GB2568117A - Compressor unit - Google Patents

Compressor unit Download PDF

Info

Publication number
GB2568117A
GB2568117A GB1720318.3A GB201720318A GB2568117A GB 2568117 A GB2568117 A GB 2568117A GB 201720318 A GB201720318 A GB 201720318A GB 2568117 A GB2568117 A GB 2568117A
Authority
GB
United Kingdom
Prior art keywords
compressor
gas
combustion engine
working fluid
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB1720318.3A
Other versions
GB201720318D0 (en
Inventor
Knoche Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of GB201720318D0 publication Critical patent/GB201720318D0/en
Priority to PCT/EP2018/078858 priority Critical patent/WO2019086283A1/en
Publication of GB2568117A publication Critical patent/GB2568117A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/24Pumping by heat expansion of pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/001Pumps adapted for conveying materials or for handling specific elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/082Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0822Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/22Application for very low temperatures, i.e. cryogenic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/75Application in combination with equipment using fuel having a low calorific value, e.g. low BTU fuel, waste end, syngas, biomass fuel or flare gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor

Abstract

The invention provides a compressor unit for cryogenic applications comprising at least one compressor 10 for cryogenic applications for compressing a working fluid such as He, Ne or H2, a gas combustion engine mechanically coupled, e.g. in-line A, to the compressor and a combustion gas inlet 31 fluidically coupled to the gas combustion engine for providing fuel to the gas motor. The gas combustion engine is controlled by controller 40 to adjust compressor operation e.g. by controlling fuel gas via a valve 31a. The engine may have an exhaust line 32 which may be valve controlled and supply exhaust gas for further use e.g. steam generation or heating. Combustion gas may be stored gas or come from a processing plant and may be landfill or dump gas or may be oil processing by-product gas e.g. flare gas. Operates at lower cost with easier and more accurate control than an electric motor driven compressor. Avoids the need for a frequency converter. May be used in a system with a cryogenic coldbox and cryogenic storage or use.

Description

COMPRESSOR UNIT
Field of Invention
The present invention relates to compressor units for cryogenic applications.
Background of Invention
Compressor units for compressing low temperature fluids are known. In particular, compressor units for cryogenic applications, i.e. for compressing cryogenic fluids are known.
The term cryogenic fluid is understood in the following to refer to so-called deep cold fluids, in particular liquid hydrogen, liquid helium, liquefied natural gas, liquid nitrogen, liquid oxygen and other liquefied gases and possible mixtures thereof (Nelium)
Compressor units used in low-temperature, and cryogenic, applications are generally driven by electrical engines. This type of arrangement is shown in Figure la. The arrangement includes a compressor a, an electrical motor b, a cryogenic coldbox c and use/storage of the working fluid d, such as a cryogenic experiment or storage tank. Such units require large amounts of electricalenergy, which due to the continually rising unit price of electricity, means that they are costly to run. There are also cases, where the required electrical energy is not available at the required low voltage and an extra investment for a new transformer station would be required.
Further, the operation of such compressor units has to be controlled in order to adapt to different loads. This can be done by either a variation of the pressure ratio or varying the compressor speed. Generally, with an electrically driven compressor unit, the compressor speed is varied to provide part load operation with one or more frequency converters. This is shown in Figure la in which components similar to those in Figure la are given similar references and a frequency converter e’ is provided.
Embodiments of the invention seek to improve on the performance of existing compressors and solve some or all of the problems with known solutions.
Summary of Invention
According to the first aspect of the present invention there is provided a compressor unit for cryogenic applications comprising: at least one compressor for cryogenic applications for compressing a working (refrigerant) fluid; a mechanically coupled to the at least one compressor; a combustion gas inlet fluidically coupled to the gas combustion engine for providing fuel to the motor; wherein the gas combustion engine is controlled to adjust compressor operation.
The compressor unit may comprise a controller configured to control the gas motor, thereby controlling the operation of the at least one compressor.
The controller may be configured to control to adjust the flow of combustion gas into the combustion engine. The controller may control the flow of combustibles to the gas inlet. The controller may be configured to control one or more operational parameters of the combustion engine. A sensor may also be provided in line to provide data to the controller. Further sensors may be provided in the combustion engine feeding operational data to the controller.
The compressor unit may comprise an inlet line coupled to the combustion gas inlet, and a valve is provided in the inlet line. The flow through the valve may be controlled so as to adjust the flow of combustibles into the motor.
The controller may be configured to control the combustion gas inlet valve.
The gas combustion engine and the compressor may be aligned on the same axis.
The working fluid may be helium, neon or hydrogen or a mixture thereof. The compressor may be hermetically sealed in order to minimize loss of the working fluid
The compressor may comprise a sealing arrangement for preventing internal backflow of light gases. The compressor may be a screw compressor. In a reciprocating compressor the sealing arrangement may be piston rings. The compressor may be provided with means for prevention of overheating, such as additional cooling systems and/or a reduced pressure ratio. The compressor may comprise a suction flange which permits a recycle operation. The compressor may be made from material which in use, can withstand low-temperature (or cryogenic temperature) operating fluid flow. An ionic liquid may be used to further improve the compressor performance with gases of low viscosity.
According to a further aspect of the invention, there is provided A cryogenic system for cryogenically cooling a working fluid comprising: a compressor unit as described above, a cryogenic cold box; a first flow line for conveying the working fluid from the coldbox to the compressor unit, and a second flow line for conveying compressed working fluid to the coldbox.
The working (refrigerating) fluid may be helium, neon or hydrogen or a mixture thereof.
The combustion gas may be provided from a source of landfill gas. The combustion gas may be provided from a source of flare gas.
According to a further aspect of the invention, there is provided a method of compressing a cryogenic fluid comprising: feeding a working (refrigerant) fluid into the compressor; providing a flow of a combustion fuel to a gas combustion engine which is mechanically coupled to a compressor for cryogenic applications; outputting the power generated by the engine to the compressor in order to compress the working fluid; and controlling the gas combustion engine in order to adjust the compressor operation
The step of controlling the gas combustion engine may comprise controlling one or more operational parameters of the engine
The step of controlling the gas combustion engine may be performed by a controller. The method may comprise receiving input signals from the engine and/or the compressor.
The step of controlling the gas combustion engine may comprise controlling the flow of fuel to the gas combustion engine.
The working fluid may be helium, neon or hydrogen or a mixture of these.
The combustion gas may be provided from a source of landfill gas. The combustion gas may be provided from a source of flare gas.
The method may include feeding an exhaust flow from the engine for further use. Such use is generation of (high) pressure steam and/or heat, which may be combined with the heat removal of the compressor. The method may include providing the working fluid from a source of landfill gas. The method may include providing the working fluid from a source of flare gas.
According to a further example, a steam or water turbine could also provide the required energy for the compressor in the compressor unit.
Whilst the invention has been described above, it extends to any inventive combination of features set out above or in the following description or drawings.
Brief Description of the Drawings
Figures la and lb show schematic representations of conventional compressor units;
Figure 2 is a schematic view of a compressor unit for cryogenic applications according to an embodiment of the invention; and
Figure 3 shows the compressor unit of figure 2 in a cryogenic cooling cycle.
Specific embodiments of the invention will now be described in detail by way of example only and with reference to the accompanying drawings in which:
Detailed description
FIG. 2 shows a compressor unit for cryogenic applications according to an embodiment of the invention. The compressor unit 1 comprises a gas combustion engine 30 (also referred to as a gas motor) and a compressor 10 and a controller 40. The unit includes flow lines 11, 12, 31, 32.
The compressor 10 is configured for cryogenic applications, i.e. for compressing a cryogenic working fluid. The compressor 10 is sealed to the atmosphere (hermetically sealed) in order not to lose any expensive working fluid. The working fluid may be helium, neon or hydrogen (for regulatory reasons, e.g. ATEX). The compressor 10 includes a flow path (not shown) from rotor(s) to stator(s). When a light gas (He / Ne / H2) is used as the working fluid, the compressor flow path is provided with a sealing arrangement in order to prevent internal backflow of the light gas. In a screw compressor, the sealing arrangement may be for example flooding. In a reciprocating compressor the sealing arrangement may be for example piston rings.
If the working fluid comprises a single atom gas (He / Ne), the compressor 10 is configured to prevent overheating during the required relatively high compression of the working fluid.
Prevention of overheating may be achieved by additional cooling systems and/or a reduced pressure ratio. The compressor 10 is provided with a suction flange which permits a recycle operation. The compressor 10 is made from material which in use, can withstand lowtemperature (or cryogenic temperature) operating fluid flow. In particular, when hydrogen is provided as a working fluid, the compressor 10 is made from a material which can withstand H2embrittlement.
The combustion engine 30 is mechanically coupled 33 to the compressor 10. In this embodiment, it can be seen that the combustion engine is aligned on the same axis A as the compressor 10. The mechanical coupling is typically with a feather key, which breaks upon overload to protect the engine. However, it will be appreciated that alternative configurations of the engine and the compressor can be realized and are included within the scope of this invention. A combustion gas is fed through line 31 into the combustion engine 30 and an exhaust gas is fed from the gas combustion engine 30 through line 32. Valve 31a and 32a are provided in the flow lines.
The controller 40 is configured so as to control the gas engine 30, thereby adjusting speed and/or performance of the compressor 10. The controller 40 is configured to control 41 the valve 31a so as to adjust the flow of combustion gas into the combustion engine 30. The controller 40 is configured to control 42 one or more operational parameters of the combustion engine 30. A sensor (not shown) may also be provided in line 31 to provide data. Further sensors may be provided in the combustion engine feeding operational data to the controller (not shown in the Figures).
It will be appreciated that valves may also be provided in the other flow lines 32, 11 and 12, and these other valves may be controlled by the controller.
Figure 3 shows the compressor unit 1 of figure 2 (indicated with a dashed line) within a cryogenic cooling cycle comprising a cryogenic coldbox 50 and a cryogenic fluid usage/storage 60, such as a cryogenic storage vessel or a cryogenic experiment. A working fluid flows from the coldbox 50 through line 11 into the compressor 10 to be compressed. A compressed working fluid flows from the compressor 10 through line 12 back in to the coldbox 50. A compressed cooled flow is directed through line 52 to be used or stored 50. A return flow can be fed through line 51 back into the coldbox 50.
The combustion gas fed into the combustion engine may come from any suitable source. For example, the combustion gas can be provided from a stored gas source or can be piped directly from a gas processing plant.
In a preferred embodiment, the combustion gas flow is a so-called “dump gas”. Waste deposits, such as land fill containing compostable matter and/or food waste generate gases during decomposition. The decomposition gasses include a significant amount of methane, and also carbon dioxide, sulfurous compounds (H2S) and other contaminants. This is referred to as landfill gas or dump gas. This landfill gas can be collected, particularly when the waste is covered (for example to prevent foul odours) then the developing gases are collected and typically contain a significant amount. Untreated landfill gas is unsuitable for the supply for the natural gas network, and is often flared or converted to electricity. Being a waste product, landfill gas is low cost, and therefore the implementation of a landfill gas combustion engine powered compressor unit is very economical.
In another preferred embodiment, the combustion gas flow is a so-called “flare gas”, which is a by-product from the processing of crude oils. Often the quantity of waste or flare gas obtained during the processing of crude oil is not large enough to be economically exploited, and they were simply flared. However, in some parts of the world (such as in the EU), flaring of this waste gas is prohibited. Therefore, the waste gas (or flare gas) is used to produce energy, for example converted into electrical energy. Flare gas is available at very low cost, and therefore the implementation of a flare gas combustion engine powered compressor unit is very economical.
The exhaust gas flow 32 can be conveyed for further use, for example used for some or all of the following: (high pressure) steam generation, for heating applications i.e. heating of commercial/residential buildings, greenhouses or fish ponds.
In another embodiment (not show), the combustion engine is also used to provide a mechanical drive for another application.
The compressor unit of the invention can be operated with lower energy costs as compared to conventional arrangements. Further, the speed and performance of the compressor unit of the invention can be more easily and accurately controlled.
The invention has been described above with reference to one or more preferred embodiments. It will be appreciated that various changes or modifications may be made without departing from the scope of the invention as defined in the appended claims.

Claims (10)

1. A compressor unit for cryogenic applications comprising:
at least one compressor for cryogenic applications for compressing a working fluid;
a mechanically coupled to the at least one compressor;
a combustion gas inlet fluidically coupled to the gas combustion engine for providing fuel to the motor;
wherein the gas combustion engine is controlled to adjust compressor operation.
2. The compressor unit according to claim 1, further comprising a controller configured to control the gas motor, thereby controlling the operation of the at least one compressor.
3. The compressor unit according to claim 1 or claim 2, further comprising an inlet line coupled to the combustion gas inlet, and a valve is provided in the inlet line;
wherein the flow through the valve is controlled so as to adjust the flow of combustibles into the motor.
4. The compressor unit according to any of the preceding claims, wherein the gas combustion engine and the compressor are aligned on the same axis.
5. The compressor unit according to any of the preceding claims, wherein the working fluid is helium, neon or hydrogen; and wherein the compressor is hermetically sealed in order to minimize loss of the working fluid
6. A cryogenic system for cryogenically cooling a working fluid comprising:
a compressor unit according to any of claims 1 to 3, and a cryogenic cold box;
a first flow line for conveying the working fluid from the coldbox to the compressor unit, and a second flow line for conveying compressed working fluid to the coldbox.
6. A cryogenic system according to claim 5, wherein the working fluid is helium, neon or hydrogen or a mixture thereof.
7. Method of compressing a cryogenic fluid comprising,
- feeding a working fluid into the compressor;
- providing a flow of a combustion fuel gas to a gas combustion engine which is mechanically coupled to a compressor for cryogenic applications;
- outputting the power generated by the engine to the compressor in order to compress the working fluid; and
- controlling the gas combustion engine in order to adjust the compressor operation.
8. The method according to claim 7, wherein the step of controlling the gas combustion engine comprises controlling one or more operational parameters of the engine
9. The method according to claim 7 or claim 8, wherein step of controlling the gas combustion engine comprises controlling the flow of fuel to the gas combustion engine.
10. The method according to any of claims 7 to 9, wherein the working fluid is helium, neon or hydrogen or a mixture thereof.
GB1720318.3A 2017-11-01 2017-12-06 Compressor unit Withdrawn GB2568117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/078858 WO2019086283A1 (en) 2017-11-01 2018-10-22 Cryogenic fluid compressor driven by a gas combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB1718116.5A GB201718116D0 (en) 2017-11-01 2017-11-01 Compressor unit

Publications (2)

Publication Number Publication Date
GB201720318D0 GB201720318D0 (en) 2018-01-17
GB2568117A true GB2568117A (en) 2019-05-08

Family

ID=60580292

Family Applications (2)

Application Number Title Priority Date Filing Date
GBGB1718116.5A Ceased GB201718116D0 (en) 2017-11-01 2017-11-01 Compressor unit
GB1720318.3A Withdrawn GB2568117A (en) 2017-11-01 2017-12-06 Compressor unit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GBGB1718116.5A Ceased GB201718116D0 (en) 2017-11-01 2017-11-01 Compressor unit

Country Status (2)

Country Link
GB (2) GB201718116D0 (en)
WO (1) WO2019086283A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133482A2 (en) * 2009-05-18 2010-11-25 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a gaseous hydrocarbon stream
US20140116084A1 (en) * 2011-06-24 2014-05-01 Saipem S.A. Method for Liquefying Natural Gas with a Mixture of Coolant Gas
US20140157823A1 (en) * 2012-06-20 2014-06-12 Proyectos Y Generadores Libelula, S.A DE C.V. Systems and methods for distributed production of liquified natural gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140261339A1 (en) * 2013-03-13 2014-09-18 Mcalister Technologies, Llc Multi-stage compressors and associated systems, processes and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133482A2 (en) * 2009-05-18 2010-11-25 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a gaseous hydrocarbon stream
US20140116084A1 (en) * 2011-06-24 2014-05-01 Saipem S.A. Method for Liquefying Natural Gas with a Mixture of Coolant Gas
US20140157823A1 (en) * 2012-06-20 2014-06-12 Proyectos Y Generadores Libelula, S.A DE C.V. Systems and methods for distributed production of liquified natural gas

Also Published As

Publication number Publication date
WO2019086283A1 (en) 2019-05-09
WO2019086283A9 (en) 2019-08-15
GB201720318D0 (en) 2018-01-17
GB201718116D0 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
US9273675B2 (en) Device and method for preparing liquified natural gas (LNG) fuel
Mrzljak et al. Exergy analysis of the main propulsion steam turbine from marine propulsion plant
US20100156112A1 (en) Heat engine and heat to electricity systems and methods
EP0626510A1 (en) Gas turbine-air separation plant combination
KR19980087144A (en) Turbine / Motor (Generator) Passive Step-up Compressors
US20210254790A1 (en) Energy-optimized backfeeding installation
US8931291B2 (en) Compressor waste heat driven cooling system
US20130292951A1 (en) Systems for generating energy
WO2008121070A1 (en) Screw-rotor machine, energy-conversion system and method for energy conversion
Brun et al. Machinery and energy systems for the Hydrogen Economy
JP6728522B2 (en) Compressible fluid supply device
GB2568117A (en) Compressor unit
Wong LNG power recovery
US11598327B2 (en) Compressor system with heat recovery
White et al. Equipment Overview
US7930889B1 (en) Gas or steam turbine with inlet air cooling
RU2117173C1 (en) Heat-recovery power plant
Agbadede et al. Techno-economic analysis of the influence of different operating conditions on gas turbine centrifugal compressor set performance
RU2759794C1 (en) Energy-technology complex for heat and electric energy generation and method for operation of the complex
KR20150107243A (en) Apparatus for natural gas liquefaction process
RU2271458C1 (en) Final-stage set of gas-turbine power-generating station
RU2772706C1 (en) Installation for generating thermal and mechanical energy and method for its regulation
Bianchi et al. Optimal Load Allocation of Compressors Drivers Taking Advantage of Organic Rankine Cycle As WHR Solution
CN215373657U (en) Zero-cold-source natural gas excess pressure recycling system
Corbò et al. The Role of Turbomachinery in Enabling the Hydrogen Economy

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)