GB2597530A - Ceramic metal riser tube stalk - Google Patents

Ceramic metal riser tube stalk Download PDF

Info

Publication number
GB2597530A
GB2597530A GB2011630.7A GB202011630A GB2597530A GB 2597530 A GB2597530 A GB 2597530A GB 202011630 A GB202011630 A GB 202011630A GB 2597530 A GB2597530 A GB 2597530A
Authority
GB
United Kingdom
Prior art keywords
riser tube
ceramic
stalk
ceramic metal
metal riser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
GB2011630.7A
Other versions
GB202011630D0 (en
Inventor
Ahmed Muneer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to GB2011630.7A priority Critical patent/GB2597530A/en
Publication of GB202011630D0 publication Critical patent/GB202011630D0/en
Publication of GB2597530A publication Critical patent/GB2597530A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D35/00Equipment for conveying molten metal into beds or moulds
    • B22D35/04Equipment for conveying molten metal into beds or moulds into moulds, e.g. base plates, runners

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

A metal and ceramic riser tube stalk comprises a main body 4 attached to a neck 1 and a flange 3. The lower end of the riser has an inner 5 and outer 6 protection layer around a steel core 4. A retainer cap 7 is attached to the bottom of the riser tube using threaded holes (8, fig 8). Components may be reused and recycled.

Description

NAME OF THE INVENTOR
Muneer Ahmed ADDRESS OF THE INVENTOR: Drove Road. Swindon SN1 3AE United Kingdom TITLE OF THE INVENTION Ceramic Metal Riser Tube Stalk I have invented a Ceramic Metal Riser tube stalk; the subject matter is used in Low Pressure Die Casting processes as set forth in the following specification. 1.
FIELD OF THE INVENTION
The invention Ceramic Metal Riser Tube stalk is concerned with Low Pressure Die Casting (LPDC) process. Molten metal is transferred under gas pressure from furnace to casting die through Ceramic Metal Riser Tube stalk.
Riser tubes are conventionally used in foundries for casting of aluminium components.
The invention provides extended service life and improves casted part quality. It can replace existing riser tubes without any modification to casting machines, casting dies or feeder systems.
BACKGROUND
As used herein the term molten metal means any metal or combination of metals in liquid form such as aluminium, copper, iron and their alloys and thereof. The term gas means any gas or combination of gases including atmospheric air, argon, nitrogen or other gasses applied onto molten metals. The subject matter (fig 1) and (fig 6) Ceramic Metal Riser Tube stalk is used in Low Pressure Die Casting machines where molten metal is pressurised to flow through riser tube into a cavity or a feeder system or casting die. Riser tube is connected to a feeder, cavity or casting die through neck and flange. The subject matter can also be incorporated into a feeder system as a single part or multiple part assembly. The term neck and flange mean any shape and size that is of suitable design to connect to casting machine and casting die, die cavity interface, feeder system or casting cavity.
Conventionally two types of riser tubes are used in process of Low Pressure Die Casting. These riser tubes have a short and unpredictable life, causing quality problems in products being cast and major down time problems. Riser tubes made from metallic materials tend to dissolve in molten metal being transferred, leading to contamination of molten metal and riser tube failure. Riser tubes made from ceramic materials have resistance to molten metals but are mechanically weak and easily damaged by mechanical loading, mechanical shock, thermal shock and oxidised metal accumulation on its surfaces. Metallic insert application on a ceramic tube leads to cracking, caused by different rates of expansion. Metallic insert application suffers from problems of gas leak into the product being cast. These tubes are often very expensive, require special skills to assemble and carry all the problems of ceramic riser tubes. Once any part of the riser tube is damaged or cracked, it becomes unusable and must be replaced. Damaged tubes are not re-usable.
SUMMARY OF THE INVENTION
The invention is designed with a combination of metallic materials and ceramic materials, providing both properties of mechanical strength and resistance to molten metal. The function of invention is not affected by mechanical loading, mechanical shock or damage to the ceramic materials, for example cracks and chips. Gas leak into products being cast is not possible. It is possible to reuse metallic components of the invention.
Various materials are disclosed in the following detailed description and accompanying drawings.
DESCRIPTION OF DRAWINGS
Figure. 1 is an Isometric view of a Ceramic Metal Riser tube stalk showing embodiment of the subject matter; Figure 2 is a front view thereof; Figure 3 is a top view thereof; Figure. 4 is a bottom view thereof; Figure. 5 is a section view of figure 2 thereof; Figure. 5A is a detailed section view of area A of Figure 5 thereof; Figure. 5B is a detailed section view of area B of Figure 5.
Figure. 6 is an Isometric view of a Ceramic Metal Riser tube stalk showing a variation of flange configuration thereof; Figure. 7 is a front view of Ceramic Metal Riser tube stalk with variation of flange configuration thereof; Figure. 8 is a cross section view of gure 7 Ceramic Metal Riser tube stalk with variation of flange configuration.
DETAILED DESCRIPTION OF THE INVENTION
Design of Riser tube stalk consists of following components (1) Neck; it is shapped to match various casting machine designs and is part of the main body of riser tube. Neck-less design is also adopted when interagted flange (3) is designed within the main body (4) of the Riser tube stalk.
(2) Sealing slots; Feature provided in the form of slots to hold sealing material between metallic and ceramic parts of the riser tube. Mechanical sealing is achieved by using very high temperature sealing compounds. The sealant has working temperatures of over 1200°C and is shapped to the slot profile. Shape and quantity of slots vary according to level of sealingrequired. Some riser tubes may not require sealing slots where a different type of sealant can be applied in the form of expansion filler (10).
(3) Integrated flange; The flange is an integrated feature of this design. It can be of any dimension in shape, diameter and height. Since the flange is cast or machined with the main body (4) of riser tube stalk, it does not require any assembly, sealing or preparation therefore providing a gas tight operation and better quality of castings made on Low Pressure Die Casting machines. Integrated flange can bear high meachanical loads without damaging the tube.
(4) Main body; made from metal that is resistant to wear and chemical reaction from molten metal. It provides gas tight function for Low Pressure Die Casting process while molten metal is being transferred through the Ceramic steel riser tube stalk. The main body metallic design also provides mechanical strength and support to ceramic components of riser tube stalk. The main body is further treated to improve its strength and chemical properties. It can be made from various specifications of iron (Fe) alloys or other metals according to operational environment and cost constraints. It can be cast or machined in to the required shapes including tubular shapes to match various casting machine designs. The bottom end of main body is designed for securing parts to the main body. Threaded holes (8) are used for assembling retainer cap (7) to the main body (4).
(5) outer protection; Riser tube stalk operates in direct contact with molten metals at temperatures over 700°C leading to wear caused by chemical reactions. A protection layer of barrier materials is applied in the form of a coating or sleeve. Barrier materials range from brush on coatings to advanced thermal or plasma sprayed metallic oxides and metallic ceramic sleeves, for example aluminium oxides, Zirconium, Tungsten, Molybdenum refractory materials or other compositions that are resistant to molten metals. Outer protection (5) when used as sleeve can be installed in single, double or multiple pieces. Outer protection is designed in a manner so it can be replaced.
(6) inner protection; Internal diameter or shape of main body (4) is protected from chemical and heat reaction of molten metals by using barrier materials. Barrier can be designed in any shape to match internal shape of the main body (4). Barrier materials range from brush on coatings to advanced thermal or plasma sprayed metallic oxides and metallic ceramic sleeves, for example aluminium oxides, Zirconium, Tungsten, refractory materials or any other compositions that are resistant to molten metals. Inner protection (6) when used as sleeve can be installed in single, double or multiple pieces. Inner protection is designed in a manner so it can be replaced.
(7) Retainer cap; Is a part of the Riser tube stalk to keep ceramic sleeves or tubes (5) and (6) in assembled position. Retainer cap also retains any bottom filter elements used in Low Pressure die casting process. Removeable or sacrificial retainer cap allows additional filter replacement. Retainer cap is made from metallic ceramics or metals with melting points above 1400°C. The main body of the Riser tube (4) can be designed in a manner that no retainer cap is neccesory or other retaining methods can be applied.
(8) Retainer cap fastners; Retainer cap (7) is assembled to the main body (4) by using screw, bolts or pins made from metallic ceramics or metals with melting temeratures above 1500°C. Other cements, high temperature adhesives, ceramic fasteners and other securing methods are also used to fasten the retainer cap (8) to the main body (4).
(9) Lifting bolt holes; bolt holes are provided in the riser tube main body (4) flange area (3) for safe lifting. An eye bolt or other lifting accessory can be screwed in for lifting device coupling.
(10) Expansion filler; The invention Ceramic Metal Riser Tube stalk uses material that are strong and resistant to molten metal and corrosion. Materials used in this invention may have different rates of thermal expansion, a layer of expansion absorbing material is used to compensate for the size changes without damaging the components in Ceramic Metal Riser tube stalk. Filler materials range from ceramic fibres, cements, clays and high temperature materials such as graphite and graphite impregnated ceramic fibres or combination.

Claims (6)

  1. CLAIMS1. Ceramic Metal Riser Tube stalk works in combination with molten metals, its design, materials and construction are to reduce chemical reactions between the invention and molten metals therefore giving it long operational life.
  2. 2. High strength materials used in the main body (4) give resistance to mechanical shock. It provides a strong base for Ceramic Metal Riser Tube stalk construction and supports ceramic sleeves (5), (6) and thereof.
  3. 3. Tube remains air tight even after damage to its components ensuring Low Pressure Die Cast product quality is not compromised.
  4. 4. Ceramic Metal Riser Tube stalk reduces cast part waste generation through its strong design.
  5. 5. Ceramic Metal Riser Tube stalk can be adapted to any Low Pressure Die Casting machine or system of any size.
  6. 6. The main body of subject matter (4) and ceramic or refractory sleeves (5), (6) can be recycled for extended use therefore reducing significant amount of waste generation and conserves energy in manufacture of new riser tube stalks.I claim the operational principles and ornamental design for Ceramic Metal Riser Tube stalk as shown and described.
GB2011630.7A 2020-07-27 2020-07-27 Ceramic metal riser tube stalk Pending GB2597530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2011630.7A GB2597530A (en) 2020-07-27 2020-07-27 Ceramic metal riser tube stalk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2011630.7A GB2597530A (en) 2020-07-27 2020-07-27 Ceramic metal riser tube stalk

Publications (2)

Publication Number Publication Date
GB202011630D0 GB202011630D0 (en) 2020-09-09
GB2597530A true GB2597530A (en) 2022-02-02

Family

ID=72339247

Family Applications (1)

Application Number Title Priority Date Filing Date
GB2011630.7A Pending GB2597530A (en) 2020-07-27 2020-07-27 Ceramic metal riser tube stalk

Country Status (1)

Country Link
GB (1) GB2597530A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991008849A1 (en) * 1989-12-11 1991-06-27 Comalco Limited CONTROLLED CASTING OF HYPEREUTECTIC Al-Si HYPERETUTECTIC ALLOYS
US5558801A (en) * 1993-06-01 1996-09-24 Nichias Corporation Casting stalk
CN106825498A (en) * 2017-01-08 2017-06-13 中车戚墅堰机车车辆工艺研究所有限公司 Stalk and its manufacture method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991008849A1 (en) * 1989-12-11 1991-06-27 Comalco Limited CONTROLLED CASTING OF HYPEREUTECTIC Al-Si HYPERETUTECTIC ALLOYS
US5558801A (en) * 1993-06-01 1996-09-24 Nichias Corporation Casting stalk
CN106825498A (en) * 2017-01-08 2017-06-13 中车戚墅堰机车车辆工艺研究所有限公司 Stalk and its manufacture method

Also Published As

Publication number Publication date
GB202011630D0 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
RU2223840C2 (en) Stopper rod
JP4308288B2 (en) Outlet structure of melting furnace and repair method
JP2009255120A (en) Immersion nozzle for continuous casting
GB2597530A (en) Ceramic metal riser tube stalk
US20210197253A1 (en) Ceramic Metal Riser Tube Stalk
EP1878519B1 (en) Pouring nozzle
EP1637254B1 (en) Die mounting
ZA200508971B (en) Container, storing bath and a method of producing the container
KR101815372B1 (en) Consumable part for construction machine and method manufacturing thereof
JP6089546B2 (en) Repair method for converter steel outlet
JP2008238216A (en) Rotating body for stirring molten metal, and degassing device of molten metal using the same
AU732248B2 (en) Pouring tube structure and assembly
RU2074052C1 (en) Intermediate apparatus for low pressure die casting of metal alloys with high melting temperature and plant including said apparatus
JP2000094098A (en) Pouring tube of tundish
JP3633519B2 (en) Stave cooler for metallurgical furnace and its mounting method
JP4361824B2 (en) Immersion tube for vacuum degassing equipment
CN217785810U (en) Split type crucible
EP1133373B1 (en) Improvements in or relating to refractory products
JP3018030B2 (en) Reuse method of stopper and stopper used for this
CN115404293B (en) Blast furnace tuyere sleeve sealing structure and application method thereof
JPH10298632A (en) Immersion tube for rh equipment
KR100811627B1 (en) bubbling plug having sleeve block
WO2009063573A1 (en) Stave cooler for blast furnace
JP2816085B2 (en) Construction method of immersion pipe for reflux degassing equipment
GB2235889A (en) Improvements in or relating to refractory monoblock stoppers