GB2584536A - Tamper detection device and associated method - Google Patents

Tamper detection device and associated method Download PDF

Info

Publication number
GB2584536A
GB2584536A GB2003839.4A GB202003839A GB2584536A GB 2584536 A GB2584536 A GB 2584536A GB 202003839 A GB202003839 A GB 202003839A GB 2584536 A GB2584536 A GB 2584536A
Authority
GB
United Kingdom
Prior art keywords
container
detection device
magnetic
tamper detection
magnetisable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB2003839.4A
Other versions
GB202003839D0 (en
Inventor
Vogel Aldwin
De Jong Snr Remy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bureau Veritas Commodity Services Ltd
Original Assignee
Bureau Veritas Commodity Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bureau Veritas Commodity Services Ltd filed Critical Bureau Veritas Commodity Services Ltd
Publication of GB202003839D0 publication Critical patent/GB202003839D0/en
Publication of GB2584536A publication Critical patent/GB2584536A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/02Mechanical actuation
    • G08B13/14Mechanical actuation by lifting or attempted removal of hand-portable articles
    • G08B13/149Mechanical actuation by lifting or attempted removal of hand-portable articles with electric, magnetic, capacitive switch actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/48Arrangements of indicating or measuring devices
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/06Monitoring of the line circuits, e.g. signalling of line faults
    • G08B29/08Signalling of tampering with the line circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F3/03Forms or constructions of security seals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

A device 10 for detecting tampering of a metallic container 50 comprises a magnetic element 12; a magnetic field/flux sensor 14; and a data transmitter 14. Preferably the sensor detects the field induced in the containers wall and/or how this affects the field elsewhere. The magnetic elements can be two permeant magnets either side of the sensor. The sensor and transmitter can be in a microcontroller. There can also be a tilt sensor. All components can be in a housing which has an electrically conductive sleeve containing the sensor and transmitter. The magnet could be spaced apart from the container wall by the housing. There can be batteries and/or solar panels to power the system. The transmitter can communicate with a wireless network by creating a datalink and transmitting on it. The system could be calibrated when placing on the container, or information about location and magnetic field could be acquired over time.

Description

Title: Tamper detection device and associated method
Field of the invention
This invention relates to a tamper detection device, in particular such a device as used with transport containers, and a method of tamper detection.
Background to the invention
Theft of cargo during transport is a major problem worldwide, with goods being removed from cargo containers during transport, containers being intercepted and to stolen and also loose materials, such as ore, being removed from trucks and the like during transport.
Small tracking devices to reveal the location of individual objects are known but these do not allow detection of tampering with cargo, such as when a container is opened and the contents replaced.
Summary of the invention
In accordance with one aspect of the present invention, there is provided a tamper detection device for attachment to a magnetisable container, such as a cargo container or a truck, the device comprising at least one magnetic element, a sensor element to detect changes in induced magnetic field between the at least one magnetic element and a magnetisable container to which the device is attachable, and a transmitter element to transmit information or data relating to changes in the induced magnetic field. The device can be attached to an external surface of the container which ensures the contents of the container are not disturbed.
The magnetic element preferably has a permanent magnetic field and is typically a permanent magnet As the device is to be attached to a magnetisable container, the magnet should be made of a suitable magnetic material that can support a strong magnetic field to allow firm fixing to such a container. Neodymium is particularly suitable for the magnetic material.
The device may comprise two spaced apart magnetic elements with the sensor element disposed substantially equidistant between the respective magnetic elements.
Preferably the magnetic elements are arranged in opposing polarity such that lines of magnetic field pass from one magnetic element to the other magnetic element.
The sensor element is preferably substantially planar and the magnetic elements are preferably substantially planar, with the sensor element orientated substantially perpendicular to the orientation of the magnetic elements.
The sensor element and transmitter element may be provided by a microcontroller device such as may be formed on a printed circuit board.
The device may further comprise a tilt sensor element which may be provided as part of a microcontroller device. The tilt sensor is particularly of use when sensing tampering in relation to a tipping truck used to convey raw materials.
The device may further comprise a housing within which the at least one magnetic element, sensor element and transmitter element are located.
The housing is preferably electrically conductive, typically made from metal, so as to shield the sensor element from stray magnetic fields.
The housing may comprise an electrically conductive sleeve, the sensor element being contained within the sleeve and the magnetic element(s) being located external of the sleeve.
Preferably the at least one magnetic element is positioned in the housing so as to be spaced apart from the surface of a magnetisable container when the device is in use.
Typically the at least one magnetic element will be spaced around 10mm from the magnetisable container.
The transmitter element is preferably configured to communicate with a wireless network. Any suitable network may be used such as for example but not limited to LoRaWAN, LORA.
Solar panels may be affixed to an external surface of the housing and arranged to provide electrical power to elements within the housing such as the batteries to enable recharging over prolonged periods of time. The housing may be formed with inclined surfaces on which the solar panels are located. Such inclined solar panels improve the efficiency of collection of solar energy.
In accordance with another aspect of the invention, there is also provided a method for detecting tampering with a magnetisable container, the method comprising positioning at least one magnetic element onto a magnetisable container, detecting changes in the magnetic field induced between the at least one magnetic element and is the magnetisable container using a sensor element, transmitting information, such as data, relating to changes in the induced magnetic field. The method ensures a container can be tracked and the location and time of any tampering detected.
The method preferably further comprises acquiring over time information about at least location of the sensor element and magnetic field.
The method may further comprise detecting changes in orientation using a tilt sensor element.
Preferably the method may further comprise calibrating the sensor element when the at least one magnetic element is first placed onto the magnetisable container.
The method may further comprise transmitting information using a wireless network, such as for example but not limited to LoRaWAN, LORA.
The method may further comprise storing and recording information in a storage means such as a memory associated with a microcontroller device. This allows the data to be recorded ready for transfer when wireless transmission is possible.
Preferably the method further comprises checking for the availability of a wireless datalink and initiating transmission of information such as data once such a datalink is detected.
The invention will now be described, by way of example, with reference to the accompanying drawings in which: Figure 1 shows a diagram of a first embodiment of a tamper detection device; Figure 2 shows a schematic diagram of a microprocessor used in the device; io Figure 3 shows a perspective view from the front of a housing forming part of the tamper protection device; Figure 4 shows a perspective view from the rear of the housing; Figure 5 shows a diagram illustrating the magnetic field associated with the device; Figure 6 shows an exemplary diagram illustrating induced magnetic field when the device is in use; Figure 7 shows a diagram of the device in use to secure a container; Figure 8 shows a graph illustrating information received from the device over time; Figure 9 shows a diagram of a second embodiment of the device; Figure 10 shows a plan view of the second embodiment with lid removed; and Figure 11 shows an exemplary flow diagram of a method of using the device.
Description
Figure 1 shows a first embodiment of a tamper detection device 10, device 10 comprising permanent magnets 12, 12' made from Neodymium, a sensor element provided on microprocessor 14, and batteries 16 to power microprocessor 14.
Housing 20 encases these elements of the device and comprises metal sleeve 22 and two metal end caps 24 that fit over the open ends of sleeve 22. Microprocessor 14 and batteries 16 are located within sleeve 22, with magnets 12, 12' disposed in caps 24 so as to be located at opposing ends of sleeve 22. Microprocessor 14 is positioned substantially equidistant between magnets 12, 12' and orientated substantially perpendicular to magnets 12, 12'. By encasing microprocessor 14 in a metal sleeve it is difficult to distort sensor readings from outside the device. Solar panels 28, see Figure 3, sit on an external surface of housing 20 so as to receive solar radiation and are in electrical communication with electrically powered elements, such as microprocessor 14, within sleeve 22 so as to provide electrical power to recharge batteries 16 and ensure device 10 is operational for long periods, typically several years.
A schematic diagram of microprocessor 14 is shown in Figure 2. Microprocessor 14 is typically formed on a printed circuit board and comprises components such as a magnetometer 30 to detect magnetic field, antenna 32 to transmit, and if required receive, signals to an external monitoring station, microcontroller 34 to control and io operate the various components, GPS circuits 36 to determine location, accelerometer 38 and if required tilt sensor 40. A temperature sensor can also be provided.
Alternative housing shapes can be used, see for example Figures 3 and 4 where housing 20' is formed with an inclined surface 41 on which solar panels 28 are is locatable, see Figure 7. By locating solar panels 28 on an inclined surface 41, there is improved collection of solar energy.
Figure 5 illustrates the magnetic field associated with device 10 before placement externally on a magnetisable container, such as a transport container or truck body.
Magnetic field lines 42 run from magnet 12' to magnet 12, magnets 12, 12' arranged in opposing polarity so that lines of magnetic field pass from one magnet to the other.
When device 10 is placed externally on a magnetisable container 50, see Figures 6 and 7, magnets 12, 12' securely fix device 10 to container 50. A magnetic field is induced in container 50 by the magnets and a modified induced magnetic field 52 created as shown by the magnetic field lines with the induced magnetic field acting as a magnetic fingerprint for that combination of device and container. The strength of the induced magnetic field is sensed by magnetometer 30. Device 10 is typically secured across a door opening, see Figure 7, so that device 10 needs to be moved to allow opening of the door 54. Movement or removal of device 10 causes a change in the induced magnetic field which is sensed by magnetometer 30 and data relating to this change in magnetic field is transmitted by antenna 32 to an external monitoring station when a wireless network is accessible. Any wireless network is suitable but of preference low cost networks such as LoRa or LoRaWAN.
If desired the device can be permanently incorporated in part of the door, for example within door tab 56.
As can be seen from the graph of Figure 8 where magnetic field is displayed over time, removal of device 10 from door 54 triggers large changes in the induced magnetic field, see spike 60, and it can be determined where and when device 10 was o removed using location data from GPS 36. Real-time information can be provided as long as device 10 is within a wireless network area. If device 10 is outside a wireless network area, data is stored within microprocessor 14 until a wireless network becomes available when the information is then transmitted. Typically the transmitted data will include a date stamp and time stamp. The location over time, and so the journey of the device, can be monitored and the place and time where tampering takes place identified.
A second embodiment of a tamper detection device 70 is shown in Figures 9 and 10 where magnets 20, 20' are within a rectangular shaped housing 72, with microprocessor 14 disposed between the magnets. Batteries 16 to power microprocessor 14 are disposed above microprocessor 14 and magnets 20, 20'. If desired solar cells 74 can be positioned within lid 78 to provide additional electrical power for recharging batteries 16. The device is waterproof and robust with a rubber inner liner 76 to protect the contents and act as an o-ring seal when lid 78 is closed.
This particular embodiment incorporates a tilt sensor and is particularly suitable for use on tipper trucks where one wishes to know whether any of the load has been offloaded before final delivery at an authorised destination. As with the first embodiment, movement of device 70 whether by removal or by alteration of the angle relative to the Earth's magnetic field generates a change in the induced magnetic field which is detected and reported back to a monitoring station, with a graph similar to that shown in Figure 8 obtained over time.
The flow diagram of Figure 11 shows an example of typical method steps involved in monitoring for tampering using devices 10 and 70. Initially the device is placed on a magnetisable container, step 100, and activated. After a short delay calibration takes place at step 102 so as to determine the initial induced magnetic field and the location and orientation of device 10, 70. The microprocessor 14 then reports at predetermined intervals on the position, orientation, and at step 103 the induced magnetic field, checking for a data downlink and transmitting accumulated data at step 104 if a network connection is identified. If no network connection is identified at step 105 then data is stored in a memory buffer and transmitted when a connection o becomes available. If the stored data exceeds the amount of memory space available, then newer data will replace the old data, see step 106.
As the device monitors induced magnetic field when placed on a magnetisable container, changes in induced magnetic field can be used to provide an alert when a is conveyed load is being tampered with. Being able to attach the device to the outside of a container or lorry ensures the device does not interfere with the load and complications with shipments are avoided as no custom seals need to be broken to use the device.

Claims (21)

  1. Claims 1. A tamper detection device for attachment to a magnetisable container, the device comprising at least one magnetic element, a sensor element to detect changes in induced magnetic field between the at least one magnetic element and a container to which the device is attachable, and a transmitter element to transmit information relating to changes in the induced magnetic field.
  2. 2. A tamper detection device according to claim 1, wherein the magnetic element has a permanent magnetic field.
  3. 3. A tamper detection device according to claim 1 or claim 2, wherein the device comprises two spaced apart magnetic elements with the sensor element disposed substantially equidistant between the respective magnetic elements.
  4. 4. A tamper detection device according to claim 3, wherein the magnetic elements are arranged in opposing polarity such that lines of magnetic field pass from one magnetic element to the other magnetic element.
  5. 5. A tamper detection device according to claim 3 or claim 4, wherein the sensor element is substantially planar and the magnetic elements are substantially planar, with the sensor element orientated substantially perpendicular to the orientation of the magnetic elements.
  6. 6. A tamper detection device according to any of the preceding claims, wherein the sensor element and transmitter element are provided by a microcontroller device.
  7. 7. A tamper detection device according to any of the preceding claims, further comprising a tilt sensor element.
  8. 8. A tamper detection device according to any of the preceding claims, further comprising a housing within which the at least one magnetic element, sensor element and transmitter element are located.
  9. 9 A tamper detection device according to claim 8, wherein the housing is electrically conductive.
  10. 10. A tamper detection device according to claim 8 or claim 9, wherein the housing comprises an electrically conductive sleeve, the sensor element being contained within the sleeve and the at least one magnetic element being located external of the sleeve.
  11. 11. A tamper detection device according to claim 8, or claim 9 or claim 10, wherein io the at least one magnetic element is positioned within the housing so as to be spaced apart from the surface of a magnetisable container when the device is in use.
  12. 12. A tamper detection device according to any of the preceding claims, wherein the transmitter element is configured to communicate with a wireless network.
  13. 13. A tamper detection device according to any of the preceding claims, further comprising solar panels.
  14. 14. A tamper detection device according to claim 13, wherein the housing is formed with inclined surfaces on which the solar panels are located.
  15. 15. A method for detecting tampering with a magnetisable container, the method comprising positioning at least one magnetic element onto a magnetisable container, detecting changes in the magnetic field induced between the at least one magnetic element and the magnetisable container using a sensor element, and transmitting information relating to changes in the induced magnetic field.
  16. 16. A method for detecting tampering with a magnetisable container according to claim 15, wherein the method preferably further comprises acquiring over time information about at least location of the sensor element and the induced magneticfield.
  17. 17. A method for detecting tampering with a magnetisable container according to claim 15 or claim 16, further comprising detecting changes in orientation using a tilt sensor element.
  18. 18. A method for detecting tampering with a magnetisable container according to claim 15, or claim 16, or claim 17, further comprising calibrating the sensor element when the magnetic element is first placed onto the magnetisable container.
  19. 19. A method for detecting tampering with a magnetisable container according to any io of claims 15 to 18, further comprising transmitting information using a wireless network.
  20. 20. A method for detecting tampering with a magnetisable container according to any of claims 15 to 19, further comprising storing and recording information in a storage i5 means associated with a microcontroller.
  21. 21. A method for detecting tampering with a magnetisable container according to any of claims 15 to 20, further comprising checking for the availability of a wireless datalink and initiating transmission of information once a datalink is detected.
GB2003839.4A 2019-03-21 2020-03-17 Tamper detection device and associated method Withdrawn GB2584536A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB1903869.4A GB201903869D0 (en) 2019-03-21 2019-03-21 Tamper detection device and associated method

Publications (2)

Publication Number Publication Date
GB202003839D0 GB202003839D0 (en) 2020-04-29
GB2584536A true GB2584536A (en) 2020-12-09

Family

ID=66381335

Family Applications (2)

Application Number Title Priority Date Filing Date
GBGB1903869.4A Ceased GB201903869D0 (en) 2019-03-21 2019-03-21 Tamper detection device and associated method
GB2003839.4A Withdrawn GB2584536A (en) 2019-03-21 2020-03-17 Tamper detection device and associated method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GBGB1903869.4A Ceased GB201903869D0 (en) 2019-03-21 2019-03-21 Tamper detection device and associated method

Country Status (2)

Country Link
GB (2) GB201903869D0 (en)
WO (1) WO2020188267A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688256A (en) * 1971-04-28 1972-08-29 Threshold Eng Inc Vehicle intrusion alarm system
US3848243A (en) * 1973-02-09 1974-11-12 H Schirmer Inductive reactance proximity alarm system for bulky movable objects
US6747558B1 (en) * 2001-11-09 2004-06-08 Savi Technology, Inc. Method and apparatus for providing container security with a tag
US20130211976A1 (en) * 2000-09-08 2013-08-15 Intelligent Technologies International, Inc. Asset Monitoring Using the Internet
US20160194127A1 (en) * 2014-12-23 2016-07-07 Michael Lahey Safety apparatuses, systems and kits
US20180283048A1 (en) * 2017-04-03 2018-10-04 Joseph Hage Locking System and Method for a Movable Freight Container

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120112910A1 (en) * 2010-11-08 2012-05-10 System Planning Corporation, Inc. Cargo Container Self-Arming Monitoring And Security Device
WO2015200330A1 (en) * 2014-06-23 2015-12-30 Hirschmann Car Communication Inc. Long life container tracking device and method for detecting movement of container structure
US10147289B2 (en) * 2017-04-05 2018-12-04 Ut-Battelle, Llc Magnetic field sensing for tamper-indicating devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688256A (en) * 1971-04-28 1972-08-29 Threshold Eng Inc Vehicle intrusion alarm system
US3848243A (en) * 1973-02-09 1974-11-12 H Schirmer Inductive reactance proximity alarm system for bulky movable objects
US20130211976A1 (en) * 2000-09-08 2013-08-15 Intelligent Technologies International, Inc. Asset Monitoring Using the Internet
US6747558B1 (en) * 2001-11-09 2004-06-08 Savi Technology, Inc. Method and apparatus for providing container security with a tag
US20160194127A1 (en) * 2014-12-23 2016-07-07 Michael Lahey Safety apparatuses, systems and kits
US20180283048A1 (en) * 2017-04-03 2018-10-04 Joseph Hage Locking System and Method for a Movable Freight Container

Also Published As

Publication number Publication date
GB201903869D0 (en) 2019-05-08
WO2020188267A1 (en) 2020-09-24
GB202003839D0 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
CN1906643B (en) Method and system for monitoring containers to maintain the security thereof
US20210154293A1 (en) Methods, apparatuses, and systems for tracking freight
US20210142275A1 (en) Placement of tracking devices on pallets
US7015814B2 (en) Security tag
TWI374406B (en) Method and system for monitoring containers to maintain the security thereof
US7479877B2 (en) Method and system for utilizing multiple sensors for monitoring container security, contents and condition
US7394363B1 (en) Intelligent multi purpose early warning system for shipping containers, components therefor and methods of making the same
CN102253419B (en) Method and apparatus for detection of radioactive material
US8933802B2 (en) Switch and actuator coupling in a chassis of a container associated with an intermodal freight transport system
US7564350B2 (en) Method and system for monitoring containers to maintain the security thereof
US20170161679A1 (en) Package Tracking Device and Method
US20150254948A1 (en) Container breach detector system
CN1879038B (en) Method and apparatus for detection of radioactive material
WO2018027310A1 (en) Method and mobile transceiver providing container security
EP1337985B1 (en) Method of transferring the ownership of items using security tags
CN101529483A (en) Sensor arrangement for securing the loads of containers
GB2584536A (en) Tamper detection device and associated method
US20190378085A1 (en) Autonomous merchandise delivery system
CN101813703A (en) Utilize the method and system of multiple sensors for monitoring container security, content and state
JP2021535049A (en) Housing unit for luggage carrier
KR102421413B1 (en) carriage system for article
US20120212318A1 (en) Instrument module with intelligent self-actuating latching mechanism
US11142028B2 (en) Electronic unit for measuring operating parameters of a vehicle wheel
JP2007238099A (en) Transporting box, product information displaying device, and product transporting system
WO2023055841A2 (en) Bag and box apparatus with faraday bag and self-closing rf-tight device passage for recovering, temporarily storing, and then returning freight-tracking transmitters

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)