep damage under low cycle fatigue
US7711664B2 (en) Predicting crack propagation in the shaft dovetail of a generator rotor
CN114250352B (en) Method for improving service stability of superalloy disc or ring and obtained disc or ring
GB2609043A (en) Method for internal stress regulation in superalloy disk forgings by pre-spinning
US20230016175A1 (en) Method for Internal Stress Regulation in Superalloy Disk forgings by Pre-spinning
AU2021206812B1 (en) Method for Internal Stress Regulation in Superalloy Disk forgings by Pre-spinning
US20230167751A1 (en) Method of multi-objective and multi-dimensional online joint monitoring for nuclear turbine
Nozhnitsky et al. Numerical simulation of spin testing for turbo machine disks using energy-based fracture criteria
JP2000130103A (en) Gas turbine stationary blade structure and life controlling method therefor
RU2047464C1 (en) Method of making rotor of blade machine
Kostyukov et al. Centrifugal pumps in downstream: operational safety increase
JP2017083324A (en) Method for predicting remaining life of metal material
Korolev et al. Experimental studies of ultrasonic stabilization of rings of rolling bearings
CN116818555B (en) Method for determining pre-rotation speed of nickel-based superalloy wheel disc blank
CN117210667B (en) Turbine disc residual stress composite regulation and control method
Herrmann et al. Fatigue life on a full scale test rig: Forged versus cast wind turbine rotor shafts
Bessone et al. Simplified method to evaluate the “under platform” damper effects on turbine blade eigenfrequencies supported by experimental test
Green et al. Development and characterization of overspeed and cyclic behavior of dual grain structure turbine disks