GB2554764A - A capo - Google Patents

A capo Download PDF

Info

Publication number
GB2554764A
GB2554764A GB1617201.7A GB201617201A GB2554764A GB 2554764 A GB2554764 A GB 2554764A GB 201617201 A GB201617201 A GB 201617201A GB 2554764 A GB2554764 A GB 2554764A
Authority
GB
United Kingdom
Prior art keywords
curvature
contact surface
capo
strings
adaption mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1617201.7A
Other versions
GB201617201D0 (en
GB2554764B (en
Inventor
Campling Nick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C7th Ltd
Original Assignee
C7th Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C7th Ltd filed Critical C7th Ltd
Priority to GB1617201.7A priority Critical patent/GB2554764B/en
Publication of GB201617201D0 publication Critical patent/GB201617201D0/en
Priority to US15/602,509 priority patent/US10147404B2/en
Priority to CN201710991546.1A priority patent/CN107919107B/en
Publication of GB2554764A publication Critical patent/GB2554764A/en
Application granted granted Critical
Publication of GB2554764B publication Critical patent/GB2554764B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D3/00Details of, or accessories for, stringed musical instruments, e.g. slide-bars
    • G10D3/14Tuning devices, e.g. pegs, pins, friction discs or worm gears
    • G10D3/147Devices for altering the string tension during playing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D3/00Details of, or accessories for, stringed musical instruments, e.g. slide-bars
    • G10D3/053Capos, i.e. capo tastos
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D3/00Details of, or accessories for, stringed musical instruments, e.g. slide-bars
    • G10D3/04Bridges

Abstract

A curvature adaption mechanism to be incorporated with a capo (10) for use with a guitar includes a cam surface (16,17,19) and associated cam follower surface (12) located behind a string contact surface (11). A curvature of the guitar fingerboard and strings can be adopted by the string contact surface (11) by virtue of cams engaging and providing a feedback force (D). In place of cams, hinged struts (Fig. 8) may be used to facilitate curvature of the string contact surface (11).

Description

(54) Title ofthe Invention: A capo
Abstract Title: A capo with a curvable string contact surface (57) A curvature adaption mechanism to be incorporated with a capo (10) for use with a guitar includes a cam surface (16,17,19) and associated cam follower surface (12) located behind a string contact surface (11). A curvature ofthe guitar fingerboard and strings can be adopted by the string contact surface (11) by virtue of cams engaging and providing a feedback force (D). In place of cams, hinged struts (Fig. 8) may be used to facilitate curvature of the string contact surface (11).
Figure GB2554764A_D0001
At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.
1/4
05 17
Figure GB2554764A_D0002
Figure GB2554764A_D0003
2/4
Figure GB2554764A_D0004
05 17
104
0.853 see DETAIL A
Figure GB2554764A_D0005
**«·*
Figure GB2554764A_D0006
DETAIL A SCALE 50.000
Fig. 5
3/4
Figure GB2554764A_D0007
Fig. 6
05 17
Figure GB2554764A_D0008
Fig. 7
05 17
29 27
Figure GB2554764A_D0009
Figure GB2554764A_D0010
Fig. 10
A CAPO
TECHNICAL FIELD
The present invention relates to a capo for a stringed instrument such as a guitar or banjo. Particularly, the capo is intended to be able to adapt to the curvature of a finger board and/or strings to which it is applied.
BACKGROUND
A capo (sometimes referred to as a capodastro, capodaster, capotasto or cejilla) is a wellknown device used with a stringed instrument having a neck and a set of strings extending along the length of the neck. The capo, when applied to an instrument neck, serves to clamp the strings against a finger board and, in particular, between or against one of the number of fret bars disposed along the length of finger board. In practice, a capo serves to reduce the effective length of the strings and therefore adjust the pitch; i.e. the pitch is raised as the effective length of a string is shortened.
A large number of different capo types are known, each of which has a different advantage or technical consideration. However, most standard capo designs feature a relatively rigid clamping bar which reaches over the strings in order to apply downward pressure thereon. The clamping bar is usually a metal material with a rubber contact surface which has some resilience in order to accommodate strings and any minor curve across the instrument's neck. However, guitar finger boards vary in the radius that is desirable, ranging from flat on a classical style instrument to a radius of approximately 7.25 inches (18.4 cm) on some electric guitars. Many contemporary steel-string acoustic guitars have a radius across the finger board of 12 to 16 inches (30.5 to 40.6 cm). It is also known to apply a varying (compound) radius along the length of the finger board.
The radius of a finger board is also affected by the gauge of strings used on the instrument. For example, as illustrated in Figure 1 of the accompanying drawings, a guitar neck N is shown having a finger board B and associated fret F with a radius which is effectively offset to one side by the gauge of the strings which increase in diameter (in order to produce lower frequencies) from right to left across the six strings S. The configuration could be reversed dependent on whether the instrument is left or right handed. As will be noted by a skilled person, Figure 1 effectively shows all strings S pressed against fret F of the finger board B, as if with a capo applied.
It will be apparent that the radius of any capo clamping arm designed for pressing with even pressure against the finger board/fret, to enable strings to come into solid contact with a fret and avoid any buzzing of the strings, must take this into account. A common way for capo makers to address this problem is to use a resilient material such as rubber to press onto the strings. This allows the strings to press into the rubber locally and at a relatively even pressure between the strings. However, it is well known that this approach is only partially effective and can result in too much pressure on some strings, leading to sharp notes. Alternatively, insufficient pressure can result in unwanted vibrations or buzzing.
The player may compensate for the above by adjusting the tuning, although clearly this is not ideal because it would prohibit a quick changeover during a performance when applying the capo or adjusting its position along the guitar neck.
The use of softer rubber can provide more flexibility/accommodation in the capo properties and adaptability to different curvatures, but soft rubber is also known to deaden the tone of guitar strings to some extent.
In an effort to address varying neck radius and string gauge GB2532011 proposes a capo incorporating a fluid insert to be located behind a string contacting pad such that the relatively incompressible nature of the fluid adapts a curvature of the string contacting pad 2 (made of a resilient but relatively hard material) to match the combined curvature of the strings and instrument finger board itself. This solution, while effective, requires the fluid to be housed and incorporated with the capo clamp arm which complicates the manufacturing process.
SUMMARY
The present invention seeks to provide a capo with mechanical means to account for and adapt to curvature in the finger board. It may also enable equal pressure across the strings. According to a broad aspect of the invention a capo for a stringed instrument is provided according to claim 1.
The capo of the invention adapts a string contacting surface to the curvature of a finger board by use of a cam surface or struts associated therewith, i.e. internally mounted with the clamp arm of the capo. As the capo clamps onto a finger board by contact with an apex of the finger board curvature, via the string contacting surface, this displaces a sliding element within the clamp arm that subsequently causes, via linear cam mating parts or hinged struts, the string contacting surface to become curved in reaction to the fingerboard shape pressed into it. In principle the string contact surface may begin in either a straightened or maximally curved configuration where force from the finger board curve (either at the apex in the case of a flat contact surface or one or both side edges in the case of the curved initial configuration) as the capo is clamped on the instrument creates a feedback force which imparts a curvature to match the particular finger board curvature.
The invention suggests a purely mechanical curve forming means, as opposed to a curve being formed by an impression into fluid, gel or the like. Such a solution contributes to ease of manufacture and maintenance since a fluid (i.e. leakable) component is not required.
In the known way, the string contacting surface generally has a solid/stiff quality provided by a certain thickness and/or hardness in order to provide a suitably firm surface against which the strings are clamped. Preferably the element will be resilient, i.e. capable of springing back to shape but, more importantly, it will provide a firm surface for contact with the strings while being capable of bending to the sum curvature of the finger board/fret plus strings. Alternative forms could feature a string dampening aspect where a softer material is used to contact the strings, but otherwise including a cam surface and curvature adaption according to the invention.
The invention, as an integral component of a clamping arm, can be incorporated into any type of capo, for example (but not limited to) a spring, clutch, elastic or screw tightened device.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates a guitar neck cross section well known in the prior art;
Figures 2 to 4 illustrate side views of a curvature adaption mechanism according to the invention in stages of use;
Figure 5 illustrates a general view of fingerboard curvature for standard guitar types;
Figures 6 and 7 illustrate another embodiment of curvature adaption mechanism according to the invention in stages of use;
Figures 8 and 9 illustrate a further embodiment of curvature adaption mechanism according to the invention in stages of use; and
Figure 10 illustrates an assembled view of a capo incorporating the curvature adaption mechanism of Figures 2 to 4.
DETAILED DESCRIPTION
Figure 2 illustrates a side section/internal view of a capo mechanism according to the invention. The mechanism is for incorporation into a top or clamp arm of a capo (not specifically shown in Figure 2 but generally associated with a housing which defines a walled cavity 17), i.e. the arm which extends laterally over the neck and cooperates with a clamping mechanism to press the strings against a fret of the finger board, thereby adjusting its pitch. For scale, the cross width of a guitar neck at the nut is usually less than about 5 cm (2 inches) and, correspondingly, the length ofthe capo is normally a similar but slightly greater size. The thickness of the capo is normally less than 1cm and the present invention will likely conform to similar dimensions (i.e. the depth of the illustrated capo mechanism will be in the order of 1cm or less).
According to Figure 2 a string pad 11 is arranged as a string contacting surface to, in use, face a finger board and contact with instrument strings. String pad 11 is preferably a resilient material capable of a degree of flex to form a curvature. On a rear side of string pad 11 a series of cam following contact surfaces 12 protrude therefrom that, in an unused state, maintain the string pad 11 in a relatively flat configuration. In the illustrated embodiment a centremost protrusion 13 serves as an actuator and may be more pronounced than the remaining spaced-apart cam following surfaces 12. In the illustrated form there are six cam followers 12, three either side of actuator 13. Preferably each of the cam following contact surfaces 12 is rounded in order to smoothly contact and cooperate with a primary cam surface 14 against which they are located. The primary cam surface 14 is comprised of two cam carrier elements 15 that are slideable toward and away from each other, generally parallel to the string pad 11. Distal cam surfaces 16 have a sloped configuration for contact with the outermost cam followers 12. Such a linear cam arrangement transforms lateral movement L of the cam carrier elements 15 into a perpendicular (downward) force P at each distal edge ofthe string pad 11, thereby forming a curve as can be observed with reference to Figures 3 and 4.
The cam mechanism as illustrated is housed within a walled cavity 17 which is integral with the capo clamp arm/top bar. The cam mechanism could include further cams 16 (18) and corresponding followers 12 to give additional support, however, so long as sufficient stiffness is provided in string pad 11 then seven contact positions as illustrated suffices. Preferably, string pad 11 has resilience over its entire length to form smooth curves as required by the invention, yet stiff enough between supports (followers 12) so as not to deflect or deform too much under pressure from strings. Preferably tonal characteristics of the strings are maintained due to choice of material.
Figure 3 illustrates initial engagement with an instrument finger board (not shown) where an apex of the finger board curve will contact the string pad 11 proximate with the actuator 13 protruding from the opposite side thereof. Upwards pressure in the direction of arrow U, via actuator 13, contacts an innermost sloped cam surface and forces cam carrier elements 15 to slide apart in the lateral direction L thereby engaging distal cam surfaces 16 with outermost cam followers 12. Intermediate cam surfaces 18 are also engaged which, in the illustrated form, allows the follower to move away from the fingerboard slightly as at the centre to form the curve. It will apparent that the cam surface 14 provides different effects on the overall curvature dependent on the location of a particular cam. Part of the cam surface may, in fact, be flat as denoted by area 19 in contact with a cam follower 12.
Figure 4 illustrates a maximum curved condition of string pad 11 where actuator 13 (motivated by the apex of the fingerboard/string curve being clamped by the capo) is maximally extended and, likewise, distal cam surfaces 16 are at a maximum lateral distance apart from one another.
In the illustrated form of Figures 2 to 4 the cam surfaces 16 are shown as ramps but could be contoured to give different curvature characteristics to the string pad 11. Likewise intermediate cam surfaces 18 and 19 can be modified to improve or specify alternative curvature other than an approximate universal radius. Such modifications and refinements are within the scope of the present invention.
Figure 10 provides an overview of the first embodiment described above installed in a guitar capo.
Figure 5 is provided merely to illustrate the relative dimensional relationship between different fingerboard curvatures FI, F2 and F3. Particularly, it is noted that at position A the curves pass through a point approximately common to all of them (roughly one sixth inboard from the distal ends of each curve). By electing to design the cam surfaces 16,18 and 19 for this observation, it can render the arrangement simpler because cam 19 can be flat.
Figures 6 and 7 illustrates an alternative embodiment where the cam surfaces 16, 18 and 19 are able to be formed integrally with the top/clamp bar 20 of the capo. The actuator 13 to drive apart slideable cam follower carrier elements 21 and 22 is centrally formed with the cam surface 14 and extending downwardly. In other respects the operation is analogous to the embodiment of Figures 2 to 4; i.e. by virtue of upward pressure U imparted by the finger board apex (not shown) cam follower carrier elements 21 and 22 are driven apart laterally in the direction of arrows L. Simultaneously, plural cam followers 12 engage with cam surfaces 16,18,19 and 23. The relative slope of a cam surface imparts a more or less severe downward force P that combines to form a curve in the string pad
11. In the second embodiment string pad 11 is formed of composite layers where a reinforcer 24 supports the material of string pad 11. In this way contact pad 11 may be softer than the first embodiment (and even possess string dampening characteristics) while the reinforcing backing 24 is hard (e.g. metal), yet flexible to adapt to curvature.
Figures 8 and 9 illustrate an alternative solution to the invention which also employs a mechanical means of achieving an adaptive radius, but utilises levers/struts instead of cams.
According to Figure 8 a pair of moveable (e.g. slidable) elements 25 and 26 associated with a rear (internal) side of a string contact pad 11 are connected via struts or levers 27 to a rigid surface 28, e.g. an internal wall of a capo clamp arm. In the illustrated form, struts 27 are hingedly mounted with hinges 29 misaligned so that at least some of the struts are generally arranged at angles.
Figure 9 illustrates activation of the curvature mechanism where, as previously, the apex of a curved finger board (not illustrated) comes into contact with string pad 11, imparting an upward pressure U that forces apart slidable elements 25/26 laterally in the direction of arrow L. Hinge mounted struts 27 are caused to rotate with defined movements dictated by their fixed dimensions such that a controlled curvature is formed in the string pad 11. The lengths and angles and positions of the struts can be arranged to give a required curvature.
All embodiments of the invention can be incorporated into any known capo type.
Further modifications are possible, within the scope of the invention as devised. For example, the design could be such that the adaption mechanism is formed and therefore begins at a maximum curvature and, rather than pressure to the centre, pressure at the outermost ends causes it to flatten; i.e. this would be a reverse embodiment to those illustrated. In the context of the invention the apex force would be substituted by a more general fingerboard curve force which, in this case, would be applied from the edges.

Claims (10)

What We Claim is:
1. A capo for use with a stringed instrument having a neck with a back and a finger board with strings that extend longitudinally over said finger board, the capo including:
a first arm configured to, in use, extend laterally across the finger board over the strings;
a contact surface for contacting the strings in use; and an opposing element configured to, in use, abut against the back of the neck of the instrument to, in cooperation with the first arm, provide a clamping force via the contact surface over the strings;
a curvature adaption mechanism for dynamically altering a curvature of the contact surface; wherein the curvature adaption mechanism includes a plurality of cams or struts arranged to impart a feedback force to the contact surface in reaction to a curve force supplied by a curvature of the fingerboard and/or strings, thereby forming a curvature in the contact surface.
2. The capo of claim 1 wherein the curve force is either an apex force supplied from an apex of the fingerboard curve or an edge force supplied from an outermost edge of the fingerboard curve.
3. The capo of claim 1 or 2 wherein the curvature adaption mechanism further includes a slideable element associated with the cams or struts such that lateral sliding of the slideable element causes the feedback force to the contact surface.
4. The capo of claim 3 wherein there are two slideable elements, arranged for sliding toward and away from each other.
5. The capo of claim 4 wherein the curvature adaption mechanism includes a plurality of cams arranged for cooperating with a plurality of cam follower surfaces.
6. The capo of claim 5 wherein the cam follower surfaces are arranged rearward of the string contact surface.
7. The capo of claim 6 wherein the cam follower surfaces include an actuator protrusion.
8. The capo of claim 7 wherein the actuator protrusion is engageable to drive apart the two slideable elements.
9. The capo of claim 4 wherein the curvature adaption mechanism includes a plurality of struts with each end thereof arranged for pivoting movement.
10. The clamp arm of claim 8 or 9 wherein there are two slideable elements, arranged for sliding toward and away from each other.
Intellectual
Property
Office
Application No: GB1617201.7 Examiner: Mr Will Jeffries
10. A clamp arm for a capo for a stringed instrument including:
a contact surface for contacting the strings of an instrument in use; and a curvature adaption mechanism for mechanically altering a curvature of the contact surface; wherein the curvature adaption mechanism, housed within the claim arm, includes a moveable element for engagement with a guide element that guides or enables cooperative movement of the moveable element and arranged to impart a feedback force to the contact surface in reaction to an apex or edge force supplied by a curvature of the fingerboard and/or strings, thereby forming a curvature in the contact surface.
11. The curvature adaption mechanism of claim 10 wherein the contact surface is resilient and/or flexible.
Amendment to Claims have been filed as follows
What We Claim is:
25 09 17
1. A capo for use with a stringed instrument having a neck with a back and a finger board with strings that extend longitudinally over said finger board, the capo including:
a first arm configured to, in use, extend laterally across the finger board over the strings;
a contact surface for contacting the strings in use; and an opposing element configured to, in use, abut against the back of the neck of the instrument to, in cooperation with the first arm, provide a clamping force via the contact surface over the strings; and a curvature adaption mechanism for dynamically altering a curvature of the contact surface, the curvature adaption mechanism includes a plurality of cams or struts arranged to impart a feedback force to the contact surface in reaction to a curve force supplied by a curvature of the fingerboard and/or strings, the feedback force being different at an outermost edge of the contact surface compared to an innermost portion thereof, thereby forming a curvature in the contact surface;
wherein the curvature adaption mechanism further includes a slideable element associated with the cams or struts such that lateral sliding of the slideable element causes the feedback force to the contact surface.
2. The capo of claim 1 wherein there are two slideable elements, arranged for sliding toward and away from each other.
3. The capo of claim 2 wherein the curvature adaption mechanism includes a plurality of cams arranged for cooperating with a plurality of cam follower surfaces.
4. The capo of claim 3 wherein the cam follower surfaces are arranged rearward of the string contact surface.
25 09 17
5. The capo of claim 4 wherein the cam follower surfaces include an actuator protrusion.
6. The capo of claim 5 wherein the actuator protrusion is engageable to drive apart the two slideable elements.
7. The capo of claim 2 wherein the curvature adaption mechanism includes a plurality of struts with each end thereof arranged for pivoting movement.
8. A clamp arm for a capo for a stringed instrument including:
a contact surface for contacting the strings of an instrument in use; and a curvature adaption mechanism for mechanically altering a curvature of the contact surface, the curvature adaption mechanism, housed within the clamp arm, includes a moveable element for engagement with a guide element that guides or enables cooperative movement of the moveable element and arranged to impart a feedback force to the contact surface in reaction to an apex or edge force supplied by a curvature of the fingerboard and/or strings, the feedback force being different at an outermost edge of the contact surface compared to an innermost portion thereof, thereby forming a curvature in the contact surface;
wherein the curvature adaption mechanism further includes a slideable element associated with the cams orstruts such that lateral sliding of the slideable element causes the feedback force to the contact surface.
9. The clamp arm of claim 8 wherein the contact surface is resilient and/or flexible.
GB1617201.7A 2016-10-10 2016-10-10 A capo Active GB2554764B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1617201.7A GB2554764B (en) 2016-10-10 2016-10-10 A capo
US15/602,509 US10147404B2 (en) 2016-10-10 2017-05-23 Capo
CN201710991546.1A CN107919107B (en) 2016-10-10 2017-10-10 Tone-changing clamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1617201.7A GB2554764B (en) 2016-10-10 2016-10-10 A capo

Publications (3)

Publication Number Publication Date
GB201617201D0 GB201617201D0 (en) 2016-11-23
GB2554764A true GB2554764A (en) 2018-04-11
GB2554764B GB2554764B (en) 2018-10-10

Family

ID=57610460

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1617201.7A Active GB2554764B (en) 2016-10-10 2016-10-10 A capo

Country Status (3)

Country Link
US (1) US10147404B2 (en)
CN (1) CN107919107B (en)
GB (1) GB2554764B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6795823B2 (en) * 2017-03-16 2020-12-02 後藤ガット有限会社 Capo tasto
US10297236B1 (en) 2017-10-27 2019-05-21 D'addario & Company, Inc. Universal capo for variety of instruments and string gauges
US10810975B2 (en) * 2018-08-21 2020-10-20 Bryan PAIGE Capo for use with a stringed musical instrument, and method of using same
US11646002B2 (en) * 2021-02-01 2023-05-09 Bryan PAIGE Capo for use with a stringed musical instrument, and method of using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301705A (en) * 1979-03-02 1981-11-24 Terence Gould Capodastros
US6271448B1 (en) * 2000-07-19 2001-08-07 Richard Ned Steinberger Sliding capo

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510616A (en) * 1995-06-07 1999-09-14 ローズ,フロイド,ディー. Improvements in tuning methods for stringed instruments
US5623110A (en) * 1995-12-06 1997-04-22 Hoglund; Steven G. Quick-setting, variable, chord-forming, partial capo
US5760321A (en) * 1996-02-09 1998-06-02 Seabert; Frederick D. Power-actuated guitar string tuning device
CN100347740C (en) * 2001-09-29 2007-11-07 G7有限公司 Capotasto
TWM317637U (en) * 2006-11-03 2007-08-21 Yue-Feng Shie Capo structure for use in a guitar
CN201166965Y (en) * 2007-11-30 2008-12-17 戈建林 Transposition clip structure for a stringed instrument
GB2466294B (en) * 2008-12-19 2013-07-03 C7Th Ltd An improved adjustable lever arm capo
GB2516100A (en) * 2013-07-12 2015-01-14 C7Th Ltd A capo
GB2532011A (en) 2014-11-04 2016-05-11 C7Th Ltd A capo for a stringed instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301705A (en) * 1979-03-02 1981-11-24 Terence Gould Capodastros
US6271448B1 (en) * 2000-07-19 2001-08-07 Richard Ned Steinberger Sliding capo

Also Published As

Publication number Publication date
US20180102113A1 (en) 2018-04-12
US10147404B2 (en) 2018-12-04
CN107919107B (en) 2023-02-17
GB201617201D0 (en) 2016-11-23
GB2554764B (en) 2018-10-10
CN107919107A (en) 2018-04-17

Similar Documents

Publication Publication Date Title
US10147404B2 (en) Capo
US7745710B2 (en) Spring capo
US4104947A (en) Capo
US20160247490A1 (en) Capo
EP0038845B1 (en) Capo
US9741320B2 (en) Vibration dampening device and a closed chamber deflectable accessory for a vibration dampening device
KR20100127229A (en) Capodaster
CA2988426C (en) Recessed concave fingerboard
US11043195B2 (en) Ligature for woodwind instruments
US9196232B2 (en) Self-compensating tunable bridge for string musical instrument
US8049089B2 (en) Keyboard percussion instrument and dampening system for use therewith
JP4753883B2 (en) Adjustable tremolo bridge
US9224369B2 (en) Device for modeling (shaping) surface of fret, fret board, or fingerboard of string instrument
US5431080A (en) Continuously adjustable capo for one hand operation
US9953622B2 (en) Capo
US20090072473A1 (en) Sheet guide apparatus
WO2023149986A1 (en) Vibrato mechanism
CN209418119U (en) For being clamped to the capo tasto of the neck of stringed musical instrument
KR102517578B1 (en) Sound deflector for wind instruments
US11276379B2 (en) Retaining device for a chin rest for a stringed instrument
US5736660A (en) Method of adjusting length of duplex scale portion of piano strings
US20180012577A1 (en) Capo with attachment mechanism and fretting action in separate offset planes
WO2020157588A1 (en) System for fastening strings of a stringed instrument
US956521A (en) Plate-holder for use in bending electrotype-plates.
JP2010204400A (en) Capotasto