GB2582232A - Robust Gradient weight compression schemes for deep learning applications - Google Patents
Robust Gradient weight compression schemes for deep learning applications Download PDFInfo
- Publication number
- GB2582232A GB2582232A GB2009717.6A GB202009717A GB2582232A GB 2582232 A GB2582232 A GB 2582232A GB 202009717 A GB202009717 A GB 202009717A GB 2582232 A GB2582232 A GB 2582232A
- Authority
- GB
- United Kingdom
- Prior art keywords
- vector
- gradient
- current
- bins
- residue vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/098—Distributed learning, e.g. federated learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Electrically Operated Instructional Devices (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/830,170 US11295208B2 (en) | 2017-12-04 | 2017-12-04 | Robust gradient weight compression schemes for deep learning applications |
| PCT/IB2018/059516 WO2019111118A1 (en) | 2017-12-04 | 2018-11-30 | Robust gradient weight compression schemes for deep learning applications |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| GB202009717D0 GB202009717D0 (en) | 2020-08-12 |
| GB2582232A true GB2582232A (en) | 2020-09-16 |
Family
ID=66659264
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| GB2009717.6A Withdrawn GB2582232A (en) | 2017-12-04 | 2018-11-30 | Robust Gradient weight compression schemes for deep learning applications |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US11295208B2 (enExample) |
| JP (1) | JP7087079B2 (enExample) |
| DE (1) | DE112018006189T5 (enExample) |
| GB (1) | GB2582232A (enExample) |
| WO (1) | WO2019111118A1 (enExample) |
Families Citing this family (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11195096B2 (en) * | 2017-10-24 | 2021-12-07 | International Business Machines Corporation | Facilitating neural network efficiency |
| US11216719B2 (en) * | 2017-12-12 | 2022-01-04 | Intel Corporation | Methods and arrangements to quantize a neural network with machine learning |
| US11961000B2 (en) * | 2018-01-22 | 2024-04-16 | Qualcomm Incorporated | Lossy layer compression for dynamic scaling of deep neural network processing |
| US10698766B2 (en) * | 2018-04-18 | 2020-06-30 | EMC IP Holding Company LLC | Optimization of checkpoint operations for deep learning computing |
| CN108665067B (zh) * | 2018-05-29 | 2020-05-29 | 北京大学 | 用于深度神经网络频繁传输的压缩方法及系统 |
| KR102609719B1 (ko) * | 2019-06-12 | 2023-12-04 | 상하이 캠브리콘 인포메이션 테크놀로지 컴퍼니 리미티드 | 신경망의 양자화 파라미터 확정방법 및 관련제품 |
| CN112149706B (zh) * | 2019-06-28 | 2024-03-15 | 北京百度网讯科技有限公司 | 模型训练方法、装置、设备和介质 |
| WO2021001687A1 (en) * | 2019-07-02 | 2021-01-07 | Interdigital Ce Patent Holdings, Sas | Systems and methods for encoding a deep neural network |
| US11402233B2 (en) * | 2019-07-23 | 2022-08-02 | Mapsted Corp. | Maintaining a trained neural network in magnetic fingerprint based indoor navigation |
| GB2581546B (en) * | 2019-08-22 | 2021-03-31 | Imagination Tech Ltd | Methods and systems for converting weights of a deep neural network from a first number format to a second number format |
| CN110659725B (zh) * | 2019-09-20 | 2023-03-31 | 字节跳动有限公司 | 神经网络模型的压缩与加速方法、数据处理方法及装置 |
| US11461645B2 (en) * | 2019-12-02 | 2022-10-04 | International Business Machines Corporation | Initialization of memory networks |
| CN110995488B (zh) * | 2019-12-03 | 2020-11-03 | 电子科技大学 | 一种基于分层参数服务器的多机构协同学习系统及方法 |
| KR102899210B1 (ko) * | 2019-12-16 | 2025-12-10 | 삼성전자주식회사 | 뉴럴 프로세싱 장치 및 뉴럴 프로세싱 장치에서 뉴럴 네트워크를 처리하는 방법 |
| CN113297128B (zh) * | 2020-02-24 | 2023-10-31 | 中科寒武纪科技股份有限公司 | 数据处理方法、装置、计算机设备和存储介质 |
| US11875256B2 (en) | 2020-07-09 | 2024-01-16 | International Business Machines Corporation | Dynamic computation in decentralized distributed deep learning training |
| US11977986B2 (en) | 2020-07-09 | 2024-05-07 | International Business Machines Corporation | Dynamic computation rates for distributed deep learning |
| US11886969B2 (en) * | 2020-07-09 | 2024-01-30 | International Business Machines Corporation | Dynamic network bandwidth in distributed deep learning training |
| US11900640B2 (en) * | 2020-07-15 | 2024-02-13 | Tencent America LLC | Method and apparatus for substitutional neural residual compression |
| CN114077889A (zh) * | 2020-08-13 | 2022-02-22 | 华为技术有限公司 | 一种神经网络处理器和数据处理方法 |
| CN114519423B (zh) * | 2020-11-20 | 2025-10-24 | 澜起科技股份有限公司 | 用于压缩神经网络的方法和装置 |
| WO2022141034A1 (en) * | 2020-12-29 | 2022-07-07 | Qualcomm Incorporated | Signaling of gradient vectors for federated learning in a wireless communications system |
| US12022098B2 (en) * | 2021-03-04 | 2024-06-25 | Lemon Inc. | Neural network-based in-loop filter with residual scaling for video coding |
| US20220292348A1 (en) * | 2021-03-15 | 2022-09-15 | Smart Engines Service, LLC | Distance-based pairs generation for training metric neural networks |
| CN114782977B (zh) * | 2021-04-28 | 2024-07-05 | 河南大学 | 一种基于拓扑信息和亲和度信息引导行人重识别方法 |
| CN113193999B (zh) * | 2021-04-29 | 2023-12-26 | 东北大学 | 一种基于深度确定性策略梯度的虚拟网络映射方法 |
| CN113780461B (zh) * | 2021-09-23 | 2022-08-05 | 中国人民解放军国防科技大学 | 基于特征匹配的鲁棒神经网络训练方法 |
| US20240104346A1 (en) * | 2022-09-15 | 2024-03-28 | Huawei Technologies Co., Ltd. | Method and device for compressing generative pre-trained language models via quantization |
| CN118052260B (zh) * | 2024-04-01 | 2024-08-02 | 兰州交通大学 | 一种神经网络模型动态分层梯度压缩方法 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104598972A (zh) * | 2015-01-22 | 2015-05-06 | 清华大学 | 一种大规模数据回归神经网络快速训练方法 |
| US20170098171A1 (en) * | 2015-10-02 | 2017-04-06 | International Business Machines Corporation | Asynchronous stochastic gradient descent |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5926804A (en) | 1994-07-01 | 1999-07-20 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations | Discriminant neural networks |
| KR100364753B1 (ko) * | 1999-11-19 | 2002-12-16 | 엘지전자 주식회사 | 칼라 히스토그램의 빈값 양자화 방법 |
| US9235799B2 (en) | 2011-11-26 | 2016-01-12 | Microsoft Technology Licensing, Llc | Discriminative pretraining of deep neural networks |
| US9483728B2 (en) | 2013-12-06 | 2016-11-01 | International Business Machines Corporation | Systems and methods for combining stochastic average gradient and hessian-free optimization for sequence training of deep neural networks |
| US20180075347A1 (en) * | 2016-09-15 | 2018-03-15 | Microsoft Technology Licensing, Llc | Efficient training of neural networks |
| US12190231B2 (en) * | 2016-10-19 | 2025-01-07 | Samsung Electronics Co., Ltd | Method and apparatus for neural network quantization |
| US10685285B2 (en) * | 2016-11-23 | 2020-06-16 | Microsoft Technology Licensing, Llc | Mirror deep neural networks that regularize to linear networks |
| US11062215B2 (en) * | 2017-03-17 | 2021-07-13 | Microsoft Technology Licensing, Llc | Using different data sources for a predictive model |
-
2017
- 2017-12-04 US US15/830,170 patent/US11295208B2/en active Active
-
2018
- 2018-11-30 JP JP2020529245A patent/JP7087079B2/ja active Active
- 2018-11-30 WO PCT/IB2018/059516 patent/WO2019111118A1/en not_active Ceased
- 2018-11-30 GB GB2009717.6A patent/GB2582232A/en not_active Withdrawn
- 2018-11-30 DE DE112018006189.2T patent/DE112018006189T5/de active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104598972A (zh) * | 2015-01-22 | 2015-05-06 | 清华大学 | 一种大规模数据回归神经网络快速训练方法 |
| US20170098171A1 (en) * | 2015-10-02 | 2017-04-06 | International Business Machines Corporation | Asynchronous stochastic gradient descent |
Non-Patent Citations (1)
| Title |
|---|
| Strom, 2015, 'Scalable Distributed DNN Training Using Commodity GPU Cloud Computing' in Sixteenth Annual Conference of the International Speech Communication Association, available at: https://www.isca-speech.org/archive/interspeech_2015/papers/i15_1488.pdf, [accessed 3 August 2020] * |
Also Published As
| Publication number | Publication date |
|---|---|
| DE112018006189T5 (de) | 2020-09-03 |
| US11295208B2 (en) | 2022-04-05 |
| WO2019111118A1 (en) | 2019-06-13 |
| US20190171935A1 (en) | 2019-06-06 |
| JP7087079B2 (ja) | 2022-06-20 |
| GB202009717D0 (en) | 2020-08-12 |
| JP2021505993A (ja) | 2021-02-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| GB2582232A (en) | Robust Gradient weight compression schemes for deep learning applications | |
| JP2021505993A5 (enExample) | ||
| CN105184362B (zh) | 基于参数量化的深度卷积神经网络的加速与压缩方法 | |
| CN110222821B (zh) | 基于权重分布的卷积神经网络低位宽量化方法 | |
| US11461515B2 (en) | Optimization apparatus, simulation system and optimization method for semiconductor design | |
| JP6706326B2 (ja) | リカレントニューラルネットワークモデルの圧縮 | |
| US20200134473A1 (en) | Data discriminator training method, data discriminator training apparatus, non-transitory computer readable medium, and training method | |
| WO2017031630A1 (zh) | 基于参数量化的深度卷积神经网络的加速与压缩方法 | |
| WO2022006919A1 (zh) | 基于激活定点拟合的卷积神经网络训练后量化方法及系统 | |
| WO2019157251A1 (en) | Neural network compression | |
| CN112020724A (zh) | 学习可压缩的特征 | |
| US12032523B2 (en) | Compressed sensing using neural networks | |
| CN108229652B (zh) | 神经网络模型迁移方法和系统、电子设备、程序和介质 | |
| KR102732517B1 (ko) | 뉴럴 네트워크에서 파라미터를 처리하는 방법 및 장치 | |
| GB2600055A (en) | Dataset dependent low rank decomposition of neural networks | |
| US10482157B2 (en) | Data compression apparatus and data compression method and storage medium | |
| US11531884B2 (en) | Separate quantization method of forming combination of 4-bit and 8-bit data of neural network | |
| WO2020126692A1 (en) | Implementing a multi-layer neural network using a single physical layer of analog neurons | |
| Samui | Prediction of pile bearing capacity using support vector machine | |
| CN114503439A (zh) | 压缩表现混合压缩性的数据 | |
| KR102494095B1 (ko) | 인공 신경망 학습 장치 및 방법 | |
| US20220004908A1 (en) | Information processing apparatus, information processing system, information processing method, and non-transitory computer readable medium storing program | |
| Chen et al. | Estimation of line-of-sight velocities of individual galaxies using neural networks–I. Modelling redshift–space distortions at large scales | |
| Mozaffari et al. | SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression | |
| US20220215203A1 (en) | Storage medium, information processing apparatus, and determination model generation method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |