GB2602367A - Socket drive improvement - Google Patents

Socket drive improvement Download PDF

Info

Publication number
GB2602367A
GB2602367A GB2108959.4A GB202108959A GB2602367A GB 2602367 A GB2602367 A GB 2602367A GB 202108959 A GB202108959 A GB 202108959A GB 2602367 A GB2602367 A GB 2602367A
Authority
GB
United Kingdom
Prior art keywords
socket
flank
tool
corner
fastener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB2108959.4A
Other versions
GB202108959D0 (en
GB2602367B (en
Inventor
M Eggert Daniel
d thompson Christopher
E Olson Gene
M Arendt Jeffrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snap On Inc
Original Assignee
Snap On Inc
Snap On Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/918,712 external-priority patent/US11806843B2/en
Application filed by Snap On Inc, Snap On Tools Corp filed Critical Snap On Inc
Priority to GB2315102.0A priority Critical patent/GB2622958A/en
Publication of GB202108959D0 publication Critical patent/GB202108959D0/en
Publication of GB2602367A publication Critical patent/GB2602367A/en
Application granted granted Critical
Publication of GB2602367B publication Critical patent/GB2602367B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B13/00Spanners; Wrenches
    • B25B13/02Spanners; Wrenches with rigid jaws
    • B25B13/06Spanners; Wrenches with rigid jaws of socket type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B13/00Spanners; Wrenches
    • B25B13/02Spanners; Wrenches with rigid jaws
    • B25B13/06Spanners; Wrenches with rigid jaws of socket type
    • B25B13/065Spanners; Wrenches with rigid jaws of socket type characterised by the cross-section of the socket

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Insertion Pins And Rivets (AREA)
  • Surgical Instruments (AREA)
  • Snaps, Bayonet Connections, Set Pins, And Snap Rings (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Dowels (AREA)
  • Clamps And Clips (AREA)
  • Earth Drilling (AREA)

Abstract

The tool 800 is adapted to engage a head of a dodecagonal type fastener 920 having a corner 922 and a flank 924 with a flank length. The tool includes a surface having a sidewall 806 extended between first and second recesses 804. The sidewall includes straight first 808 and second 810 portions respectively having first and second portion lengths. The first and second portions are angularly disposed (α8) by 130 to 140 degrees relative to each other, thereby creating a contact point that is adapted to engage the flank at a distance of 75 to 90 percent of the flank length away from the corner. The first and second portions may be angularly disposed by 133 to 136 degrees relative to each other. The surface may be disposed on a wrench body. The surface may include 12 equidistantly spaced recesses and 12 sidewalls. An alternative socket tool (100, Figure 1) is adapted to engage a head of a hexagonal fastener 120, engaging a flank at a distance of 30 to 60 percent of half the flank length away from a corner. The tool may reduce the risk of the fastener becoming stuck in the socket, being stripped, or slipping.

Description

SOCKET DRIVE IMPROVEMENT
CROSS REFERENCES TO RELATED APPLICATIONS
[0001] This application is a continuation-in-part of, and claims the priority benefit to, U.S. Patent Application No. 16/504,718, filed July 8, 2019, which is a continuation of U.S. Patent Application No. 15/634,697 (now U.S. Patent No. 10,442,060), filed June 27, 2017, which is a continuation of U.S. Patent Application No. 147309,954 (now U.S. Patent No. 9,718,170), filed June 20, 2014, which claims the benefit of U.S. Provisional Patent Application Serial No. 61/904,754, filed November 15, 2013, the contents of which are incorporated herein by reference in their entirety.
TECHNICAL FIELD
[0002] The present application relates generally to tools for driving fasteners, and n particular to sockets and drives for tools.
BACKGROUND
[0003] A variety of wrenches and tools are commonly used to apply torque to a workpiece, such as a threaded fastener. The workpiece may be any number of different sizes and shapes and fitments. Accordingly, many tools include a driver adapted to mate with one or more different adapters, such as sockets, to engage and rotate the different workp eces For example, for a typical bolt having a hex head, inner walls of a hexagonally shaped socket engage the fastener at or very near the corners of the fastener head, thereby allowing the tool to impart torque to the workpiece. However, due to this engagement, the socket may become pre-maturely fatigued and fail due to repeated stress being placed on the socket walls from the corners of the fastener. In addition, upon application of torque to the fastener, the fastener can become frictionally locked in the socket due to minor amounts of rotation of the fastener within the socket or easily stripped due to inadequate head to socket interaction.
SUMMARY
[0004] The present application relates to sockets and other tools, for example, hexagon sockets, double hexagon sockets, spline sockets, wrenches, etc. adapted to engage fasteners at a location further from a corner of the fasteners, relative to conventional sockets and tools. By shifting the point of contact or engagement of the socket and fastener head away from the corners of the fastener head, the strength and life of the socket is increased, and the risk of the fastener becoming frictionally locked in the socket or stripped by the socket is decreased.
[0005] In an embodiment, a dodecagonal type socket includes an axial bore having a generally dodecagonal cross-section with twelve sidewalls respectively extending between twelve corresponding recesses. Each of the sidewalls includes a first portion and a second portion that are angularly displaced by about 130-140 degrees relative to each other. This geometry of the socket provides for a contact point between the socket and a flank of a head of a dodecagonal type fastener that is a distance of about 75-90 percent of a length of the flank away from a corner of the head of the fastener, thus increasing the surface area of contact and life expectancy of the socket.
100061 In another embodiment, a hexagonal type socket includes an axial bore having a generally hexagonal cross-section with six sidewalls respectively extending between six corresponding recesses. Each of the sidewalls includes a first portion and a second portion that are angularly displaced by about 130-140 degrees relative to each other. This geometry of the socket provides for a contact point between the socket and a flank of a head of a hexagonal type fastener that is a distance of about 30-60 percent of half a length of the flank away from a corner of the head of the fastener, thus increasing the surface area of contact and life expectancy of the socket.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Embodiments of devices and methods are illustrated in the figures of the accompanying drawings which are meant to be exemplary and not limiting, in which like references are intended to refer to like or corresponding parts, and in which: [0008] FIG. I is a top plan view of a hexagonal socket in accordance with an embodiment of the present application in engagement with a typical hexagonal bolt head or nut.
[0009] FIG. IA is an enlarged sectional top plan view of the socket of FIG. I in accordance with an embodiment of the present application in engagement with a typical hexagonal bolt head or nut.
[0010] FIG. 2 is a top plan view of a dodecagonal socket in accordance with an embodiment of the present application in engagement with a typical hexagonal bolt head or nut.
[0011] FIG. 2A is an enlarged sectional top plan view of the socket of FIG. 2 in accordance with an embodiment of the present application in engagement with a typical hexagonal bolt head or nut.
100121 FIG. 3 is a top plan view of a splined socket in accordance with an embodiment of the present application in engagement with a typical hexagonal bolt head or nut.
[0013] FIG. 3A is an enlarged sectional top plan view of the socket of FIG. 3 in accordance with an embodiment of the present application in engagement with a typical hexagonal bolt head or nut.
[0014] FIG. 4 is an enlarged sectional top plan view of a splined socket in accordance with an embodiment of the present application.
[0015] FIG. 4A is an enlarged sectional top plan view of the socket of FIG. 4 in accordance with an embodiment of the present application [0016] FIG. 5 is a top plan view of a prior art hexagonal socket in engagement with a typical hexagonal bolt head or nut.
[0017] FIG. 5A is an enlarged sectional top plan view of the socket of FIG. 4 in engagement with a typical hexagonal bolt head or nut.
[0018] FIG. 6 is an enlarged sectional top plan view of a prior art dodecagonal socket in engagement with a typical hexagonal bolt head or nut.
[0019] FIG. 7 is a top plan view of a prior art splined socket in engagement with a typical hexagonal bolt head or nut [0020] FIG. 7A is an enlarged sectional top plan view of the socket of FIG. 6 in engagement with a typical hexagonal bolt head or nut.
[0021] FIG. 8 is a top plan view of another dodecagonal socket in accordance with an embodiment of the present application.
100221 FIG. 8A is an enlarged sectional top plan view of the socket of FIG. 8 in accordance with an embodiment of the present application in engagement with a typical dodecagonal bolt head or nut.
DETAILED DESCRIPTION
[0023] Detailed embodiments of devices and methods are disclosed herein However, it is to be understood that the disclosed embodiments are merely exemplary of the devices and methods, which may be embodied in various forms. Therefore, specific functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative example for teaching one skilled in the art to variously employ the present disclosure.
[0024] The present application relates to tools adapted to engage a head of a fastener, such as a hexagonal nut or bolt (also referred to herein as a fastener head). The tools are adapted to engage fasteners at a point away from a corner of the fasteners, which increases strength and life of the tool, reduces a risk of the fastener becoming frictionally locked or stuck in the tool, and reduces the risk of the fastener being stripped or the tool slipping on the fastener.
[0025] In an embodiment, the tools are sockets adapted to mate with lugged wrenches, such as ratchets In general, the sockets include a body having first and second ends. A first axial bore in the first end is adapted to receive a fastener head, such as a bolt head or nut, and a second axial bore in the second end adapted to matingly engage with a lugged wrench in a well-known manner. The first axial bore may have a polygonal cross-sectional shape axially extending at least partially through the body from the first end toward the second end. In an embodiment, the polygonal cross-sectional shape is a generally hexagonal shape adapted to engage the fastener head, such as a hexagonal bolt head or nut. The hexagonal cross sectional shape may be, for example, about a 1/2 inch cross sectional shape. In other embodiments, the hexagonal cross sectional shape may be larger or smaller, for example, the cross section shape may be SAE 1/4 inch, a 3/8 inch, a 3/4 inch, a 1 inch, a 1 and 1/2 inch, etc. or metric sizes, inclusive of all ranges and sub-ranges there between. In yet other embodiments, the first axial bore may be formed to have different cross-sectional shapes adapted to mate with different shaped fastener heads, for example, triangular, rectangular, pentagonal, heptagonal, octagonal, hex shaped, double hexagonal, spline or other shapes of the type.
[0026] The second axial bore may have a substantially square cross-sectional shape extending at least partially through the body from the second end to the first end. The second axial bore may be adapted to matingly engage a drive shaft or drive lug of a tool, for example, a hand tool, a socket wrench, a torque wrench, an impact driver, an impact wrench, and other tools, in a well-known manner. The squared cross-sectional shape may be, for example, about a 1/2 inch square or other SAE or metric sizes. In yet other embodiments, the second axial bore may be formed to have different cross-sectional shapes adapted to mate with different shaped receptacles of different tools, for example, the cross-sectional shape of the second axial bore may be triangular, rectangular, pentagonal, hexagonal, heptagonal, octagonal, hex shaped or other shapes of the type.
[0027] FIGS. 1 and lA illustrate an embodiment of a socket 100 having a first axial bore 102 with a generally hexagonal shape. As illustrated in FIG. 1, the socket 100 is disposed on a typical head 120 of a fastener, such as a hexagonal bolt head or nut.
[0028] The first axial bore 102 includes six (6) corresponding recesses 104 equally spaced circumferentially in an inner sidewall of the socket 100. The recesses 104 are equally spaced from one another at about sixty (60) degree intervals circumferentially around the socket 100 so as to receive the corners 122 of the hexagonal head 120 of the fastener. The recesses 104 are dimensioned to provide for about three (3) degrees of rotation off center of the socket 100 with respect to the corners 122 of the head 120 of the fastener in either direction when corners 122 of the head 120 are substantially centrally aligned in the recesses 104.
[0029] The first axial bore 102 also includes six (6) longitudinal sidewalls 106 that extend between and are respectively interconnected by the recesses 104. Referring to FIG. I A, each of the sidewalls 106 (illustrated in FIG. 1) includes a first substantially straight portion 108 disposed adjacent to second straight portion 110 that is angularly displaced with respect to the first portion 108. The second portion 110 extends from a recess 104 and intersects the first portion 108 at an angle. As illustrated in FIG. 1A, the second portion 110 is disposed at an angle (al) with respect to the first portion 108. In an embodiment, the angle (a I) is about 4-12 degrees, and preferably about 5-7 degrees. The second portion 110 may also have a length (L1) equal to about 20-30 percent of a length of the first portion 108, and preferably about 26 percent [0030] This geometry of the first axial bore 102 provides for a contact point 112 between the sidewalls 106 (illustrated in FIG. 1), substantially at an intersection of a second portion 110 with the first portion 108, and a flank 124 or flat of the head 120 of the fastener that is away from the corner 122 of the fastener. As illustrated in FIG 1A, the contact point 112 is a distance (D1) away from the corner 122. In an embodiment, the distance (D I) is about 30 to 60 percent of half a length of the flank 124 (half of the length between comers 122) of the head 120 of the fastener, more preferably, the distance (D1) is about 40-55 percent of half the length of the flank 124, and more preferably, the distance (DI) is about 45 percent of half the length of the flank 124. It is to be understood that each end of sidewalls 106 intersection around the hexagonal shape is generally the same and mirrored as described above.
100311 Referring to FIGS. 1-1A and 5-5A, when compared to a typical prior art hexagonal socket 500 having six (6) recesses 504 and six (6) longitudinal sidewalls 506, the contact point 112 of the socket 100 is further away from the corner 122 of the head 120 of the fastener than a contact point 512 of the socket 500. When the sockets 100 and 500 are 3/4 inch sockets, for example, the contact point 112 of the present invention is at a distance (Dl) of about 0.092 inches, compared to the contact point 512 of the prior art having a distance (DP I) of about 0.0548 inches. Additionally, the sidewalls 506 of the prior art socket 500 are merely straight, and do not include second portions, as illustrated in FIGS. 1 and 1A.
[0032] The increase in the distance of the contact point 112 away from the corner 122 of the head 120 of the fastener increases the surface area and shifts the load from the corner 122 and distributes the stress concentration further away from the corner 122. This allows more surface area of the sidewall 106 to contact the head 120, thereby improving the strength and operable life of the socket 100. This also reduces the risk of the head 120 becoming frictionally locked or stuck in the socket 100, and reduces the risk of the head 120 being stripped or the socket 100 slipping on the head 120.
[0033] FIGS. 2 and 2A illustrate another embodiment of a socket 200 having a first axial bore 202 having a generally dodecagonal type shape (aikila double hexagonal). As illustrated in FIG. 2, the socket 200 is disposed on the head 120 of the fastener, such as a hexagonal bolt head or nut. The first axial bore 202 includes twelve (12) corresponding recesses 204 equally spaced circumferentially in an inner sidewall of the socket 200. The recesses 204 are equally spaced from one another at about thirty (30) degree intervals circumferentially around the socket 200 so as to receive the hexagonal head 120 of the fastener. In this embodiment, the recesses 204 are dimensioned to provide about three and six tenths (3.6) degrees of rotation off center of the socket 200 with respect to the head 120 of the fastener in either direction when the corners 122 of the head 120 are substantially centrally aligned in the recesses 204. In another embodiment, the recesses 204 are dimensioned to provide about one and nine tenths (1.9) degrees of rotation off center of the socket 200 with respect to the head 120 of the fastener in either direction when the corners 122 of the head 120 are substantially centrally aligned in the recesses 204.
[0034] The first axial bore 202 also includes twelve (12) longitudinal sidewalls 206 respectively between the recesses 204. Referring to FIG. 2A, each of the sidewalls 206 includes a first straight portion 208 and a second straight portion 210 that are angularly displaced with respect to each other. The first and second portions 208, 210 each extend from respective recesses 204 and intersect with one another at an angle. As illustrated in FIG. 2A, the first portion 208 is disposed at an angle (a2) with respect to the second portion 210. In an embodiment, the angle (a2) is about 40-48 degrees, and preferably about 43 degrees. The first and second portions 208 and 210 may also have lengths substantially equal to one another.
[0035] This geometry of the axial bore 202 provides for a contact point 212 between the sidewalls 206 substantially at the intersection of the first and second portions 208 and 210 and the flank 124 is away from the corner 122 of the fastener. When in use, the socket 200 initially contacts the flank 124 of the fastener at the contact point 212 and as load increases, a surface area contact between the socket 200 and the flank 124 gradually increases in a direction towards the corner 122 and a recess 204.
[0036] As illustrated in FIG. 2A, the contact point 212 is a distance (D2) away from the corner 122. In an embodiment, the distance (D2) is about 30 to 60 percent of half a length of the flank 124 (half of the length between corners 122) of the head 120 of the fastener, and preferably the distance (D2) is about 40 percent of half the length of the flank 124. It is to be understood that each end of sidewalls 208, 210 intersection around the dodecagonal shape is generally the same and mirrored as described above.
[0037] Referring to FIGS. 2-2A and 6, when compared to a typical prior art dodecagonal type socket 600 having twelve (12) equidistantly spaced recesses 604 and twelve (12) sidewalls 606, the contact point 212 of the socket 200 is further away from the comer 122 of the head 120 of the fastener than a contact point 612 of the socket 600. For example, when the sockets 200 and 600 are 3/4 inch sockets, the contact point 112 is at a distance (D2) of about 0.0864 inches and the prior art contact point 612 is at a distance (DP2) less than 0.0864. As illustrated in FIG. 6, the contact point 612 of the socket 600 is proximal to an intersection of a first portion 608 and the recess 604. Additionally, the sidewalls 606 of the prior art socket 600 include first and second portions 608, 610 that are disposed at an angle (a.P2) of about 36-37 degrees, which is smaller than the angle (a2) of the socket 200.
[0038] FIGS. 3 and 3A illustrate another embodiment of a socket 300 having a first axial bore 302 with a generally splined-type cross-sectional shape. As illustrated in FIG. 3, the socket 300 is disposed on the head 120 of the fastener, such as a hexagonal bolt head or nut. The axial bore 302 includes twelve (12) equidistantly spaced recesses 304 equally spaced circumferentially in an inner sidewall of the socket 300. The recesses 304 are equally spaced from one another at about thirty (30) degree intervals circumferentially around the socket 300 and have two (2) rounded inner corners. In this embodiment, the recesses 304 are dimensioned to provide about three and six tenths (3.6) to about four (4) degrees of rotation off center of the socket 300 with respect to the head 120 of the fastener in either direction when the corners 122 of the head 120 are centrally aligned in the recesses 304.
[0039] The axial bore 302 also includes twelve (12) sidewalls 306 respectively between the recesses 304. Referring to FIG. 3A, each of the sidewalls 306 includes a first portion 308 and a second portion 310 that are angularly displaced with respect to each other. The first and second portions 308 and 310 each extend from a recess 304 and intersect with one another at a rounded corner. As illustrated in FIG. 3A, the first portion 308 is disposed at an angle (a3) with respect to the second portion 310. In an embodiment, the angle (a3) is about 40-45 degrees, and preferably about 42 degrees. The first and second portions 308 and 310 may also have lengths substantially equal to one another. It is to be understood that each end of sidewalls 306 intersection around the splined shape is generally the same and mirrored as described above.
[0040] This geometry of the axial bore 302 provides for a contact point 312 between the sidewalls 306, proximal to an intersection of the first and second portions 308 and 310, and the flank 124 that is away from the corner 122 of the fastener. When in use, the socket 300 also initially contacts the flank 124 of the fastener at the contact point 312 and as load increases, a surface area contact between the socket 300 and the flank 124 gradually increases in a direction towards the corner I 22 and a recess 304.
[0041] As illustrated in FIG. 3A, the contact point 312 is a distance (D3) away from the corner 122. In an embodiment, the distance (D3) is about 30 to 60 percent of half a length of the flank 124 (half of the length between corners 122) of the head 120 of the fastener, and preferably the distance (D3) is about 35 percent of half the length of the flank 124.
[0042] FIGS. 4 and 4A illustrate another socket 400 having a first axial bore 402 having a splined type shape, similar to the socket 300. As illustrated in FIG. 4, the axial bore 402 includes twelve (12) equidistantly spaced recesses 404 equally spaced circumferentially in an inner sidewall of the socket 400. The recesses 404 are equally spaced from one another at about thirty (30) degree intervals circumferentially around the socket 400 and have two (2) rounded inner corners. In this embodiment, similar to the socket 300, the recesses 404 are dimensioned to provide about three and six tenths (3.6) to about four (4) degrees of rotation off center of the socket 400 with respect to the head of a fastener in either direction when the corners of the head are centrally aligned in the recesses 404 [0043] The axial bore 402 also includes twelve (12) sidewalls 406 respectively between the recesses 404. Referring to FIG. 4, each of the sidewalls 406 includes a first portion 408 and a second portion 410 that are angularly displaced with respect to each other. The first and second portions 408 and 410 each extend from a recess 404 and intersect with one another at a rounded corner. As illustrated in FIG. 4, the first portion 408 is disposed at an angle (a4 or a4a) with respect to the second portion 410. In an embodiment, the angle (a4) is about 40-45 degrees, and preferably about 41.6 degrees, and the angle (a4a) is about 140-135 degrees, and preferably about 138.4 degrees. The first and second portions 408 and 410 may also have lengths substantially equal to one another.
[0044] In an embodiment, the recesses 404 form angled wall portions 414 and 416 that are angularly displaced with respect to one another at an angle (a4b). In an embodiment, the angle (a4b) is about 20-24 degrees, and preferably about 22 degrees. Referring to FIG. 4A, additionally, a radius (resulting from an arc tangent to Z at point X and tangent to flank Y) is maximized within the allowable spline geometry of the socket 400 In this embodiment, the width of the teeth (i.e. the sidewalls 406) may be reduced to increase strength of the walls of the socket 400. It is to be understood that each end of sidewalls 406 intersection around the dodecagonal shape is generally the same and mirrored as described above.
100451 Like the socket 300, the geometry of the axial bore 402 may provide for a contact point between the sidewalls 406, proximal to an intersection of the first and second portions 408 and 410, and the flank that is away from the corner of the fastener. Similarly, when in use, the socket 400 may also initially contacts the flank of the fastener at the contact point and as load increases, a surface area contact between the socket 400 and the flank may increase in a direction towards the corner and a recess 404.
[0046] Referring to FIGS. 3-4 and 7-7A, when compared to a typical prior art splined type socket 700 having twelve (12) equidistantly spaced recesses 704 and twelve (12) sidewalls 706, the contact point 312 of the socket 300 and the contact point of the socket 400 is further away from the corner 122 of the head 120 of the fastener than a contact point 712 of the socket 700. For example, when the sockets 300 and 700 are %-inch sockets, the contact point 312 is at a distance (D3) of about 0.076 inches and the contact point 712 of the prior art socket is at a distance (DP2) of about 0.0492. As illustrated in FIG. 7A, the contact point 712 of the socket 700 is proximal to an intersection of a first portion 708 and the recess 704. Additionally, the sidewalls 706 of the prior art socket 700 include first and second portions 708 and 710 that are disposed at an angle (aP3) of about 36-37 degrees, which is smaller than the angle (a3) of the socket 300 and the angle (a4) of the socket 400.
[0047] FIGS. 8 and 8A illustrate another embodiment of a socket 800 having a first axial bore 802 with a generally dodecagonal type shape (a/k/a double hexagonal). As illustrated in FIG. 8A, the socket 800 is disposed on the head 920 of a typical fastener, such as a dodecagonal type (a/k/a double hexagonal) bolt head or nut. The first axial bore 802 includes twelve (12) equidistantly spaced corresponding recesses 804 equally spaced circumferentially in an inner sidewall of the socket 800 The recesses 804 are equally spaced from one another at about thirty (30) degree intervals circumferentially around the socket 800 so as to receive the head 920 of the fastener. In this embodiment, the recesses 804 are dimensioned to provide about zero and five tenths (0.5) to about four (4) degrees, and more preferably about one and nine tenths (1.9) degrees of rotation off center of the socket 800 with respect to the head 920 of the fastener in either direction when the corners 922 of the head 920 are substantially centrally aligned in the recesses 804.
[0048] The first axial bore 802 also includes twelve (12) sidewalls 806 respectively between adjacent ones of the recesses 804 (such as first and second adjacent recesses). Referring to FIG. 8A, each of the sidewalls 806 includes a first portion 808 and a second portion 810 that are angularly displaced with respect to each other. The first and second portions 208, 210 each respectively extends from recesses 804 and are angled with one another. As illustrated in FIG. 8A, the first portion 808 is disposed at an angle (a8) with respect to the second portion 810. In an embodiment, angle (a8) is about 130-140 degrees, and preferably about 133-136 degrees. In other words, the first portion 808 is disposed at an angle of about 40-50 degrees, and preferably about 44-47 degrees, with respect to the second portion 810.
[0049] The first and second portions 208 and 210 may also have lengths substantially equal to one another, and may be substantially straight. The s dewall 806 may also include a third portion 814 between the first and second portions 808, 810. The third portion 814 may be a concave surface sized to fit, but not interfere with a minor diameter of the fastener. The intersection where the third portion 814 intersects the flank 924 creates a contact point 812. In an embodiment, the concave third portion 814 has a radius of about 51% to about 54%, and more particularly, about 52% to about 53% of a nominal hex size In an alternative embodiment, the third surface 814 may be substantially straight.
100501 This geometry of the axial bore 802 creates the contact point 812 between the sidewalls 806 proximal to the intersection of the first and second portions 808 and 810 (such as substantially at the third portion 814) and the flank 924 away from the corner 922 of the fastener. When in use, the socket 800 initially contacts the flank 924 of the fastener at the contact point 812 and, as torque load application increases, a surface area contact between the socket 800 and the flank 924 gradually increases in a direction towards the corner 922 and a recess 804. The geometry of the axial bore 802 also provides for an angle (138) between either of the first or second portion 808, 810 and the flank 924. In an embodiment, the angle (08) is about 2-8 degrees, and preferably about 5-7 degrees.
100511 As illustrated in FIG. 8A, the contact point 812 is a distance (D8) away from the corner 922. In an embodiment, the distance (D8) is about 75-90 percent of a length of the flank 924, and preferably the distance (D8) is about 80-85 percent of the length of the flank 924. With respect to a hexagonal fastener, the distance (D8) is about 30-60 percent of half a length of the flank 124 away from the corner 122, and preferably the distance (D8) is about 49-54 percent of half the length of the flank 124. It is to be understood that each end of sidewalls 806 around the dodecagonal shape is generally the same and mirrored as described above.
100521 The increase in the distance of the contact points away from the corner of the head of the fastener, described with reference to FIGS. I -4A and 8-8A, shifts the load on the corner and distributes the stress concentration away from the corner of the fastener. This allows more surface area of the sockets to contact the head of the fastener, thereby improving the strength and operable life of the sockets. This also reduces the risk of the head becoming locked or stuck in the sockets, and reduces the risk of the head being stripped or the sockets slipping on the head. Moving the contact point away from the corner of the fastener also allows the sockets to be used on damaged or stripped fasteners where existing sockets cannot.
[0053] The sockets described herein are described generally with respect to a 3/4 inch socket; however, the sizes and dimensions of the various elements of the socket described herein may be modified or adapted for a particular use with one or more different tools. For example, the socket may be adapted to receive different fastener sizes, for example, 1 inch, 1/2 inch, 10 mm, 12 mm, 14 mm, etc., as known in the art Similarly, the size of the second axial bore can be adapted to receive different sizes and types of drive shafts or drive lugs of socket wrenches.
[00541 Further, the geometry of the inner surface of the sockets described herein may be applied to other types of tools for applying torque to fasteners. For example, a wrench or box wrench may include the geometries disclosed herein to allow the wrench or box wrench to have a contact point positioned away from a corner of a fastener. Similarly, other tools and/or fasteners may include the geometries disclosed herein.
[00551 Although the devices and methods have been described and illustrated in connection with certain embodiments, many variations and modifications will be evident to those skilled in the art and may be made without departing from the spirit and scope of the present disclosure. The present disclosure is thus not to be limited to the precise details of methodology or construction set forth above as such variations and modification are intended to be included within the scope of the present disclosure. Moreover, unless specifically stated any use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc are merely used to distinguish one element from another.

Claims (2)

  1. CLAIMSWhat is claimed is: 1. A tool adapted to engage a head of a dodecagonal type fastener having a corner and a flank with a flank length, comprising: a surface having a sidewall extended between first and second recesses, wherein the sidewall includes substantially straight first and second portions respectively having first and second portion lengths, the first and second portions are angularly disposed by about 130 to 140 degrees relative to each other, thereby creating a contact point that is adapted to engage the flank at a distance of about 75 to 90 percent of the flank length away from the corner.
  2. 2. The tool of claim I, wherein the first and second portions are angularly disposed by about 133 to 136 degrees relative to each other.The tool of claim I, wherein the contact point is adapted to engage the flank at a distance of about 80 to 85 percent of the flank length away from the corner 4. The tool of claim I, further comprising a socket body having an axial bore, and wherein the surface is an inner surface disposed in the axial bore The tool of claim 1, wherein the surface is disposed on a wrench body.6. The tool of claim I, wherein the inner surface includes 12 equidistantly spaced recesses and 12 sidewalls, wherein each sidewall extends between two adjacent recesses.7. The tool of claim I, wherein the sidewall includes a third substantially straight portion between the first and second portions.8. The tool of claim 1, wherein the sidewall includes a third portion between the first and second portions, and the third portion is concave.A tool adapted to engage a head of a hexagonal type fastener having a corner and a flank with a flank length, comprising: a surface having first and second recesses and a sidewall extending between the first and second recesses, wherein the sidewall includes substantially straight first and second portions respectively having first and second portion lengths, the first and second portions are angularly disposed by about 130 to 140 degrees relative to each other, thereby creating a contact point that is adapted to engage the flank at a distance of about 30 to 60 percent of half the flank length away from the corner.10. The tool of claim 9, wherein the first and second portions are angularly disposed by about 133 to 136 degrees relative to each other.11. The tool of claim 9, wherein the contact point is adapted to engage the flank at a distance of about 49 to 54 percent of half the flank length away from the corner 12. The tool of claim 9, further comprising a socket body having an axial bore, and wherein the surface is an inner surface disposed in the axial bore 13. The tool of claim 9, wherein the surface is disposed on a wrench body.14. The tool of claim 9, wherein the inner surface includes 12 equidistantly spaced recesses and 12 sidewalls, wherein each sidewall extends between two adjacent recesses.15. The tool of claim 9, wherein the sidewall includes a third substantially straight portion between the first and second portions.16. The tool of claim 9, where n the sidewal ncludes a third portion between the firs and second portions, and the third portion is concave.
GB2108959.4A 2020-07-01 2021-06-22 Socket drive improvement Active GB2602367B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2315102.0A GB2622958A (en) 2020-07-01 2021-06-22 Socket drive improvement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/918,712 US11806843B2 (en) 2013-11-15 2020-07-01 Socket drive improvement

Publications (3)

Publication Number Publication Date
GB202108959D0 GB202108959D0 (en) 2021-08-04
GB2602367A true GB2602367A (en) 2022-06-29
GB2602367B GB2602367B (en) 2023-11-15

Family

ID=77050662

Family Applications (2)

Application Number Title Priority Date Filing Date
GB2315102.0A Pending GB2622958A (en) 2020-07-01 2021-06-22 Socket drive improvement
GB2108959.4A Active GB2602367B (en) 2020-07-01 2021-06-22 Socket drive improvement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB2315102.0A Pending GB2622958A (en) 2020-07-01 2021-06-22 Socket drive improvement

Country Status (5)

Country Link
CN (1) CN113878530B (en)
AU (2) AU2021204591A1 (en)
CA (2) CA3124034C (en)
GB (2) GB2622958A (en)
TW (1) TWI827949B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734401B (en) * 2022-03-30 2024-04-16 山东汉普机械工业有限公司 Bidirectional self-tightening hexagonal sleeve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150135910A1 (en) * 2013-11-15 2015-05-21 Snap-On Incorporated Socket drive improvement
US20170363129A1 (en) * 2016-06-16 2017-12-21 BIMECC ENGINEERING S.p.A. Connecting element, in particular a bolt or a nut, preferably for fastening a wheel, or rim, to a hub of a vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046851A (en) * 1973-08-23 1975-04-25
FR2703619B1 (en) * 1993-04-07 1995-07-07 Facom TOOL FOR TIGHTENING / UNLOCKING A THREADED MEMBER.
US5832792A (en) * 1996-04-26 1998-11-10 Hsieh; Chih-Ching Socket for a ratchet wrench
TW542056U (en) * 2002-11-14 2003-07-11 Liu Hung Ind Co Ltd Structure for ratchet socket
TWM399777U (en) * 2010-09-28 2011-03-11 Honiton Ind Inc Fitting part structure of hand tool
CA2764079A1 (en) * 2011-01-20 2012-07-20 Straumann Holding Ag Assembly of a dental implant and an insertion tool
US20190275646A1 (en) * 2018-03-12 2019-09-12 Ben Wen LIU Engagement structure for tool
US10960520B2 (en) * 2018-09-04 2021-03-30 Snap-On Incorporated Hex driver
EP3962696A4 (en) * 2019-05-09 2022-08-10 Grip Holdings LLC Anti-slip torque tool with integrated engagement features

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150135910A1 (en) * 2013-11-15 2015-05-21 Snap-On Incorporated Socket drive improvement
US20170363129A1 (en) * 2016-06-16 2017-12-21 BIMECC ENGINEERING S.p.A. Connecting element, in particular a bolt or a nut, preferably for fastening a wheel, or rim, to a hub of a vehicle

Also Published As

Publication number Publication date
AU2023203529A1 (en) 2023-06-29
AU2021204591A1 (en) 2022-06-09
GB202108959D0 (en) 2021-08-04
TWI827949B (en) 2024-01-01
GB2602367B (en) 2023-11-15
CA3124038A1 (en) 2022-01-01
TW202202280A (en) 2022-01-16
GB2622958A (en) 2024-04-03
CN113878530B (en) 2023-06-06
CN113878530A (en) 2022-01-04
CA3124034C (en) 2024-01-16
CA3124034A1 (en) 2022-01-01
GB202315102D0 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
AU2019240548B2 (en) Socket drive improvement
US20230083975A1 (en) Socket drive improvement
AU2023203529A1 (en) Socket drive improvement
JPS58502162A (en) socket drive
TW202413010A (en) Socket drive improvement

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40066781

Country of ref document: HK