GB2530605A - Systems and methods for compressing a digital signal - Google Patents
Systems and methods for compressing a digital signal Download PDFInfo
- Publication number
- GB2530605A GB2530605A GB1511091.9A GB201511091A GB2530605A GB 2530605 A GB2530605 A GB 2530605A GB 201511091 A GB201511091 A GB 201511091A GB 2530605 A GB2530605 A GB 2530605A
- Authority
- GB
- United Kingdom
- Prior art keywords
- digital
- output signal
- uncompressed
- signal
- digital output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/412—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
- H03M3/422—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
- H03M3/424—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M5/00—Conversion of the form of the representation of individual digits
- H03M5/02—Conversion to or from representation by pulses
- H03M5/04—Conversion to or from representation by pulses the pulses having two levels
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/3002—Conversion to or from differential modulation
- H03M7/3044—Conversion to or from differential modulation with several bits only, i.e. the difference between successive samples being coded by more than one bit, e.g. differential pulse code modulation [DPCM]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Compression of a digital microphone signal for transmission on a bus A digital compression circuit 106 uses a form of differential encoding in which the output codes depend on both the present and previous differences of digital audio samples from a multi-bit quantizer 120. The quantizer is part of a sigma-delta analogue-to-digital converter 104 coupled to a microphone 102. The output codes may be selected to reduce bit transitions, and a digital processing circuit 108 may instruct the compressor 106 to output words with more bits if the circuit 108 detects ultrasonic signal content. The feedback signal in the converter 104 may be derived from the output of the compression circuit 106 (figure 4). Multiple conversion and compression paths (figure 3) may be selected or combined to provide a larger dynamic range.
Description
SYSTEMS AND METHODS FOR COMPRESSING A DIGITAL SIGNAL
RELATED APPLICATIONS
The present disclosure claims priority to United States Provisional Patent Application Serial No. 62/106,881, filed June 25, 2014, which is incorporated by reference herein in its entirety.
FIELD OF DISCLOSURE
The present disclosure relates in general to audio systems, and more particularly, to compressing a digital signal in an audio system.
BACKGROUND
Tvlicrophones are ubiquitous on many devices used by individuals, including computers, tablets, smart phones, and many other consumer devices. Generally speaking, a microphone is an electroacoustic transducer that produces an electrical signal in response to deflection of a portion (e.g., a membrane or other structure) of a microphone caused by sound incident upon the microphone.
In a digital microphone system, an analog output signal of the microphone transducer may be processed by an analog-to-digital converter to convert the analog output signal to a digital output signal, which may be communicated over a bus to a 2 0 digital audio processor for frirther processing. By communicating a digital signal over the bus rather than an analog signal, the audio signal may be less susceptible to noise.
To adequately represent an audio signal with sufficient quality, the digital output signal may have numerous quantization levels. Numerous quantization levels may require a significant number of digital bits in order that each quantization level is represented by a corresponding digital code. It may be undesirable to transmit digital codes with many bits and/or with bits that change frequently over a digital bus, particularly a serial digital bus, as communication throughput may decrease as the number of bits in digital codes increases.
SUMMARY
In accordance with the teachings of the present disclosure, certain disadvantages and problems associated with communication of a digital signal may be reduced or eliminated, In accordance with embodiments of the present disclosure, a system may include a delta-sigma analog-to-digital converter and a digital compression circuit. The delta-sigma analog-to-digital converter may include a loop filter having a ioop filter input configured to receive an input signal arid generate an intermediate signal responsive to the input signal, a multi-bit quantizer configured to quantize the intermediate signal into an uncompressed digital output signal, and a feedback digital-to-analog converter having a feedback output configured to generate a feedback output signal responsive to the uncompressed digital output signal in order to combine the input signal and the feedback output signal at the loop filter input. The digital compression circuit may be configured 1 0 to receive the uncompressed digital output signal and compress the uncompressed digital output signal into a compressed digital output signal having fewer quantization levels than that of the uncompressed digital output signal.
In accordance with these and other embodiments of the present disclosure, a method may include receiving an analog input signal at a loop filter input and filtering the analog input signal to generate an intermediate signal responsive to the input signal. The method may also include quantizing the intermediate signal into an uncompressed digital output signal. The method may further include converting the uncompressed digital output signal into an analog feedback output in order to combine the input signal and the feedback output signal at the loop filter input. The method may additionally include 2 0 compressing the uncompressed digital output signal into a compressed digital output signal having fewer quantization levels than that of the uncompressed digital output signal.
In accordance with these and other embodiments of the present disclosure, an integrated circuit may include a transducer, a delta-sigma analog-to-digital converter, a digital compression circuit, and a digital processing circuit. The transducer may be configured to generate the input signal indicative of a physical quantity measured by the transducer, The delta-sigma analog-to-digital converter may include a loop filter having a loop filter input configured to receive an input signal and generate an intermediate signal responsive to the input signal, a multi-bit quantizer configured to quantize the intermediate signal into an uncompressed digital output signal, and a feedback digital-to-analog converter having a feedback output configured to generate a feedback output signal responsive to the uncompressed digital output signal in order to combine the input signal and the feedback output signal at the loop filter input. The digital compression circuit may be configured to receive the uncompressed digital output signal and compress the uncompressed digital output signal into a compressed digital output signal having fewer quantization levels than that of the uncompressed digital output signal. The digital processing circuit may be configured to process at least one of the uncompressed digital output signal and the compressed digital output signal to determine a characteristic of the input signal.
Technical advantages of the present disclosure may be readily apparent to one having ordinary skill in the art from the figures, description and claims included herein.
The objects and advantages of the embodiments will be realized and achieved at least by 1. 0 the elements, features, and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are explanatory examples and are not restrictive of the claims set
forth in this disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein: 2 0 FIGURE 1 illustrates a block diagram of selected components of an example system, in accordance with embodiments of the present disclosure; FIGURE 2 illustrates an example transition graph indicative of transition statistics of a multi-bit quantizer, in accordance with embodiments of the present disclosure; FIGURES 3A and 3B each illustrates a block diagram of selected components that may be used in lieu of a portion of the system displayed in FIGURE 1; and FIGURE 4 illustrates a block diagram of selected components of another example system, in accordance with embodiments of the present disclosure.
DETAILED DESCRIPTION
FIGURE 1 illustrates a block diagram of selected components of an example system 100, in accordance with embodiments of the present disclosure. As shown in FIGURE 1, system 100 may include a transducer 102, a delta-sigma analog-to-digital converter (ADC) 104, an external digital compression circuit 106, a digital processing circuit 108, a driver 110, a memory 1 2, an error recovery circuit 114, and a digital audio processor 116.
Transducer 102 may comprise any system, device, or apparatus configured to sense a physical quantity arid convert such physical quantity into an electrical analog signal ANALOG_IN indicative of such physical quantity. For example, in some embodiments, transducer 102 may comprise a microphone transducer configured to generate input signal ANALOG IN indicative of audio sounds incident upon the microphone transducer, wherein such sound is converted to an electrical signal using a diaphragm or membrane having an electrical capacitance that varies as based on sonic vibrations received at the diaphragm or membrane. In such embodiments, transducer 102 may include an electrostatic microphone, a condenser microphone, an electret microphone, a microelectromechanical systems (MEMs) microphone, or any other suitable capacitive microphone. In other embodiments, transducer 102 may comprise seismic data acquisition equipment, such as a geophone for generating input signal ANALOG_iN indicative of acceleration sensed by the geophone.
Delta-sigma ADC 104 may comprise any suitable system device or apparatus configured to convert analog input signal ANALOG_IN received at its input, to an uncompressed digital output signal DIGITAL UN representative of analog input signal ANALOG IN. As shown in FIGURE 1, delta-sigma ADC 104 may include a loop filter 118, a multi-bit quantizer t20, dynamic element matching circuitry (DEM) 124, a digital-to-analog converter (DAC) 126, and a delay block 122.
Loop filter 118 may comprise an input summer 130 for generating a difference between analog input signal ANALOG_IN and an analog feedback signal ANALOGFB, and one or more integrator stages 128, such that 1oop filter 118 operates as an analog filter of an error signal equal to the difference between analog input signal ANALOG_IN and analog feedback signal ANALOG FB, and generates a filtered output analog signal to multi-bit quantizer 120 based on analog input signal ANALOG_IN and analog feedback signal ANALOG_FB (e.g., the difference or error between analog input signal ANALOG_IN and analog feedback signal ANALOGFB).
Multi-bit quantizer 120 may comprise any system, device, or apparatus configured to receive the filtered output analog signal from loop filter 118, and convert the filtered output analog signal into an uncompressed digital output signal DIGITAL_UN having a plurality of quantization levels (e.g., more than four), as is known in the art. In some embodiments, uncompressed digital output signal DIGITAL_UN may be a signal of length Nil, where Ni is a positive integer. In particular embodiments, M may be greater or equal to 3.
Digital feedback signal DIGITAL lINT may be delayed by delay block t22 and fed back through DEM circuitry 124 and DAC 126 to generate analog feedback signal ANALOGFB.
External digital compression circuit 106 may comprise any system, device, or apparatus configured to receive uncompressed digital output signal DIGITAL_UN and compress uncompressed digital output signal DIGITAL_UN into a compressed digital 1 0 output signal DIGITAL COMP having fewer quantization levels than that of uncompressed digital output signal DIGITAL UN, as described in greater detail elsewhere in this disclosure. For example, in some embodiments, uncompressed digital output signal DIGITAL_UN may comprise Ni bits and external digital compression circuit 106 may compress uncompressed digital output signal DIGITAL_UN into compressed digital output signal DIGITAL_COT'vlP comprising N bits, where lvi and N are each positive integers and M is greater than N. In some embodiments, a fUnction of external digital compression circuit 106 for compressing uncompressed digital output signal DIGITAL_UN into compressed digital output signal DIGITAL COMP is selected based on transition statistics of multi-bit 2 0 quantizer 120 and uncompressed digital output signal DIGITAL UN, For example, turning briefly to FIGURE 2, depicted is an example transition graph 200 for uncompressed digital output signal DIGITAL_UN output by multi-bit quantizer 120 for an analog input signal ANALOG TIN of a particular characteristic (e.g., an audio band signal generated by a digital microphone). Nodes of transition graph 200 represent differences of quantization level in successive samples of uncompressed digital output signal DIGITAL_UN. Directed edges of transition graph 200 may represent a quantization level transition that may occur between a current sample and a most-recent sample based on the previous quantization level transition between the most-recent sample and the sample occurring immediately prior to the most-recent sample, and weights (e.g., w00, w01, w01, w10, w11, w14, w12, w40, w11, w11, w.12, w21, w21) on directed edges of transition graph may represent a probability or likelihood that a given transition may occur based on statistics of multi-bit quantizer 20 and/or the analog input signal ANALOG IN. For example, in the example transition graph 200, when a quantization level transition of 0 occurs in uncompressed digital output signal DIGITAL_UN, the next quantization level transition may be 0, -1, or +1. Additionally, when a quantization level transition of +1 occurs in uncompressed digital output signal DIGITAL IJN, the next quantization level transition may be 0, -1, +t, or -2. Similarly, when a quantization level transition of -l occurs in uncompressed digital output signal DIGITAL UN, the next quantization level transition may be 0, -1, +, or +2.
Furthermore, when a quantization level transition of +2 occurs in uncompressed digital output signal DIGITAL_UN, the next quantization level transition may be -l or -2, and when a quantization level transition of +2 occurs in uncompressed digital output signal DIGITAL UN, the next quantization level transition may be -1, or -2. Thus, no node in transition graph 200 has more than four directed edges originating from it, and thus the various quantization levels (e.g., t6 quantization levels represented by four bits in a pulse-density modulated signal) of uncompressed digital output signal DIGITAL_UN may be encoded into two bits of transition information. The limitation of next quantization level transitions from certain present quantization level transitions may be limited due to the band-limiting nature of loop filter 118 and/or transducer 102. For example, due to the band-limiting nature of loop filter 118 and/or transducer 102, multi-bit quantizer 120 may not be instmcted to increase by two quantization levels immediately after an increase by one quantization level. Accordingly, a fbnction of external digital compression circuit t06 for compressing uncompressed digital output signal DIGITAL_UN into compressed digital output signal DIGITAL COMP may limit possible transitions between quantization levels of uncompressed digital output signal DIGITAL_UN of consecutive samples of uncompressed digital output signal DIGITAL_UN to a subset of quantization levels of the uncompressed digital output signal DIGITAL_UN.
Thus, for an uncompressed digital output signal DIGITAL_UN having transition statistics represented by transition graph 200, external digital compression circuit 106 may have four different quantization levels, each represented by a two-bit code as shown in the following Table t:
Transition Description Code
TOGGLE I Toggle between adjacent quantizer levels of DIGITAILUN 00 HOLD Hold the previous value of DIGITAL_UN II 1NCDEC Increment or decrement to next higher or lower quantization level 01 ________ of DIGITAL UN ____ TOGGLE2 Toggle between quantizer levels of DIGITAL UN differing by 2 10
Table I
In addition, for an uncompressed digital output signal DIGITAL UN having transition statistics represented by transition graph 200, external digital compression circuit 106 may maintain a state variable DIRECTION that indicates whether the last transition was an increase or decrease of uncompressed digital output signal DIGITAL UN. Thus, if a current sample of uncompressed digital output signal DIGiTAL UN is larger than a previous sample and the variable DIRECTION has a value "UP" indicating that the last transition was an increase of uncompressed digital output signal DIGITAL_UN, the output code corresponding to INCDEC may be output as compressed digital output signal DIGITAL COTvIP as uncompressed digital output signal DIGITAL_UN is not toggling between two quantizer levels and is not holding at its current value. Similarly, if a current sample of uncompressed digital output signal DIGITAL_UN is smaller than a previous sample and the variable DIRECTION has a value "DOWN" indicating that the last transition was a decrease of uncompressed digital output signal DIGITAL_UN, the output code corresponding to INCDEC may be output as compressed digital output signal DIGITAL COMP, as uncompressed digital output signal DIGITAL_UN is not toggling between two quantizer levels and is not holding at its current value.
For an uncompressed digital output signal DIGITAL_UN having transition statistics represented by transition graph 200 and external digital compression circuit 106 applying a function as described above with respect to Table 1, the following Table 2 sets forth an example algorithm/function applied by external digital compression circuit 106, where v[nI represents the value of the nth sample of uncompressed digital output signal DIGITALUN, y[n] represents a sample of compressed digital output signal DIGITAL COMP output in response to receipt of v[n], and DIRECTION[nj represents the value of DIRECTION calculated in response to receipt of v[n]: v[n] -v[n-1] DIRECTION[n-1] yEn] DIRECTION[nI o DOWN HOLD DOWN o UP HOLD UP -i DOWN TOGGLEI DOWN -1 UP INCDEC DOWN +1 DOWN IINCDEC UP +1 UP TOGGLEI UP -2 DOWN TOGGLE2 DOWN +2 UP TOGGLE2 UP
Table 2
Different but similar algorithms/functions may be applied to multi-bit quantizers having more quantization levels and/or to an uncompressed digital output signal DIGITAL UN having different transition statistics than that shown above. Furthermore, such different but similar algorithms/functions may provide for additional quantization levels for compressed digital output signal DIGITAL_COMP beyond those described above (e.g., output codes corresponding to transitions of INCDEC2, INCDEC3, TOGGLE3, TOGGLE4, etc.). Thus, a frmnction of external digital compression circuit 106 for compressing uncompressed digital output signal DIGITAL_UN into compressed 1 0 digital output signal DIGITAL COMP may be selected based on transition statistics of the multi-bit quantizer.
Also, as seen above, for each given sample of uncompressed digital output signal DIGITAL_UN, external digital compression circuit 106 may generate a corresponding sample of compressed digital output signal DIGITAL COMP based on transition statistics of multi-bit quantizer 120. For example, in the example above, a sample of compressed digital output signal DIGITAL COMP generated in response to receipt of uncompressed digital output signal DIGITAL_UN may be based on not only the corresponding sample of uncompressed digital output signal DIGITAL_UN, but also on a previous sample of uncompressed digital output signal DIGITAL_UN, as represented by 2 0 the state variable DIRECTION. However, different but similar algorithms/functions may be applied to multi-bit quantizers 120 having more quantization levels and/or to an uncompressed digital output signal DIGITAL_UN having different transition statistics than that shown above to generate compressed digital output signal DIGITAL COMP based on more than the two most recent samples of uncompressed digital output signal DIGITAL UN.
In some embodiments, a fUnction of external digital compression circuit 106 for compressing the uncompressed digital output signal into a compressed digital output signal is selected based on transition statistics of multi-bit quantizer 120 in order to minimize transition frequency of the N bits of external digital compression circuit 106.
For example, if the transition statistics indicate that compressed digital output signal DIGITAL COMP indicates transitions of HOLD and TOGGLE1 a substantial percentage of the time, a thnction of external digital compression circuit 106 may provide that the 1 0 output codes for HOLD and TOGGLE1 are such that only one bit of compressed digital output signal DIGITAL COMP transitions when the transition indicated by digital output signal DIGITAL COMP changes from HOLD to TOGGLE! or vice versa, Thus, in this example, if HOLD were represented by a code "00," TOGGLEI may be represented by output code "01" or 10," such that only one bit of compressed digital output signal DIGITAL_COv1IP transitions when the transition indicated by digital output signal DIGITAL COMP changes from HOLD to TOGGLE 1 or vice versa, By minimizing the number of transitions of compressed digital output signal DIGITAL_COI'vlP in this manner, power consumption associated with generating arid transmitting digital output signal DIGITAL COMP may be minimized.
2 0 Furthermore, in these and other embodiments, a function of external digital compression circuit 106 may limit possible transitions between quantization levels of uncompressed digital output signal DIGITAL TIN of consecutive samples of the uncompressed digital output signal DIGITAL UN, as described above, such that compression is lossless (e.g., the signal reconstructed by digital processor 116 is equivalent to the uncompressed digital output signal DIGITAL UN). In other embodiments in which compression is not lossless, limiting possible transitions between quantization levels of uncompressed digital output signal DIGITAL_UN of consecutive samples of the uncompressed digital output signal DIGITAL_UN may also minimize degradation to the signal such that compression artifacts are minimal or are outside a frequency band of interest (e.g., outside the range of human hearing).
In some embodiments, the function applied by external digital compression circuit 106 to compress uncompressed digital output signal DIGITAL_UN into compressed digital output signal DIGITAL COIVIP may be static and determined based on characterization and testing of system 100 or portions thereof prior to packaging or shipment to an intended end user, using waveforms for analog input signal ANALOG_IN expected for the type of application in which system 100 is to be used. In other embodiments, functions may be dynamically selected by digital processing circuit t08 based on characteristics of analog input signal ANALOG_IN, as described below.
Turning again to FIGURE 1, digital processing circuit 108 may comprise any system, device, or apparatus configured to process at least one of uncompressed digital output signal DIGITAL_UN and compressed digital output signal DIGITAL COIvIP to determine a characteristic of analog input signal ANALOG_IN. For example, in some embodiments in which transducer 102 comprises a microphone, digital processing circuit 108 may process at least one of uncompressed digital output signal DIGITAL_UN and compressed digital output signal DIGITAL COMP to perform voice detection (e.g., detection of a particular individual's voice and/or detection of particular words of phrases uttered by an individual). In these and other embodiments in which transducer 102 comprises a microphone, digital processing circuit 108 may process at least one of uncompressed digital output signal DIGITAL UN and compressed digital output signal DIGITAL_COIVIP to determine mel-frequency cepstral coefficients of the input signal, which may aid in performance of voice detection. In these and other embodiments in which transducer 102 comprises a microphone, digital processing circuit 108 may process at least one of uncompressed digital output signal DIGITAL_UN and compressed digital output signal DIGITAL_COMP to detect the presence of ultrasonic energy in the input signal (e.g., spectral energy above the range of human hearing).
While the foregoing discussion contemplates processing of signals indicative of speech, the systems and methods described herein may be applied to any type of signal, whether speech, music, other audio signals, ultrasonic signals, or infrasonic signals.
In these and other embodiments, digital processing circuit 108 may be configured to control external digital compression circuit 106 to set a number of bits comprising compressed digital output signal DIGITAL_COIvIP based on the sensed or detected characteristic of analog input signal ANAILOGIN. For instance, digital processing circuit 08 may be configured to set the number of bits to a first number if the input signal has energy above a particular frequency (e.g., ultrasonic) and set the number of bits to a second number if the input signal lacks energy above the particular frequency (e.g., sonic). Thus, for ultrasonic energy, external digital compression circuit 06 may use a lower compression ratio than for a signal with wholly sonic energy.
Driver 110 may receive the digital signal DIGITAL_COv1IP output by external digital compression system 106 and may comprise any suitable system, device, or apparatus configured to condition such digital signal (e.g., encoding into Audio Engineering Society/European Broadcasting Union (AES/EBU), Sony/Philips Digital Interface Format (S/PDIF)), in the process generating digital output signal DIGITAL BUS for transmission over a bus to digital processor 116. In FIGURE 1, the bus receiving digital output signal DIGITAL_BUS is shown as single-ended. In some embodiments, driver 110 may generate a differential digital audio output signal.
Memory 112 may comprise any system, device, or apparatus configured to retain program instructions and/or data for a period of time (e.g., computer-readable media).
Memory 112 may include RAM, EEPROM, a PCMCIA card, flash memory, magnetic storage, opto-magnetic storage, or any suitable selection and/or array of volatile or non-volatile memory that retains data after power to system 100 or portions thereof is turned off, In operation in system 100, memory 112 may be configured to store one or more compressed digital samples of the compressed digital output signal in order of transmission as transmitted from driver t 10. Accordingly, memory 112 may be coupled to error recovery circuit 114, which may be configured to, in response to an error in 2 0 transmission of digital output signal DIGITAL BUS, read the one or more compressed samples from memory 104 and cause driver 110 to re-transmit the one or more compressed digital samples. In some embodiments, error recovery circuit 114 may determine a transmission error has occurred and/or the nature of such transmission error based on one or more control signals communicated from a control bus between digital processor 116 and error recovery circuit 114.
Digital processor 116 may comprise any suitable system, device, or apparatus configured to process digital output signal DIGITAL_BUS for use in a digital system (e.g., an audio system). For example, digital processor 116 may comprise a microprocessor, microcontroller, digital signal processor (DSP), application specific integrated circuit (ASIC), or any other device configured to interpret and/or execute program instructions and/or process data, such as a digital audio output signal. In some embodiments, digital processor 116 may receive the digital signal DIGITAL_BUS and reconstruct a digital signal with the same number of quantization levels as uncompressed digital output signal DIGITAL_UN by applying a function which is a dual or inverse of that of external digital compression circuit 106. Accordingly, in embodiments in which digital processing circuit 108 may dynamically change a function applied by external digital compression circuit 106, one or more components of system 100 may be configured to communicate one or more control signals to digital processor 6 indicative of such change in compression function such that digital processor 116 may cause a corresponding change to its decompression function.
A change in compression function may be communicated to the digital processor 116 via an interrupt issued to the digital processor 116 or through some other side channel 1 0 communication. In some systems, activating an interrupt or communicating through a side channel may be virtually free as the system would be configured to service interrupts, regardless of whether or not the data is being compressed. An example of such a system is a digital microphone communicating over a Soundwire'M serial link to a digital processor 116. In such a system the microphone utilizes features of the SoundwireTM bus protocol to interrupt digital processor 116 to change its compression without the need for an additional pin on the microphone or an additional communication channel into digital processor 116.
Other systems may lack the ability to send side channel information for virtually free as in the SoundwireTM example described above. In such systems, the need to 2 0 communicate a change in compression ratio may actually place an undue burden on the system. That is, the cost of communicating the change in compression ratio may mitigate the advantages of compression in the first place. In some systems, it may be acceptable to have inexact recovery at the digital processor 116. For systems that need a constant compression ratio and can tolerate some amount of signal degradation, the embodiment in FIGURE 4, described in greater detail below, may be preferred.
In some embodiments of system tOO, transducer 102, delta-sigma ADC t04, and external digital compression circuit 106 may be formed on a single substrate (e.g., the same semiconductor substrate). In other embodiments of system 100, transducer 102, delta-sigma ADC t04, and external digital compression circuit t06 may be formed on different substrates packaged within the same integrated circuit package.
FIGURE 3A illustrates a block diagram of selected components that may be used in lieu of a portion of system 100, in accordance with embodiments of the present disclosure. As shown in FIGURE 3A, delta-sigma ADC 104 may be replaced with two delta-sigma ADCs 104A and 104B. In addition, external digital compression circuit 106 maybe replaced with two external digital compression circuits 106A and lO6B, Each delta-sigma ADC 104A and lO4B may include components (e.g., loop filter 118, multi-bit quantizer 120, delay block 122, DEM circuitry 124, and feedback DAC 126) as shown in FIGURE for delta-sigma ADC 04. As shown in FIGURE 3A, delta-sigma ADCs 04A and 104B may each convert analog input signal ANALOG_IN into respective uncompressed digital output signals DIGITAL UN and DIGITAL UN2. Each of uncompressed digital output signals DIGITAL UN and DIGITAL IJN2 may be input to a respective external digital compression circuit 106A and 06B for compressing each 1. 0 of uncompressed digital output signals DIGITAL UN and DIGITAL UN2 into respective compressed digital output signals DIGITAL COMP and DIGITAL COMP2, in a manner similar or identical to that described above with respect to external digital compression circuit 106. The compressed digital output signals DIGITAL COMP and DIGITAL_COJVIP2 may be combined by a digital combining circuit 107, with the resulting signal communicated to driver 110, memory 112, digital processing circuit 108, arid/or other components of system 100 in a manner identical or similar to that of compressed digital output signal DIGITAL_COI'vlP depicted in FIGURE 1. As shown in FIGURE 3A, digital combining circuit t07 may receive a control signal (e.g., from digital processing circuit 108 or other source) which may select between digital output signals 2 0 DIGITAL COMP and DIGITAL COMP2 or indicate respective weights of digital output signals DIGITAL_COMP and DIGITAL_COMP2 to be applied to the output signal generated by digital combining circuit 107. In some embodiments, the control signal may be indicative of a magnitude of analog input signal ANALOG IN or a signal derivative therefrom.
FIGURE 3B illustrates a block diagram of selected components that may be used in lieu of a portion of system tOO, in accordance with embodiments of the present disclosure, FIGURE 3B is similar to that of FIGURE 3A, except that transducer 102 is replaced with two transducers 102A and 102B, which each produce respective analog input signals ANALOG_IN and ANALOG 1N2. As shown in FIGURE 3B, delta-sigma ADCs 104A and 04B may each convert their respective analog input signals ANALOG_IN and ANALOG 1N2 into respective uncompressed digital output signals DIGITAL_UN and DIGITAL IJN2. Each of uncompressed digital output signals DIGITAL_UN and DIGITAL UN2 may be input to a respective external digital compression circuit I 06A and 06B for compressing each of uncompressed digital output signals DIGITAL_UN and DIGITAL_UN2 into respective compressed digital output signals DIGITAL COMP and DIGITAL COMP2, in a manner similar or identical to that described above with respect to external digital compression circuit 106. The compressed digital output signals DIGITAL COMP and DIGITAL COMP2 may be combined by a digital combining circuit 107, with the resulting signal communicated to driver I 0, memory 112, digital processing circuit 108, and/or other components of system 100 in a manner identical or similar to that of compressed digital output signal DIGITAL COMP depicted in FIGURE 1 In each of FIGURES 3A and 3B, external digital compression circuit boA may be configured to receive uncompressed digital output signal DIGITAL UN having NI bits and compress uncompressed digital output signal DIGITAL UN into compressed digital output signal DIGITAL COMP having N bits, wherein M and N are each positive integers and NI > N. Similarly, external digital compression circuit 1 06B may be configured to receive uncompressed digital output signal DIGITAL_UN having Y bits arid compress uncompressed digital output signal DIGITAL UN into compressed digital output signal DIGITAL_COMP having Z bits, wherein Y and Z are each positive integers and Y > Z. In some embodiments, MY. In these and other embodiments, NZ.
The approaches of FIGURES 3A and 3B may be used to perform dual-path or 2 0 multi-path dynamic range enhancement in a system. For example, the dynamic range of transducer 102 or system 00 in general may be extended by having the multiple processing paths each having a respective gain, and selecting one or the paths or combining the paths in a manner to provide a wider dynamic range than one path along might provide.
FIGURE 4 illustrates a block diagram of selected components of another example system iOOA, in accordance with embodiments of the present disclosure, which may be used as an alternative to system 100 of FIGURE 1, FIGURE 4 may be similar to FIGURE bin that it may include a transducer 102, a delta-sigma ADC 104A, and a digital compression circuit iO6A similar in structure and/or function to transducer i02, delta-sigma ADC 104, and digital compression circuit 106 of FIGURE 1, except as described below.
As shown in FIGURE 4, delta-sigma ADC 104A may differ from delta-sigma ADC 104 in that digital compression circuit 106A is internal to delta-sigma ADC 104A and may, in addition to compressing uncompressed digital output signal DIGITAL_UN into compressed digital output signal DIGITAL COMP as does digital compression circuit 106 of FIGURE 1, digital compression circuit 106A may also generate a digital feedback signal DIGITALFB indicative of the generated compressed digital output signal DIGITAL COMP, For example, the compression function of digital compression circuit 106A may be limited in the magnitude of transitions of uncompressed digital output signal DIGITAL UN that it may represent, and if a magnitude of transition of uncompressed digital output signal DIGITAL UN is other than that which can accurately be represented by compressed digital output signal DIGITAL COMP, compressed digital 1 0 output signal DIGITAL COMP may simply estimate the transition in accordance with its limited set of output codes. For example, if successive samples of uncompressed digital output signal DIGITAL_UN are 5 and 9, but digital compression circuit tO6A is only capable of outputting digital codes for compressed digital output signal DIGITAL COMP that represent a maximum of a change in magnitude of 2 for uncompressed digital output signal DIGITAL_UN, digital compression circuit 106A may simply output the digital code corresponding to an increase of 2 of the magnitude of uncompressed digital output signal DIGITAL_UN. In addition, digital compression circuit I 06A may output digital feedback signal DIGITALFB indicative of the magnitude of uncompressed digital output signal DIGITAL_UN represented by compressed digital output signal DIGITAL COMP, Thus, in the present example in which successive samples of uncompressed digital output signal DIGITAL_UN are 5 and 9 and digital compression circuit boA outputs the digital code corresponding to an increase of 2 of the magnitude of uncompressed digital output signal DIGITAL_UN, digital compression circuit 1 06A may output digital feedback signal DIGITAL_PB with a value of 7 (i.e., the previous sample for uncompressed digital output signal DIGITAL_UN of S plus the change in magnitude of 2 indicated by compressed digital output signal DIGITAL COMP), In some instances, the embodiments represented by FIGURE 4 may be preferred over the embodiments represented by FIGURE 1, as system 1 OOA may not require memory It2 nor error recovery circuit 114 as does system 100 of FIGURE t. In addition, system]OOA may be capable of operating with a fixed compression ratio under all input conditions with an acceptable amount of signal degradation.
This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend.
Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.
1 0 All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the disclosure and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions, Although embodiments of the present disclosure have been described in detail, it should be understood that various changes, substitutions, and alterations couM be made hereto without departing from the scope of the claims that follow.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462016881P | 2014-06-25 | 2014-06-25 | |
US14/745,795 US9626981B2 (en) | 2014-06-25 | 2015-06-22 | Systems and methods for compressing a digital signal |
Publications (3)
Publication Number | Publication Date |
---|---|
GB201511091D0 GB201511091D0 (en) | 2015-08-05 |
GB2530605A true GB2530605A (en) | 2016-03-30 |
GB2530605B GB2530605B (en) | 2018-10-24 |
Family
ID=53525281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB1511091.9A Active GB2530605B (en) | 2014-06-25 | 2015-06-24 | Systems and methods for compressing a digital signal |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2530605B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9419562B1 (en) | 2013-04-09 | 2016-08-16 | Cirrus Logic, Inc. | Systems and methods for minimizing noise in an amplifier |
US9626981B2 (en) | 2014-06-25 | 2017-04-18 | Cirrus Logic, Inc. | Systems and methods for compressing a digital signal |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0173983A2 (en) * | 1984-08-30 | 1986-03-12 | Fujitsu Limited | Differential coding circuit |
US20090295615A1 (en) * | 2008-05-28 | 2009-12-03 | Austriamicrosystems Ag | Sigma-Delta Converter and Signal Processing Method |
US20100057444A1 (en) * | 2008-07-26 | 2010-03-04 | Andrew Cilia | Method and system of extending battery life of a wireless microphone unit |
GB2508612A (en) * | 2012-12-04 | 2014-06-11 | Wolfson Microelectronics Plc | Interpretation circuit for a switch unit comprising a plurality of register blocks |
US20140301572A1 (en) * | 2013-04-09 | 2014-10-09 | Cirrus Logic, Inc. | Systems and methods for compressing a digital signal in a digital microphone system |
-
2015
- 2015-06-24 GB GB1511091.9A patent/GB2530605B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0173983A2 (en) * | 1984-08-30 | 1986-03-12 | Fujitsu Limited | Differential coding circuit |
US20090295615A1 (en) * | 2008-05-28 | 2009-12-03 | Austriamicrosystems Ag | Sigma-Delta Converter and Signal Processing Method |
US20100057444A1 (en) * | 2008-07-26 | 2010-03-04 | Andrew Cilia | Method and system of extending battery life of a wireless microphone unit |
GB2508612A (en) * | 2012-12-04 | 2014-06-11 | Wolfson Microelectronics Plc | Interpretation circuit for a switch unit comprising a plurality of register blocks |
US20140301572A1 (en) * | 2013-04-09 | 2014-10-09 | Cirrus Logic, Inc. | Systems and methods for compressing a digital signal in a digital microphone system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9419562B1 (en) | 2013-04-09 | 2016-08-16 | Cirrus Logic, Inc. | Systems and methods for minimizing noise in an amplifier |
US9571931B1 (en) | 2013-04-09 | 2017-02-14 | Cirrus Logic, Inc. | Systems and methods for reducing non-linearities of a microphone signal |
US10375475B2 (en) | 2013-04-09 | 2019-08-06 | Cirrus Logic, Inc. | Systems and methods for compressing a digital signal in a digital microphone system |
US9626981B2 (en) | 2014-06-25 | 2017-04-18 | Cirrus Logic, Inc. | Systems and methods for compressing a digital signal |
US10453465B2 (en) | 2014-06-25 | 2019-10-22 | Cirrus Logic, Inc. | Systems and methods for compressing a digital signal |
Also Published As
Publication number | Publication date |
---|---|
GB201511091D0 (en) | 2015-08-05 |
GB2530605B (en) | 2018-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10453465B2 (en) | Systems and methods for compressing a digital signal | |
US10375475B2 (en) | Systems and methods for compressing a digital signal in a digital microphone system | |
DK2211339T3 (en) | listening System | |
GB2530605A (en) | Systems and methods for compressing a digital signal | |
US20170180858A1 (en) | Digital correcting network for microelectromechanical systems microphone | |
US8378871B1 (en) | Data directed scrambling to improve signal-to-noise ratio | |
CN109889203A (en) | Semiconductor devices and its operating method | |
US20220101863A1 (en) | Analog-to-digital converter and method | |
WO2016179392A1 (en) | Interface apparatus and method in an acoustic microphone system | |
US20090021408A1 (en) | Adaptive dynamic range control | |
AU2018289986A1 (en) | Audio signal encoding and decoding | |
US9743182B2 (en) | Systems and methods of configuring a filter having at least two frequency response configurations | |
US10516942B2 (en) | Electronic circuit for a microphone and microphone | |
CN104796680A (en) | Audio or video signal processing system, method and electronic equipment | |
WO2003023970A2 (en) | Serial data interface with reduced power consumption | |
Suma | Performance Analysis of DPCM and ADPCM | |
US8560101B2 (en) | Audio signal processing apparatus and audio signal processing method | |
Sujatha et al. | Performance Improvements in Sub-Band Coding Using the Proposed ADM | |
JPH04167714A (en) | Prediction coding decoding system |