GB2600867A - Beverage powder and method - Google Patents

Beverage powder and method Download PDF

Info

Publication number
GB2600867A
GB2600867A GB2201883.2A GB202201883A GB2600867A GB 2600867 A GB2600867 A GB 2600867A GB 202201883 A GB202201883 A GB 202201883A GB 2600867 A GB2600867 A GB 2600867A
Authority
GB
United Kingdom
Prior art keywords
beverage ingredient
powder
beverage
ingredient powder
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB2201883.2A
Other versions
GB202201883D0 (en
GB2600867B (en
Inventor
Nchari Luanga
Tulay Massey Ayse
Close James
Almant Mehdi
West Sarah
Kai Ong Zhen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Douwe Egberts BV
Original Assignee
Koninklijke Douwe Egberts BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Douwe Egberts BV filed Critical Koninklijke Douwe Egberts BV
Priority to GB2201883.2A priority Critical patent/GB2600867B/en
Priority claimed from GB1802161.8A external-priority patent/GB2573088B/en
Publication of GB202201883D0 publication Critical patent/GB202201883D0/en
Publication of GB2600867A publication Critical patent/GB2600867A/en
Application granted granted Critical
Publication of GB2600867B publication Critical patent/GB2600867B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/20Agglomerating; Granulating; Tabletting
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/16Agglomerating or granulating milk powder; Making instant milk powder; Products obtained thereby
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G1/00Cocoa; Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/30Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/56Cocoa products, e.g. chocolate; Substitutes therefor making liquid products, e.g. for making chocolate milk drinks and the products for their preparation, pastes for spreading, milk crumb
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/385Concentrates of non-alcoholic beverages
    • A23L2/39Dry compositions
    • A23L2/395Dry compositions in a particular shape or form
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/20Agglomerating; Granulating; Tabletting
    • A23P10/22Agglomeration or granulation with pulverisation of solid particles, e.g. in a free-falling curtain
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/804Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package
    • B65D85/8043Packages adapted to allow liquid to pass through the contents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Mechanical Engineering (AREA)
  • Confectionery (AREA)

Abstract

This invention provides for an agglomerated beverage ingredient powder comprising a median particle size (D50) of between 150 and 600 microns and a density of between 250 and 850g/l and wherein the beverage ingredient powder further comprises a porosity of between 0.1 and 0.8. The invention further provides a method of making said powder.

Description

Beverage powder and method Technical Field of the Invention The present invention relates to beverage ingredient powders for use in a beverage preparation machines, particularly agglomerated beverage powders. The invention further relates to processes for making beverage ingredient powders and containers, methods of making beverages and to beverage ingredient containers containing beverage ingredients per se.
Background to the Invention
When preparing a beverage from a powdered ingredient, it is known in the art, that powder solubility can be a problem, resulting in a drink with grainy texture or weak concentration and an undesirable leftover residue of wetted powder. Many options exist to the skilled person when faced with a problem of powder solubility, including, varying the type or blend of solvent, increasing the temperature or volume of the solvent, the introduction of shear or increasing powder-solvent contact time for example. Some of these options are of limited use in certain circumstances; for example, in applications that comprise milk powder the effect. of increasing temperature can reduce solubility. It. is also known that the physical properties of the powder can have a dramatic effect on its solubility. Powders with the same chemical structure but different physical properties, such as density, particle size, particle size distribution or porosity, for example can have vastly different solubility. In some applications, such as containers for use in beverage preparation machines, it is known that various of these levers for adjusting solubility are restricted/limited or unavailable.
Many beverage preparation systems are known in the art. These systems usually comprise a beverage preparation machine and a beverage ingredient container, for use in conjunction with the beverage preparation machine. Beverage ingredient. containers can be in the form of sachets, soft pads, semi-rigid pads, rigid pads, capsules, discs and pods of plastics or aluminium and can contain extractable and/or soluble beverage ingredients.
Beverage preparation machines usually contain a water source, heat source and pump with which to deliver heated water through the beverage ingredient container and into a cup.
Typically, beverage ingredient containers are inserted into beverage preparation 10 machines by a consumer when a beverage is made.
A typical beverage preparation machine is configured in use to deliver a predetermined volume and/or flow rate of water to the beverage ingredient container in order to dissolve, suspend and/or extract some or all of the beverage ingredient contained therein and then to dispense a beverage of a desirable volume and solids content.
Typically, the amount of water delivered to the beverage ingredient container is determined by a timed activation of a water pump or by a set threshold on a flow meter, in either case thc volume of water passed through the beverage ingredient container is limited.
In known systems, in the case where a beverage ingredient contained within the beverage ingredient container is soluble, there is often a residual amount of beverage ingredient left within the beverage ingredient container once the desired volume of water has been dispensed by the beverage preparation machine. This often results in a beverage with less than the desired amount of dissolved beverage ingredient and/or wasted beverage ingredient left within the beverage ingredient container once a beverage has been prepared. A known method of overcoming this problem is to add an excess of beverage ingredient to the beverage ingredient container to ensure that, even with a residue, sufficient beverage ingredient is dissolved by the desired volume of water and sufficient beverage ingredient is present in the prepared beverage. This improves the solids content of the beverage but increases the amount of wasted beverage ingredient left within the beverage ingredient container and causes significant difficulties in fitting the excess beverage ingredient into containers of the defined size used for each system. Furthermore, this effect has an upper practical limit. Above a threshold, the addition of more beverage ingredient powder has no effect on the solids content of the beverage that is produced.
Further, it is known that, if beverage ingredient containers are stored incorrectly or for many months before use, the amount of residue can increase for a given beverage ingredient container, after the beverage ingredient has been extracted, dissolved or suspended.
It would be advantageous to provide an agglomerated beverage ingredient and/or agglomeration process for the manufacture of an agglomerated beverage ingredient that can withstand manufacturing processes required to fill beverage ingredient containers without significant breakage or disintegration into significant quantities of fine particles ("fines").
It is also known in the art to manipulate the physical properties of beverage ingredients in order to affect their solubility, however, known solutions to improve solubility all have some other property that is detrimental to the desirable properties in a beverage preparation system. For example, known agglomeration techniques increase solubility of beverage powders and therefore may have an impact on reducing residues within beverage ingredient containers; however, the same known agglomerated beverage ingredient powders have reduced density and therefore sufficient mass of beverage ingredient cannot easily be added to the relatively small volume of a beverage ingredient container in order to create a beverage of desirable volume and solids content. Further, such known agglomerated powders, can also be incompatible with the processes involved in the manufacture of beverage ingredient containers such that their increased friability results in breakage of agglomerated powders during manufacture and handling; thereby increasing fine particles, and thus, reducing solubility; in turn creating more dust and hindering container sealing.
High levels of fines (>15%) and low porosity can also create significant dust in filling lines resulting in frequent cleaning of the lines reducing efficiency Additionally, known beverage ingredient powders may lose solubility over the shelf life of a commercial product, and, thus, within reasonable storage times of months, residues may increase above acceptable levels.
It is known that such disadvantages are particularly associated with beverage ingredients that contain an amount of fat.
Known powders include those described in the following documents: W02016/014503, W02011/063322, W02011/039027, W02009/103592, W02004/064585. Each one of these documents suffers from one or more of the disadvantages described above, such as, low porosity, high percentage fines, sub-optimal particle size, etc. Further, it is known that the properties of a fluid used to dissolve or otherwise transport beverage ingredients into a prepared beverage can impact the amount of beverage ingredient in the prepared beverage. Parameters of the fluid, such as, but not limited to, temperature, pressure, flow rate and/or aeration may be adjusted by adjusting settings and/or components in a beverage preparation machine.
It is an aim of embodiments of the invention to create the optimum combination of beverage ingredient properties paired with optimum fluid properties provided by a beverage preparation machine in order to maximise the amount of beverage ingredient. transported by the fluid to a prepared beverage. It is a further aim of embodiments of the invention to achieve this result in beverage preparation machines that provide a range of alternate beverages with a range of beverage ingredients and/or beverage ingredient containers.
It would be advantageous to provide a beverage ingredient container containing a soluble beverage ingredient that yields less residue after use in a beverage preparation machine.
IS It is an aim of embodiments of the invention to increase the solubility of beverage ingredients within the confined of beverage ingredient containers.
In would also be advantageous to provide a fat-containing beverage ingredient for use in beverage containers of the type described herein, which has reduced problems relating to storage, shelf-life, residue production and insufficient solubility.
It is therefore an aim of embodiments of the invention to mitigate or reduce a
disadvantage presented by the prior art.
Summary of the Invention
According to a first aspect of the invention there is provided an agglomerated beverage ingredient powder comprising a median particle size of between 150 and 600 microns and a density of between 250 and 850 g/l, for use in a beverage preparation machine, and wherein the beverage ingredient powder further comprises a porosity of between 0.1 and 0.8.
In an agglomerated powder the median particle size refers to the size of the agglomerated clusters or aggregates per se, rather than the size of individual particles making up the agglomerated clusters or aggregates. Likewise, 'agglomerated particles' hereinafter refers to the aggregates, agglomerates or clusters formed from particles, rather than the particles themselves.
Agglomerated powders are particularly useful for the invention, providing optimum solubility, reduced fines, and which enable the bulk density size to be maintained within the range of the first aspect of the invention. Powder formed from IS agglomerated particles may also be called aggregates or agglomerates.
The beverage powder of the invention provides a number of beneficial characteristics and advantages, for use in beverage containers, including: a) better powder flowability in processing lines; b) the opportunity to create more concentrated drinks with little/no residues from a given package volume initially and overtime; and c) increased consumer liking It is believed that the specific combination of average particle size (with minimal fines) and density, confers the optimal physical characteristics to the powder, such that it flows freely, leaves minimal residue in a beverage container after extraction with water, and yet can be used to fill a beverage container without requiring over-packing.
In some embodiments, the beverage ingredient powder has a median particle size, sometimes described as D50, of at least 175, 200, 225, 250, 275 microns and/or no more than 600, 550, 500 or 450 microns. In preferred embodiments, the median particle size is greater than 200 or 250 microns as this creates the optimal balance of powder flowability and solubility whilst avoiding the likelihood of fines after packing.
In some preferred embodiments, the beverage ingredient powder has a median particle size of between 175 and 600 microns; between 200 and 600 microns; between 200 and 550 microns; or especially, between 200 and 500 microns or 250 and 450 microns. Median particle size may be measured by laser diffraction method (e.g. Helos). Median particle size may be measured by the method used in Example 2.
IS At such relatively large particle sizes the benefits of increased solubility are particularly felt/perceived.
In some embodiments, the beverage ingredient powder has density of at least 250, 300, 350 g/1 or 400g/1 and/or no more than 850, 650 or 600g/1 and/or between 250 -850g/1; 350 -8502/1; 250 -600g/I or 350 -600g/I. A density of at least 350g/I Is preferred because it enables sufficient packing volume within a suitable beverage container whilst avoiding or mitigating dust formation and excess powder compaction. The density of the beverage ingredient powder is preferably the bulk density, sometimes known as free-flow density. Bulk density can be measured, for example, using a volumetric cylinder, by the method laid out in Example 2. It should be noted that "bulk density" is different to vibrationalliapped density; bulk density being the density of powder that has not been compressed, agitated or otherwise allowed to settle and reduce interstitial space between agglomerated particles: while "tapped density" refers to the density of the powder which has been tapped, compressed, agitated, vibrated or otherwise manipulated to reduce the interstitial space between agglomerated particles, aggregates or agglomerates in the powder.
Embodiments with such bulk densities have the particular advantage of allowing for sufficient amount of the powder to he added to a small container without negatively affecting, powder flowability, solubility or beverage characteristics.
The beverage ingredient powder may comprise a powder selected from a chocolate beverage powder. a milk powder, dairy creamer and a non-dairy creamer powder. In preferred embodiments, the beverage ingredient powder comprises fat and in more preferred embodiments it is a fat-containing powder selected from a chocolate beverage powder a milk powder and a non-dairy creamer powder.
In embodiments in which the beverage ingredient powder comprises fat, it comprises at least 5%, 6%, 7%, 8%, 9% or 10%wt fat and/or no more than 70%, 60%, 50%, 30%, or 20%wt fat, and/or between 5%wt and 25%wt, 70%wt fat, preferably between 10% -25%wt; 5% -20%wt or 10% -20%wt fat by weight. In embodiments, where the beverage ingredient powder is chocolate powder; it comprises at least 4%, 4.5%, 5%, 5.5% or 6%wt fat and/or no more than 9%, 8.5%, 8%, 7.5% or 7%wt fat and/or between 4% -9%wt; 4% -8%wt; 4% -7%wt; 5% -9%wt; 5% -8%wt or 6% -8%wt fat. In further embodiments, where the beverage ingredient powder is a milk powder, it comprises at least 10%, 11% or 12%wt and/or no more than 30%, 25%, 22% or 20%wt fat and/or between 10% -25%wt, 10% -20% t, 12% -25%wt or 12% -20%wt fat. In further embodiments, where the beverage ingredient powder is a dairy creamer powder or a non-dairy creamer powder, it comprises at least 25%wt and/or no more than 70% wt fat and/or between 25% -70% wt fat.
Beverage powders that contain fat in such quantities as described here are known in the art to have lower solubility in water. Embodiments of the invention that have such fat content have the particular advantage of sufficient solubility to create a beverage with adequate solids content and low beverage ingredient residues.
In some embodiments, the beverage ingredient powder has water activity of less than 0.45, 0.40, 0.39, 0.38 or less than 0.37, which may for example be measured by standard dew point measurement method on Aqua Lab 3 TE Series, as described in Example 2, and in preferred embodiments it is of less than 0.35 or less than 0.32, and most preferred between 0.20-0.30. Preferably, throughout prolonged storage the powder maintains a water activity of less than 0.45.
Embodiments with low water activity have the additional advantage of excellent solubility after storage.
In some embodiments, the beverage ingredient powder has porosity of at least 0.2 and/or no more than 0.7 and/or between 0.4-0.8, 0.4 -0.7 or preferably between 0.3 - 0.7. which may be calculated, for example by the method of Example 2 from particle density (measured by pycnometer) and bulk density. Preferably, this porosity refers to the total porosity including that of the powder and the bed of powder.
In some embodiments, the beverage ingredient powder has an amount of fine particles ("fines", particles less than 90 microns sometimes described as Q90 of no more than 18, 17, 16, 15, 14, 13, 12 or 11% of the beverage ingredient powder and/or at least 2, 3, 4 or 5%. In some embodiments the amount of fines is between 2-20%, preferably between 2-15%, more preferably between 3-15%, and most preferably between 3-12%.
The fines may be measured, for example, by laser diffraction particle size measurement (e.g. Helos) -and a description of this measurement technique is included in Example 2.
Embodiments with such levels of fines have the particular advanhwe of improved solubility over beverage ingredient powders with alternative levels of fines.
According to a second aspect of the invention, there is provided a method of making an agglomerated beverage ingredient powder of the first aspect of the invention, comprising steps of: A. Fluidising a bed of beverage ingredient powder with the introduction of a gas; B. Spraying liquid droplets onto the fluidised bed of beverage ingredient powder; C. Drying the fluidised bed of beverage ingredient powder; and D. Cooling the fluidised bed of beverage ingredient powder; In some embodiments. the beverage ingredient powder is selected from a chocolate powder, a milk powder, a dairy creamer powder or a non-dairy creamer 20 powder.
In some embodiments, the gas used to fluidise the bed of beverage ingredient powder is heated and/or cooled at different stages along the process.
I I
In some embodiments, the gas used to fluidise the bed of beverage ingredient powder is heated in steps A, B and/or C to between 50 to 70°C, preferably between 55 to 65C. In embodiments where the gas is heated in step B, it is preferably heated to between 50 to 70 C, more preferably to between 55 to 65 'C. In embodiments where the gas is heated in step C. it is preferably heated to between 60 to 80 nC, more preferably to between 65 to 75 'C.
hi some embodiments, the gas used to fluidise the bed of beverage ingredient powder is cooled in step D to between 5 to 25°C, preferably to between 10 to 20 "C.
Embodiments with such heating and/or cooling of the gas have the additional advantage of low level of fines in the agglomerated beverage powder in further processing due to strong adhesion between the particles of beverage powder and low particle breakage.
hi some embodiments, the gas used to fluidise the bed of beverage ingredient powder is delivered at a flow rate of between 400 to 700 Nm3/h, preferably between 500 IS to 600 Nm3/h.
Embodiments with such gas flow rate have the additional advantage of good particle size distribution for beverage ingredient applications.
hi some embodiments, the liquid droplets comprise water. In some embodiments, the pressure under which the spray of liquid droplets is formed is between 1 to 3 bar, preferably between 1.5 to 2.5 bar.
hi some embodiments, the spray rate of the liquid water droplets is between 0.5 to 3.0 kg/h, preferably between 0.7 to 2.0 kg/h, most preferably between 0.8 to 1.6 kg/h.
In some embodiments, step B comprises a percentage liquid droplet volume to beverage ingredient powder volume of between 4 to 6 %, more preferably between 4.5 to 5.5%. In some embodiments, the liquid droplet volume to beverage ingredient powder volume is between 1:99 -1:9, preferably between 1:24 -3:47 and more preferably between 4.5:95.5 -5.5:94.5.
Embodiments with such pressures, spray rate and/or droplet volume to beverage ingredient powder ratio have the additional advantage of low level of fines in the agglomerated beverage ingredient powder.
hi some embodiments, the beverage ingredient powder spends between 5 and 15 minutes in step B. Embodiments with such residence time in the wetting zone have the additional advantage of lower fines.
In some embodiments the beverage ingredient powder spends between 10 and 30 minutes in step C. Embodiments with such residence time in the drying zone have the additional advantage of lower fines and less breakage during further processing.
In some embodiments the beverage ingredient powder spends between 5 and 15 minutes in step D. In some embodiments, the beverage ingredient powder has a total residence time 20 of between 20 and 60 minutes in the continuous agglomerator, preferably between 30 and 50 minutes, most preferably between 35 and 50 minutes.
Embodiments with such total residence time have the optimal properties of the first aspect of the invention.
According to a third aspect of the invention, there is provided a method of making an agglomerated beverage ingredient powder of the first aspect of the invention, comprising step A. B, C and D of the second aspect of the invention, wherein, the gas used to fluidise the bed of beverage ingredient powder is heated in steps A, B and/or C to between 50 to 70°C and the gas used to fluidise the bed of beverage ingredient powder is delivered at a flow rate of between 400 to 700 Nm3/h.
According to a fourth aspect of the invention, there is provided a method of making an agglomerated beverage ingredient powder of the first aspect of the invention, comprising step A. B, C and D of the second aspect of the invention, wherein, the gas used to fluidise the bed of beverage ingredient powder is heated in steps A. B and/or C to between 50 to 70"C; the gas used to fluidise the bed of beverage ingredient powder is delivered at a flow rate of between 400 to 700 Nin3/h and the gas used to fluidise the bed of beverage ingredient powder is cooled in step D to between 5 to 25 C. According to a fifth aspect of the invention, there is provided a method of making an agglomerated beverage ingredient powder of the first aspect of the invention, comprising step A. B, C and D of die second aspect of the invention, wherein, the gas used to fluidise the bed of beverage ingredient powder is heated in steps A, B and/or C to between 50 to 70)C; the gas used to fluidise the bed of beverage ingredient powder is delivered at a flow rate of between 400 to 700 Nm3/h; the gas used to fluidise the bed of beverage ingredient powder is cooled in step D to between 5 to 25 °C and the spray rate of the liquid water droplets is between 0.5 to 3.0 kg/h.
According to a sixth aspect of the invention, there is provided a method of making an agglomerated beverage ingredient powder of the first aspect of the invention, comprising step A, B, C and D of the second aspect of the invention, wherein, the gas used to fluidise the bed of beverage ingredient powder is heated in steps A, B and/or C to between 50 to 70C; the gas used to fluidise the bed of beverage ingredient powder is delivered at allow rate of between 400 to 700 Nm3/h; the gas used to fluidise the bed of beverage ingredient powder is cooled in step D to between 5 to 25 °C; the spray rate of the liquid water droplets is between 0.5 to 3.0 kg per hour and the pressure under which the spray of liquid droplets is formed is between 1 to 3 bar.
According to a seventh aspect of the invention, there is provided a beverage preparation machine insertable beverage ingredient container comprising the beverage ingredient powder of the first aspect of the invention.
The container is preferably a beverage preparation machine insertable container.
In some embodiments, the agglomerated beverage preparation machine insertable beverage ingredient container is selected from: a capsule, a disc, a pod, a pad, a semi-rigid pad, a filter bag, a pouch, a cartridge. In preferred embodiments, the beverage ingredient container has a volume of between 25m1 to 65m1. In more preferred, embodiments, the beverage preparation machine insertable beverage ingredient container comprises a beverage preparation machine readable portion.
Embodiments with such container volumes have the additional advantages of compatibility with beverage preparation machines.
In some embodiments, the beverage ingredient powder occupies at least 45%, 50%, 55%, 60%, 65%, 70%, 75% or 80% and/or no more than 95% or 90% of the total volume of the beverage ingredient container. In some preferred embodiments the beverage ingredient powder occupies between 45% -95%, or between 55% -95%, or between 65% -95%, or between 75% -95%, or between 45% -90%, or between 55% -90%, or between 65% -90% or between 75% -90%of the total volume of the beverage ingredient container.
The preferred ranges of the density and median particle size described above enable significant volume of filling, whilst also enabling optimal extraction, suspension and/or solubility, and reduced residue compared to the prior art for each fill volume.
According to an eighth aspect of the invention, there is provided a method of preparing a beverage comprising; providing a beverage ingredient container of the seventh aspect of the invention; transporting fluid through the container; and dissolving and/or suspending at least some of the beverage ingredient powder in the fluid such that fluid exiting the container comprises at least a portion of the beverage ingredient powder extracted, dissolved and/or suspended therein.
1.5 In some embodiments, the beverage ingredient container is first inserted into a beverage preparation machine In preferred embodiments, the beverage preparation machine reads information relating to the beverage ingredients from the beverage ingredient capsule. The type of data read by the beverage preparation machine relates to, but is not limited to, the date of manufacture of the beverage ingredient capsule. the size; shape and/or volume of the container, one or more ingredients contained within, the type and/or volume of beverage to prepare or combinations thereof. In more preferred embodiments, the fluid flow rate, delay, pressure and/or temperature of the fluid transported through the beverage ingredient container is determined by the information read by the beverage preparation machine. An example of a machine or system which interacts with a capsule in this way is a Tassimo T20 manufactured by Bosch as disclosed in 0B2397510. 0B2397510 relates to a cartridge and machine for the preparation of beverage wherein each cartridge carries a code comprising a plurality of data bits in the form of a barcode. The barcode is read by a beverage preparation machine upon insertion of the cartridge in the machine.
Embodiments where the beverage preparation machine can adjust the parameters of the fluid transported through the beverage ingredient container are particularly preferred, as they have the additional advantages associated with tailoring the fluid parameters to the nature of the beverage ingredient and/or beverage ingredient container to further enhance the amount of beverage ingredient transported into the prepared beverage. In such embodiments, the beverage preparation machine may modify a parameter of the fluid, such as: volume; flow rate; pressure and/or temperature based on the information read from the beverage ingredient capsule to further optimise the dissolution of the beverage ingredient powder.
In some embodiments, the amount of beverage ingredient left as residue in the beverage ingredient container, after the beverage has been prepared is less than 20%, 15%, 10%, 5% or 2.5% of the starting volume or weight of the ingredient.
Such low residues have the advantage of low waste of beverage ingredient 20 powder and reduced need for addition of excess beverage ingredient powder such that sufficient powder is transported into the beverage. They also have the advantage of more desirable beverages with more in cup solids resulting in better mouthfeel and taste.
In some embodiments, the amount of beverage ingredient carried by the fluid into the prepared beverage is more than 80%, 85%, 90%, 95% or 97.5% of the beverage ingredient within the beverage ingredient container.
In some embodiments, the amount of fluid transported through the beverage ingredient container is between 50m1 to 350m1, preferably between 100m1 to 300m1 most preferably between 150m1 to 300m1.
The agglomerated beverage ingredient powder of the invention can be stored in containers of the seventh aspect of the invention for normal storage periods, for examples up to 52 weeks, without significant loss of product quality.
In particular, the invention is an improvement in fat containing soluble powders dispensed from a flexible or rigid cavity. This includes milk powder, dairy creamer powder, non-dairy creamer and cocoa based powders. Embodiment of fat containing soluble powders of the invention significantly less undissolved powder is left after preparation with water, compared to the prior art.
According to a ninth aspect of the invention, there is provided an agglomerated beverage ingredient powder with a median particle size (D50) of between 150 and 600 microns, a density of between 350 and 8508/1, and a porosity of between 0.1 and 0.8 for use in a beverage preparation machine.
According to a tenth aspect of the invention, there is provided an agglomerated 20 beverage ingredient powder with a median particle size (D50) of between 150 and 600 microns, a density of between 350 and 850 g/1, and a water activity of less than 0.4 for use in a beverage preparation machine.
According to an eleventh aspect of the invention, there is provided an agglomerated beverage ingredient powder with a median particle size (D50) of between 150 and 600 microns, a density of between 350 and 850 g/l, a porosity of between 0.1 and 0.8 and a water activity of less than 0.4 for use in a beverage preparation machine According to a twelfth aspect of the invention, there is provided an agglomerated beverage ingredient powder with a median particle size (D50) of between 150 and 600 microns and a fat content of between 5 %w t and 70% wt for use in a beverage preparation machine According to a thirteenth aspect of the invention, there is provided an agglomerated beverage ingredient powder with a median particle size (D50) of between and 600 microns, a fat content of between 5%wt and 70%wt and a water activity of less than 0.4 and preferably a porosity of between 0.1 -0.8 for use in a beverage preparation machine All of the further parameter ranges and features as described in the ninth to 1.5 thirteenth aspect of the invention may be as described in the preferred ranges, features and limits of the parameters described for the first aspect of the invention.
Detailed Description of the Invention Definitions
"Milk powder" refers to a composition that comprises at least milk from animal sources such as, goats, cows, sheep, etc., and milk alternatives derived from plant sources including those derived from nuts; seeds; drupes, grains including, hut not limited to, almond, cashew, soybean, coconut, hemp, rice, horchata, peanut. It may be derived from full fat, semi-skimmed, skimmed, heat treated, homogenised milk etc. In particular, it may be full fat milk powder, semi skimmed milk powder and/or skimmed milk powder.
"Chocolate powder" refers to any powder comprising cocoa. It may further comprise additional ingredients such as a milk powder, a fat; a sweetener, bulking agent, drying agent, anti-caking agent; etc. The fat may be cocoa butter, cocoa butter equivalent, cocoa butter substitute or any animal or plant derived fat. The sweetener may be selected from a carbohydrate-based sweetener or a non-carbohydrate based sweetener. The carbohydrate-based sweetener may be selected from: sugars such as fructose, glucose, maltose, sucrose, lactose, dextrose, high fructose corn syrup or sugar substitutes like e.g. polyols such as sorbitol, mannitol, xylitol or combinations thereof, maltodextrins, dried glucose syrups, malt extracts, starches, trehalose, raftiline, raftilose, galactose, maltose, oligosaccharides, honey powders, and mixtures of same. The non-carbohydrate based sweetener may be an artificial sweetenerlike e.g. Splenda®, Acesulfame KC), aspartame or Stevia®, and mixtures of the same.
"Non-dairy creamer" refers to a product that replicates the mouthfcel and/or flavour of dairy milk and comprises a fat or oil, a protein and a sweetener. Any appropriate food grade fat/oil, protein and sweetener may be use in the composition as 20 disclosed 1W) 98/07329 and WO 2010/040727 for nstance.
"Dairy creamer" refers to products known commercially as 'Dairy creamer'. They are typically compositions that comprise at least a vegetable fat and an amount of sodium caseinate.
"Agglomeration" includes the combining of small powder particles to produce larger particles (agglomerates, aggregates or clusters) by, for example, adhesive binding or compacting of the particles.
Agglomeration may be achieved by press agglomeration, compacting, briquetting, pelletising, extrusion nixing, continuous and batch fluid bed processing.
In order that the invention may be more clearly understood embodiments will now be described, by way of example only, with reference to the accompanying drawings, of which: Figure 1 is a schematic of a continuous agglomeration system used in a method of 10 the invention to produce agglomerated powders of the invention.
Figure 2 is a comparison elan agglomerated chocolate powder of the invention to a control chocolate powder of the prior art.
Figure 3 is a comparison of residues remaining in beverage ingredient containers after beverage preparation in a range of different beverage preparation machines IS Figure 4a is a comparison of the water activities of a 3'd chocolate powder of the invention and an Improved chocolate powder of the invention over shelf life Figure 4b is a comparison of 3'd chocolate powder of the invention and an Improved chocolate powder of the invention over shelf life
Examples
Example 1: An apparatus used in a method of manufacturing an agglomerated powder of the invention Referring to figure 1, a continuous agglomeration system (2) used in methods to manufacture powders of the invention is shown. The continuous agglomeration system (2) comprises an inlet (6) and an outlet (8) for a beverage ingredient powder (4). The system (2) further comprises a wetting zone (10) with spray nozzles (12); a drying zone (14) without spray nozzles and a cooling zone (15) without spray nozzles, a plurality of air inlets (16), air distributor (18) and air exhaust (20).
The beverage ingredient powder (4) is passed through the continuous agglomeration system (2) from inlet (6) to outlet (8); leaving the system (2) as agglomerated beverage ingredient powder.
The inlet (6) is configured to deliver pre-beverage ingredient powder (4) to the start of the agglomeration process. The spray nozzles (12) are configured to create the wetting zone (10) where the surface of the beverage ingredient powder (4) is wetted and particles of beverage ingredient powder can agglomerate. The air inlet (16) and air distributor (18) are configured to deliver air to the bed of beverage ingredient powder and provide agitation (to avoid excessive agglomeration) and drying (to complete the agglomeration process). The outlet (8) is configured to deliver post-agglomeration beverage ingredient powder for further processing or packing In use, a beverage ingredient powder (4) may be a single ingredient or a pre-blended concoction of suitable different ingredients. The beverage ingredient powder (4) is passed through the inlet (6) to form a bed of beverage ingredient powder. The bed of beverage ingredient powder is fluidised by gas directed via inlets (16) through a distributor (18) underneath the bed of powder. The gas may be subject to heating or cooling before arriving at the fluidised bed of beverage ingredient powder.
Firstly, the fluidised bed of beverage ingredient powder enters a wetting zone (10) within the continuous agglomeration process. The wetting zone (10) is created by a number of spray nozzles (12) that dispense droplets of fluid in the form of water, that may comprise further ingredients such as an emulsifier or sweetening agent, onto the fluidised bed of beverage ingredient powder. The water droplets are defined by the pressure at which the fluid arrives at the spray nozzles (12), the flow rate of the fluid and the geometry of the spray nozzles (12) themselves, all of which are controllable by the operator. The beverage ingredient powder has a residence time within the wetting zone (10) that can be defined by the operator to modify the properties of the beverage ingredient powder (4) after processing.
After time in the wetting zone (10) the fluidised bed of beverage ingredient powder moves to the drying zone (14) of the continuous agglomerator. away from the addition of water droplets. In the drying zone (14) the gas used to fluidise the bed of beverage ingredient powder is typically heated to a temperature higher than that of the gas that was used in the wetting zone (10) in order to facilitate the efficient drying of the beverage ingredient powder. The residence time of the beverage ingredient powder in the drying zone (14) is also under the control of the operator and will affect the final properties of the beverage ingredient powder (4).
After time in the drying zone (14), the fluidised bed of beverage ingredient powder moves to the cooling zone (15) of the continuous agglomerator. In the cooling zone (15) the gas used to fluidise the bed of beverage ingredient powder is typically cooled (or heated less) to a lower temperature than the gas that was used in the wetting zone (10) or the drying zone (14) in order to facilitate the cooling and hardening of the beverage ingredient powder (4). The residence time of the fluidised bed of beverage ingredient powder within the cooling zone (15) is controllable by the operator and has an effect on the final properties of the beverage ingredient powder (4).
After time in the cooling zone the beverage ingredient powder (4) exits the continuous agglomerator via outlet (8) and on to further processing such as blending with other ingredients or packing Example 2 -Preparation of an embodiment of a chocolate beverage powder of the invention An embodiment of a beverage ingredient powder of the first aspect of the invention, in the form of a chocolate powder, was prepared as set out below: Using an embodiment of an agglomeration process of the second aspect of the invention, with reference to Figure 1, a control chocolate powder, comprising 42% sucrose, 22 % skimmed milk powder, 10% whole milk powder, 9 % cocoa powder, 3 % coconut oil, 6 % glucose syrup solids, 5 % sweet whey powder and some additional minor ingredients such as flavourings was passed through the continuous agglomeration system (2) from inlet (.6) to outlet (8) using the process parameters set out in Table 1; and leaving the system (2) as agglomerated chocolate powder of the invention.
Table 1: Agglomeration process parameters for production of chocolate powder of Example 2 Process Parameter Value Product throughput (kg 11-1) 25 Mean residence time in continuous agglomerator (min) 42 Spraying liquid, Spray rate (kg WI) Water 1.2 Atomization pressure of spraying liquid (bar) 1.8 -2.2 Ratio Water! Beverage ingredient powder (%) 4.8 Air flow volume (Nm311-1) 550 Inlet air temperature (°C) Wetting zone 58 -60 Inlet air temperature (°C) Drying zone 70 Inlet air temperature ("C) Cooling zone 15 Product temperature (°C) Wetting zone 42.3 -45.0 Product temperature (°C) Drying zone 42.7 -44.6 Product temperature (°C) Cooling zone 38.2 -40.5 Mean residence time (minutes) Wetting zone 10.5 Mean residence time (minutes) Drying zone 21 Mean residence time (minutes) Cooling zone 10.5 The agglomerated chocolate powder produced in this way had physical properties as set out in Table 2, which also indicates the equivalent properties of the control chocolate powder, before agglomeration: Table 2: Physical properties of the chocolate powder of Example 2 Powder Bulk Tapped Hausner' s Ratio D50 Fines Porosity Water activity density density (pm) Q90 (01) (WO (% ) Chocolate (Control) 651.4 761 1.15 169.7 27.3 0.52 0.32 Chocolate (According to the invention) 564 636.9 1.13 192.2 14.15 0.60 0.25 Bulk density and tapped density These were measured by calculation from mass and volume. Bulk density, sometimes known as free flow density, was measured before any tapping, or vibration to settle the powder. Tapped density was measured after a tapping routine.
Steps for measurement of both densities were as follows: Bulk density 1-Powder was placed into a plastic bag and mixed gently by hand 15 times using a circular motion to ensure it was in a free-flowing state.
2-An amount of the powder sufficient to fill a 250m1 beaker, was poured in a steady, free-flowing motion into a graduated cylinder and the volume occupied by the powder read oil 3-The ratio of mass and volume of the powder was used to calculate Bulk/Free flow density.
Tapped density 1-After measuring the Bulk Density as described above, the powder of Example 2 was placed in a tap volumeter, such as that manufactured by Agilent Technologies.
2-The tap volumeter was set to a cycle of 150 strokes/taps, after which the volume occupied by the powder was read from the graduated cylinder.
3-After the tapping cycle the ratio of mass and volume was used to calculate Tapped density.
Porosity Porosity was measured by using the equation: Porosity = (1 -Bulk density/Particle density) The Particle density was measured using an Accupyc 1300 Helium Pycnometer (manufactured by Micromeritics Instrument Corporation, USA) by the following process: 1-3-4 g of powder was weighed in a cylinder 2-The cylinder was inserted into the pycnometer and the particle density was measured.
Hausner's ratio Hausner's ratio was calculated as the tapped density of the powder divided by the bulk density of the powder.
Fines/Particle size These were measured by using a laser diffraction method on Helos Particle Size Distribution measurement equipment (Helos/KF manufactured by Sympatec GmbH) in the following way: I-A sample of powder was placed into a plastic bag and mixed gently by hand 15 times using a circular motion to ensure it was in a free-flowing state. Then the chocolate powder was placed in a Turbula mixer and allowed to equilibrate to ambient temperature (-22°C) 2-The Vibri funnel was filled with -35-50g of the powder and the instrument set to analyse Median particle size (D50) and the amount of particles with largest dimension below 90 microns (Q90).
The settings in Table 3 and Tahle 4 were used to measure the various powders: Sample Calculation Lens Trigger conditions Dispersing type mode conditions Non-dairy creamer LD or free R5 Reference: 15s Start: ch 25> 1,0% Stop: ch 25> 10% 2s time out Vibri speed:100% Vibri funnel rotation:90% Vibri gap: 8mm Primary pressure 1.5bar.
(forced stability -1) Chocolate powder LD or free (forced stability -1) R6 Or Reference: 15s Start: ch Vibri speed:100% Vibri funnel rotation:90% R7 25> 02% Stop: ch Vibri gap: lmm Primary pressure 1.0bar.
25> 0,3% 2s time out Whole milk powder LD or free (forced stability -1) R5 Reference: 15s Start: ch Vibri speed:100% Vibri funnel rotation:90% 25=± 1.0% Stop: ch Vibri 2ap. 8mm Primary pressure 1.5bar.
25::---131% 2s time out Table 3: Setting used to analyse particle size Table 4: Lens parameters Lens code Focal length (mm) PSD range (pm) R5 500 4.5-875 R6 1000 9.0-1759 R7 2000 18-3500 Water activity Water activity was measured using a standard dew point measurement on an Aqualab 3TE series manufactured by Labcel I Ltd, UK) as described below: I-The Aqualab instrument was calibrated using the water activity standards of 0.250 and 0.500 prior to each measurement to ensure accurate calibration of the instrument before each measurement.
2-A sample of powder as mixed gently by hand to ensure it was in a free-flowing state and a small amount of sample added to a sample cup such that the powder covers the bottom of the cup in a thin layer.
3-The sample cup was placed to the drawer of the Aqualab 3TE instrument and allowed to equilibrate to ambient temperature.
4-Once the equilibration was reached, a water activity reading was given by the instrument.
The chocolate powder of Example 2, according to the invention, produced by the continuous agglomeration process, showed a reduction in hulk density and improved flowability with a reduction in the Hausner's ratio compared to the control chocolate powder. Further, the D50 of the continuously agglomerated chocolate powder was higher than that of control chocolate powder and the Q90 (amount of fines) significantly reduced to about 14%, from 27% in the control chocolate powder, resulting in an increase in porosity of around 0.1.
By these parameters the chocolate powder according to the invention, made by continuous agglomeration, showed better flowahility, lower level of fi nes, higher median particle size and increased porosity over standard chocolate powder.
Example 3: Use of the chocolate powder according to the invention, of Example 2, in preparation of a beverage 30g of the chocolate powder according to the invention, made by continuous agglomeration, was packed into a commercial Tassimo Big T-disc at a volume of 53.2 ml (88% fill volume) and chocolate powder residues measured and compared to an identical Tassimo Big T-disc packed with 30g of control chocolate powder at a volume of 46 ml (76% fill volume) in a range of Tassimo beverage preparation machines.
The range of Tassimo machines are all capable of reading barcodes located on the T-discs (or any other capsule, pod, container, etc.) in order to adjust the brewing parameters of the machine such as water flow rate, temperature, etc., in accordance with information read from the barcode.
The range of Tassimo machines provided water heated to between 85 and 95°C and drink weight of 160m1 to 235m1 Chocolate powder residues were significantly reduced across the range of all machines tested, as shown in Figure 3. For each pair of results the right-hand, shorter line is the control. Residue was calculated as the percentage of chocolate powder remaining in the disc after the brew cycle had been completed.
Example 4: 2n' embodiment of a chocolate powder of the invention A 2nd control chocolate powder characterized by 36% fines and a bulk density of 690 g/1 had a poor residue of 38% after brewing.
The 2"d control chocolate powder was then processed by the continuous agglomeration process of Example 1 to become a 2" agglomerated chocolate powder according to the invention.
The 2" agglomerated chocolate powder according to the invention showed properties of significantly lower level fines (11%) and lower bulk density (550 g/1) than that of the 2" control.
The 2"d agglomerated chocolate powder of the invention and the 2"d control chocolate powder were then added to respective Tassimo Big T-discs and both were prepared in a Tassimo Chassis 6 machine.
The resultant, used, Big T-discs showed that there was a significant reduction in chocolate residue in the disc that contained the 2" chocolate powder according to the invention vs the disc that had contained the 2" control chocolate powder after brewing: 37% residue with the 2111 control and 8% residue with the 2" chocolate powder according to the invention; as shown in Figure 2.
Further the 2"d agglomerated chocolate powder according to the invention, after continuous agglomeration, had lower water activity than the 2" control chocolate powder, before processing. The second chocolate powder according to the invention had a water activity of 0.37 compared to the 2" control chocolate powder water activity of 0.48.
The low water activity (< 0.37) of the agglomerated chocolate powder maintains low residue in the disc, after brewing, over time compared to the 2"d control.
Example 5: Optimising powders of the invention for improved shelf-life A 3ra agglomerated chocolate powder of the invention with a water activity of 0.59, median particle size (D50) of 338 microns, fines level (Q90) of 3.7% and density of 420g/1 was brewed in a Tassimo Chassis 6 brewer yielding residue of 4 %.
The 3rd agglomerated chocolate powder of the invention was further processed in an agglomerator of Example 1 to produce an Improved agglomerated chocolate powder of the invention, with improved shelf-life.
The Improved agglomerated chocolate powder of the invention, with improved shelf life, had a water activity of 0.33, median particle site (D50) of 295 microns fines level (Q90) of 5.3% and a density of 486 g/I.
Both powders were placed in a shelf life cabinet of 23°C at 55 % Relatively Humidity (RH) and each month, water activity and residue after preparation in a standard Chassis 6 machine, were measured.
As shown in Figure 4a: At 9 months shelf life the 3rd agglomerated chocolate powder of the invention had a water activity of 0.61; whereas the Improved agglomerated chocolate powder of the invention with improved shelf life had a water activity level of 0.378.
As shown in Figure 4b: At 9 months shelf life the 3m agglomerated chocolate powder of the invention yielded a residue of 31.7%; whereas the Improved chocolate powder of the invention with improved shelf life yielded a residue of 0.2%. Figures 4a and 4b show the performance of both chocolate powders over a 9-month shelf life and that the Improved chocolate powder of the invention with improved shelf life was further optimised for performance over the shelf life of the product.
Example 6: Dairy Creamer A 6.2g of a Control dairy creamer comprising 64% skimmed milk powder, 27.5% sugar and 8.25% Cream powder (total fat of 7.9%) was packed into a standard Senseo filter pod. When used in a standard Senseo Original beverage preparation machine it had a solubility of 75% (25% residue left in the pod after use).
The Control dairy creamer was then agglomerated in a batch process to produce an agglomerated Dairy creamer of the invention. The batch agglomeration process differed from the continuous agglomeration process of Example 1 in the following ways: - The wetting, drying and cooling steps were all performed in the same zone of the batch agglomerator - The batch process started with filling the batch agglomerator with beverage ingredient powder and finished with emptying the batch agglomerator of the beverage ingredient powder The batch agglomerator was a Strea-1 agglomerator, manufactured by GEA. During processing the beverage ingredient powder temperature was maintained below 45°C. 20 and the total residence of the powder in the agglomerator was kept below 30 mins. The physical properties of the Control dairy creamer were improved in the Dairy creamer according to the invention, after continuous agglomeration, as follows: - The Control dairy creamer had D50 of 198 microns, whereas the Diary creamer according to the invention, after continuous agglomeration had D50 of 293 microns - The Control dairy creamer had a fines content (Q90) of 23% whereas the Dairy creamer according to the invention, after continuous agglomeration had Q90 of 5%.
- The Control dairy creamer had a bulk density of 50801, whereas the Dairy creamer according to the invention, after continuous agglomeration had a bulk density of 465g/1 When used in the standard Senseo Original beverage preparation machine, the solubility of the Dairy creamer according to the invention, after agglomeration, went up to 90% (10% residue left in the pod after use).
The above embodiments are described by way of example only. Many variations are possible without departing from the scope of the invention as defined in the appended 15 claims.

Claims (19)

  1. CLAIMS1. An agglomerated beverage ingredient powder comprising a median particle size (D50) of between 150 and 600 microns and a density of between 250 and 850g/l, and wherein the beverage ingredient powder further comprises a porosity of between 0.1 and 0.8.
  2. 2. The beverage ingredient powder of claim 1 wherein the powder comprises a median particle size (D50) of between 200 and 600 microns and a density of between 350 and 650g/1.
  3. 3. The beverage ingredient powder of any preceding claim wherein the beverage ingredient powder further comprises percentage of particles having a largest dimension of less than 90 microns of between 2%-20%.
  4. 4. 't he beverage ingredient powder of any preceding claim, wherein the beverage ingredient powder further comprises a water activity of less than 0.45.
  5. 5. The beverage ingredient powder of any preceding claim wherein the beverage ingredient powder comprises fat.
  6. 6. The beverage ingredient powder of claim 5 wherein the beverage ingredient powder comprises between 5% -70%wt fat.
  7. 7. The beverage ingredient powder of any preceding claim wherein the beverage ingredient powder is selected from a chocolate powder; a milk powder; or a non-dairy creamer powder.
  8. 8. A method of making the beverage ingredient powder of any preceding claim comprising steps of: a) Fluidising a bed of beverage ingredient powder with the introduction of a gas; 1)) Spraying liquid droplets onto the fluidised bed of beverage ingredient powder; c) Drying the fluidised bed of beverage ingredient powder; d) Cooling the fluidised bed of beverage ingredient powder; and
  9. 9. The method of claim 8 wherein the gas is heated to between 50 to 70°C during at least a portion of steps b) and/or c) and cooled to between 5 to 25°C during at least a portion of step d).
  10. 10. The method of claim 8 or 9 wherein the gas is delivered at a flow rate of between 400 to 700 Nm3/h.
  11. II. The method of any of claims 8 to 10 wherein the liquid droplets are sprayed at between 1 to 3 bar and at between 0.5 to 3kg/h.
  12. 12. The method of any of claims 8 to II wherein the ratio of sprayed liquid droplet volume to beverage ingredient powder volume is between 1:99 to 1:9.
  13. 13. The method of any of claims 8 to 11 wherein the total residence time of the IS beverage ingredient powder within steps a)-d) is between 20 to 60 minutes.
  14. 14. A beverage preparation machine-insertable beverage ingredient container containing the agglomerated beverage ingredient powder of claims 1 to 7.
  15. 15. A beverage preparation machine-insertable beverage ingredient container of claim 14 wherein the beverage ingredient powder occupies between 45% - 95% of the total volume of the beverage ingredient container.
  16. 16. A method of preparing a beverage comprising: a) providing a beverage ingredient container of claim 14 or 15; b) transporting fluid through the container; and c) dissolving and/or suspending at least sonic of the beverage ingredient powder in the fluid such that fluid exiting the container comprises at least a portion of the beverage ingredient powder dissolved and/or suspended therein.
  17. 17. The method of claim 16 wherein the beverage ingredient container is inserted into a beverage preparation machine before slept)).
  18. 18. The method of claim 17 wherein the beverage preparation machine reads a code on or in the beverage ingredient container prior to step b) and adjusts at least one parameter of the fluid that is transported through said beverage ingredient container based on the information read from said code.
  19. 19. The method of claims 16 -18 wherein the volume of fluid transported through the container is 50m1 to 300m1.
GB2201883.2A 2018-02-09 2018-02-09 Beverage powder and method Active GB2600867B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2201883.2A GB2600867B (en) 2018-02-09 2018-02-09 Beverage powder and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1802161.8A GB2573088B (en) 2018-02-09 2018-02-09 Beverage powder and method
GB2201883.2A GB2600867B (en) 2018-02-09 2018-02-09 Beverage powder and method

Publications (3)

Publication Number Publication Date
GB202201883D0 GB202201883D0 (en) 2022-03-30
GB2600867A true GB2600867A (en) 2022-05-11
GB2600867B GB2600867B (en) 2022-12-07

Family

ID=81256609

Family Applications (1)

Application Number Title Priority Date Filing Date
GB2201883.2A Active GB2600867B (en) 2018-02-09 2018-02-09 Beverage powder and method

Country Status (1)

Country Link
GB (1) GB2600867B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033971A1 (en) * 1999-11-09 2001-05-17 Niro A/S A process for producing a spray dried, agglomerated powder of baby food, whole-milk or skim-milk, and such powder
WO2002074143A2 (en) * 2001-03-16 2002-09-26 The Procter & Gamble Company Beverage brewing devices for preparing creamy beverages
DE102004024680A1 (en) * 2004-05-19 2005-12-15 Glatt Ingenieurtechnik Gmbh Manufacture of instant products in fluidized bed, controls inlet air temperature, mean input velocity and temperature of bed material in accordance with required product properties
WO2016014497A1 (en) * 2014-07-21 2016-01-28 Abbott Laboratories Nutritional powder pods containing nutritional powders with volume flowability properties

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033971A1 (en) * 1999-11-09 2001-05-17 Niro A/S A process for producing a spray dried, agglomerated powder of baby food, whole-milk or skim-milk, and such powder
WO2002074143A2 (en) * 2001-03-16 2002-09-26 The Procter & Gamble Company Beverage brewing devices for preparing creamy beverages
DE102004024680A1 (en) * 2004-05-19 2005-12-15 Glatt Ingenieurtechnik Gmbh Manufacture of instant products in fluidized bed, controls inlet air temperature, mean input velocity and temperature of bed material in accordance with required product properties
WO2016014497A1 (en) * 2014-07-21 2016-01-28 Abbott Laboratories Nutritional powder pods containing nutritional powders with volume flowability properties

Also Published As

Publication number Publication date
GB202201883D0 (en) 2022-03-30
GB2600867B (en) 2022-12-07

Similar Documents

Publication Publication Date Title
CN103179864B (en) The method and apparatus of beverage is formed by the powder of the dispersiveness with enhancing
US20090162489A1 (en) Effervescent tablet for use as an additive in hot coffee or hot water and method of making same
EP2591705B1 (en) Chocolate beverage
WO2011063322A1 (en) A beverage composition
KR20100015793A (en) Improvement of cold water solubility of powders
US20170164641A1 (en) Composition for Preparing a Beverage or Food Product Comprising a Plurality of Insoluble Material Bodies
CA2894998C (en) Coffee composition
CA3090450C (en) Beverage powder and method
US12121044B2 (en) Beverage powder and method
US20240349757A1 (en) Beverage powder and method
GB2600867A (en) Beverage powder and method
RU2811502C2 (en) Dry beverage and method of its production
CA2996740C (en) Dairy powder
BR112020015716B1 (en) AGGLOMERATED DRINK POWDER INGREDIENT, METHODS FOR MANUFACTURING THE DRINK POWDER INGREDIENT AND FOR PREPARING A DRINK, AND, DRINK INGREDIENT CONTAINER INSERTABLE INTO A DRINK PREPARATION MACHINE
US20220289470A1 (en) Beverage ingredient containers, methods of making and methods of using the same