GB2499573A - Heat exchanger with pipe couplings joining tube elements - Google Patents

Heat exchanger with pipe couplings joining tube elements Download PDF

Info

Publication number
GB2499573A
GB2499573A GB1201671.3A GB201201671A GB2499573A GB 2499573 A GB2499573 A GB 2499573A GB 201201671 A GB201201671 A GB 201201671A GB 2499573 A GB2499573 A GB 2499573A
Authority
GB
United Kingdom
Prior art keywords
body part
elements
coupling
fin
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1201671.3A
Other versions
GB201201671D0 (en
GB2499573B (en
Inventor
Michael Alan Burns
Paul Andrew Burns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clean Thermodynamic Energy Conversion Ltd
Original Assignee
Clean Thermodynamic Energy Conversion Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clean Thermodynamic Energy Conversion Ltd filed Critical Clean Thermodynamic Energy Conversion Ltd
Priority to GB1201671.3A priority Critical patent/GB2499573B/en
Publication of GB201201671D0 publication Critical patent/GB201201671D0/en
Priority to EP13721979.6A priority patent/EP2847514B1/en
Priority to EP13724306.9A priority patent/EP2872827B1/en
Priority to EP21196725.2A priority patent/EP3961094A1/en
Priority to PCT/GB2013/000040 priority patent/WO2013114071A2/en
Priority to PCT/GB2013/000039 priority patent/WO2013114070A2/en
Priority to EP22199816.4A priority patent/EP4148324A2/en
Publication of GB2499573A publication Critical patent/GB2499573A/en
Priority to US14/447,748 priority patent/US10845131B2/en
Priority to US14/447,730 priority patent/US9952003B2/en
Application granted granted Critical
Publication of GB2499573B publication Critical patent/GB2499573B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers
    • F22B27/04Instantaneous or flash steam boilers built-up from water tubes
    • F22B27/06Instantaneous or flash steam boilers built-up from water tubes bent in serpentine or sinuous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/101Tubes having fins or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • F28F2009/004Common frame elements for multiple cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/224Longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/02Removable elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • F28F9/268Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators by permanent joints, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger assembly has elongate tube elements which extend in spaced relation, and a plurality of pipe end couplings 103 which fluidly connect open ends of respective tube elements, wherein the pipe end couplings each comprise a main body part 105 to which the open ends of the respective tube elements (97, fig 8) are fixed, and an enclosure part 107 which is fixed to the main body part 105 and provides a closed fluid connection between the open ends of the respective tube elements; and a plurality of fins (87, fig 7e) which extend in spaced relation and substantially orthogonally to the tube elements. A manufacturing method involves locating fin coupling elements (175, fig 12a) over open ends of tube couplings.

Description

_ 1 -
STEAM GENERATION
The present invention relates to a steam generator which generates superheated fluid from a stream of heated gas, and a power generation system which incorporates such a steam generator to generate power, typically electricity using an electrical generator.
The present invention has particular application to any kind of burner, such as a biomass burner, or any kind of combustion engine, such as a landfill anaerobic digestion gas engine, a methane burning engine, a diesel engine, a marine engine and coal gas engine.
Preferred embodiments of the present invention will now be described hereinbelow by way of example only with reference to the accompanying drawings, in which;
Figures 1(a) to (c) schematically represent a power generation system in accordance with a preferred embodiment of the present invention;
Figures 2 and 3 illustrate part cut-away perspective views of the steam generator of the power generation system of Figure 1;
Figures 4(a) to (j) illustrate views of the housing of the steam generator of the power generation system of Figure 1;
Figures 5(a) to (g) illustrate views of the steam generation module of the steam generator of the power generation system of Figure 1;
Figures 6(a) to (e) illustrate views of the heat exchanger arrangement of the steam generation module of Figure 5;
Figures 7(a) to (f) illustrate views of one heat exchanger module of the heat exchanger arrangement of Figure 6;
„ 2 -
Figures 8(a) to (c) illustrate one U-shaped tube section of the heat exchanger module of Figure 7;
Figures 9(a) to (d) illustrate one pipe end coupling of the heat exchanger module of Figure 7;
Figures 10(a) and (b) illustrate a test tool in accordance with one embodiment of the present invention;
Fig ure 11 illustrates a perspective view of the sheet element of one fin of the heat exchanger module of Figure 7;
Figures 12(a) to (d) illustrate views of the fin coupling element of one fin of the heat exchanger module of Figure 7;
Figure 13 illustrates a fragmentary, part cut-away perspective view of a plurality of stacked fins of the heat exchanger module of Figure 7 at the junction with one tube element;
Figures 14(a) to (f) illustrate views of the superheater unit of the steam generation module of Fig ure 5;
Fig ures 15(a) to (c) illustrate views of one superheater coil of the superheater unit of Figure 14.
The power generation system comprises a steam generation unit 1 for generating a superheated fluid, in this embodiment superheated steam, from a working fluid, in this embodiment pure, de-mineralised water, at least one, in this embodiment a plurality of steam engines 3a-c which receive the superheated steam from the steam generation unit 1, and at least one, in this embodiment a plurality of power generators 5a~c which are
- 3 -
driven by the respective steam engines 3 to generate power, in this embodiment electricity, which can be supplied to the electrical grid.
The steam generation unit 1 comprises a steam generator 11 which receives a stream of heated gas, typically an exhaust gas from a combustion engine, and generates a superheated fluid, in this embodiment superheated steam.
In this embodiment the stream of heated gas has a temperature of from about 425 °C to about 650 °C,
In this embodiment the combustion engine is a landfill anaerobic digestion engine or a diesel engine, typically having a power output in the range of from about 0.2 MW to about 3.2 MW,
The steam generation unit 1 further comprises a buffer tank 15 for storing a supply of the working fluid, in this embodiment water, and a pump unit 17 for delivering the water from the tank 15 to the steam generator 11 at a required flow rate and/or pressure.
The steam generation unit 1 further comprises a condenser 21 which receives used steam from the steam engine 3, condenses the used steam to a saturated liquid, in this embodiment water, and delivers the same to the tank 15.
With this configuration, the steam generator 11, the steam engine 3, the condenser 21 and the tank 15 define a circulatory loop through which the working fluid is circulated, in being converted from a saturated liquid, here water, to a superheated fluid, here superheated steam, and back to a saturated liquid.
In this embodiment the steam generation unit 11 further comprises a bypass valve unit 23, here comprising first and second valves 25a, b, which can be selectively operated between a first, bv-pass mode, as illustrated in
. 4 -
Figure 1(b), in which the exhaust gas by-passes the steam generation unit 11 and passes directly through a muffler 27, and a second, operative mode, as illustrated In Figure 1(c), in which the exhaust gas is delivered through the steam generation unit 11 prior to the muffler 27,
The steam generator 11 comprises a housing 31, which defines a gas flow path 33 and has an inlet 35 at one, upstream end thereof Into which a stream of heated gas is delivered and an outlet 37 at the other, downstream end thereof through which the stream of heated gas exits, and a steam generation module 39 which disposed within the gas flow path 33 of the housing 31.
In this embodiment the housing 31 comprises a main housing part 41 and first and second end housing parts 43, 44,
In this embodiment the housing 31 is formed of stainless steel, here having a thickness of 2 mm.
In this embodiment the main housing part 41 has a rectangular internal cross-section.
In this embodiment one of the end housing parts 43 is fixed, here by welding, to the main housing part 41, and the other of the end housing parts 44 is removable from the main housing part 41, in this embodiment by a flange coupling 45, here a bolted flange coupling.
In this embodiment the removable end housing part 44 is at the upstream end of the housing 31, and removal of that end housing part 44 allows for the steam generation module 39 to be loaded into or unloaded from the housing 31.
- 5 -
In this embodiment the main housing part 41 provides a main flow path F1 through a centra! region thereof, and first and second ancillary flow paths F2 to the respective outer, lateral sides of the steam generation module 39,
In this embodiment the ancillary flow paths F2 receive less than 10% of the gas flow through the housing 31,
In one embodiment the ancillary flow paths F2 receive less than 5% of the gas flow through the housing 31.
In this embodiment the housing 31 includes a support 46 for supporting the steam generation module 39, which is disposed within the main housing part 41 and allows for the steam generation module 39 to be slideably introduced into or withdrawn from the main housing part 41 on removal of the removable end housing part 44,
In this embodiment the support 46 provides rails 47, here first and second rails 47a, b at the respective outer edges thereof, along which the steam generation module 39 is slideable.
In this embodiment the support 46 includes a locator fixture 51, here disposed at one, downstream end of the support 46, for locating one, downstream end of the steam generation module 39, and a locking fixture 53, here disposed at the other, upstream end of the support 46, for locking the steam generation module 39 to the support 46 in a manner which allows for expansion of the steam generation module 39, as will be described in more detail hereinbelow.
In this embodiment the locator fixture 51 comprises first and second locating elements 55a, b, here including locating apertures 56, which are disposed at the downstream ends of the rails 47a, b.
- 6 -
In this embodiment the iocking fixture 53 comprises first and second locking elements 57a, b, here including locking apertures 58, which are disposed at the upstream ends of the rails 47a, b,
The steam generation module 39 comprises a pre-heater unit 61 which is operative to raise the temperature of a received working fluid, here water, as a saturated liquid, typically having a temperature of about 70 °C, to a temperature of from about 100 °C to about 120 °C, and optionally to a temperature of from about 100 °C to about 110 °C,
The pre-heater unit 61 comprises at least one pre-heater circuit 63, in this embodiment a plurality of pre-heater circuits 63a-c, which each comprise pre-heating pipework 65, and each has an input fluidly connected to the tank 15 and an output from which the working fluid of raised temperature is delivered,
In this embodiment the pipework 65 of the pre-heater circuits 63a-c extend within and along a lateral side of the main housing part 41, here from one, upstream end of the main housing part 41 to the other, downstream end of the main housing part 41, such as to be heated by one of the ancillary gas flows F2,
In this embodiment the pre-heating pipework 65 is formed of stainless steel tube having an external diameter of 12,7 mm and a 16 swg wall thickness,
The steam generation module 11 further comprises at least one, in this embodiment first and second heat exchanger units 71a, b which are located In series upstream of the pre-heater unit 61, and are operative to raise the temperature of the working fluid as received from the pre-heater unit 61 to a temperature of about 260 °C, thereby providing the working fluid as saturated steam.
- 7 -
The heat exchanger units 71a, b each comprise at least one heat exchanger circuit 73, in this embodiment a plurality of heat exchanger circuits 73a-c, which each have an input fluidly connected to a respective one of the pre-heater circuits 63a-c of the pre-heater unit 61 and an output from which the working fluid, as saturated steam, is delivered.
In this embodiment the heat exchanger units 71a, b each comprise at least one heat exchanger assembly 75, in this embodiment a plurality of heat exchanger assemblies 75a-c, which each provide a respective one of the heat exchanger circuits 73a-c and are stacked to provide the respective heat exchanger unit 71a, b.
With this configuration, the heat exchanger assemblies 75a-c of the first and second heat exchanger units 71a, b define an nxm array, here a 2x3 array.
In this embodiment the heat exchanger assemblies 75a-c each have a power output of at least 30 kW, optionally at least 40 kW, with each heat exchanger circuit 73a-c having a power output of at least 60 kW, optionally at least 80 kW, and together provide a total power output at least 180 kW, optionally at least 240 kW.
In this embodiment the heat exchanger assemblies 75a-c each comprise first and second support elements 77a, b which are disposed in spaced relation and define a width of the heat exchanger unit 71a, b.
In this embodiment the support elements 77a, b of the heat exchanger assemblies 75a-c are formed from stainless steel sheet having a thickness of 6 mm,
In this embodiment the support elements 77a, b of the heat exchanger assemblies 75a-c are interconnected by sliding couplings, which allow relative movement of the heat exchanger assemblies 75a-c, thus accommodating relative expansion thereof.
- 8 -
In this embodiment the support elements 77a, b of one, the lowermost, of the heat exchanger assemblies 75a-c each include a rail guide 79 at the lower edge thereof, which overlies a respective one of the rails 47a, b of the support 46 of the housing 31, such as to provide for sliding engagement with the rails 47a, b.
In this embodiment the heat exchanger assemblies 75a-c each comprise heat exchanger pipework 85 which extends between the support elements 77a, b of the heat exchanger assemblies 75a-c, and a plurality of fins 87 which extend in spaced, parallel relation to the support elements 77a, b of the heat exchanger assemblies 75a-c, For purposes of illustration, only some of the fins 87 are illustrated in certain of the views.
In this embodiment the heat exchanger pipework 85 comprises a plurality of bent, U-shaped tube sections 91, which each provide two spaced, parallel elongate tube elements 93, one ends 95 of which are continuously fluidly connected by a 180 degree radiused bend 96, and the other ends 97 of which are open and in spaced relation.
In this embodiment, as illustrated in Figure 7(d), the tube sections 91 comprise first tube sections 91a, which are arranged as a plurality of rows 92a-f, such that the flow of the working fluid is along the rows 92a-f in series, and second, cross-over tube sections 91b, which provide for a crossover transfer flow between the respective rows 92a-f.
In this embodiment the tube elements 93 of the first tube sections 91a have a closer spacing than the tube elements 93 of the second tube sections 91b.
In this embodiment the rows 92a-f are arranged as vertical rows in spaced relation along a length of the heat exchanger assembly 75a-c, such that the flow is through each row 92a-f, here vertically upwards or downwards, with
- 9 -
the flow passing laterally across the heat exchanger assembly 75a-c in alternate directions.
In this embodiment the other, open ends 97 of the tube sections 91 extend to a generally common plane, and the open ends 97 of the tube elements 93 of adjacent tube sections 91 have a common spacing, which allows for fluid connection of the open ends 97 by a single size of tube end coupling 103, as will be described in more detail hereinbelow,
In this embodiment the tube sections 91 are formed of stainless steel tube having an external diameter of 12.7 mm and a 16 swg wall thickness.
In this embodiment the open ends 97 of the tube elements 93 each include an outwardly-inclined internal chamfer 101, here of 45 degrees.
In this embodiment the heat exchanger pipework 85 further comprises a plurality of tube end couplings 103 which fluidly connect the open end 97 of one tube element 93 from each of two adjacent tube sections 91.
With this configuration, the tube sections 91 and the pipe end couplings 103 provide a single, continuous flow path which extends in alternate directions across a width of the heat exchanger assembly 75a-c, and thus the gas flow passage 33 of the housing 31.
In this embodiment the pipe end couplings 103 each comprise a main body part 105 to which the open ends 97 of the adjacent tube sections 91 are fixed, and an enclosure part 107 which is fixed to the main body part 105 and provides a closed fluid connection between the respective open ends 97 of the adjacent tube sections 91.
In this embodiment the main body part 105 comprises a body 111, which includes a flange 115 which encloses a surface 117, and first and second
- 10 -
bores 119, 121 which extend to the surface 117, such as to provide fluid communication thereto.
In this embodiment the flange 115 defines an annular seat 123 to which the enclosure part 107 is fixed, and an upstand 125 which extends around the seat 123 and includes an inwardly-inclined internal chamfer 127, here of about 45 degrees.
As will be described in more detail hereinbelow, this configuration allows the enclosure part 107 to be located on the seat 123, and the enclosure part 107 to be fixed to the main body part 105, in this embodiment by providing an annular weld at the junction of the internal chamfer 127,
In this embodiment the main body part 105 includes at least one clamping fixture 129 for engagement by a testing tool 151, as will be described in more detail hereinbelow, here first and second clamping fixtures 129a, b, which are each configured to engage a clamping fixture 164 on the testing tool 151,
In this embodiment the clamping fixtures 129a, b each comprise first and second pairs of detents 130, here lugs, which are disposed to opposite sides of the respective through bores 191, 121.
In this embodiment the through bores 119, 121 each include at least one, here a plurality of grooves 131, into which the open end 97 of a respective one of the tube elements 93 of the adjacent tube sections 91 is expanded, here by swaging.
In this embodiment the through bores 119, 121 each terminate at an upstand 135 which projects from the surface 117 and to which the open end 97 of a respective one of the tube elements 93 of the adjacent tube sections 91 is fixed, here by an annular weld.
- 11 -
In this embodiment the upstand 135 includes an inwardly-inclined internal chamfer 137, here of 45 degrees, which, together with the outwardly-inclined externa! chamfer 101 on the open end 97 of the respective tube element 93, defines a channel for receiving the weld.
In this embodiment the enclosure part 107 includes an internal cavity 141 which defines an arcuate surface having first and second bend radii 143, which are disposed opposite the through bores 119, 121 in the main body part 105, thereby defining a 180 degree radiused bend between the through bores 119, 121.
In this embodiment the enclosure part 107 includes a flange 145 which extends around the internal cavity 141.
In this embodiment the flange 145 defines an annular seat 147 which corresponds to the annular seat 123 as defined by the flange 115 of the main body part 105, and includes an outwardly-inclined external chamfer 149, here of about 45 degrees.
With this configuration, the enclosure part 107 can be fixed to the main body part 105 by providing an annular weld at the junction of the interna! chamfer 127 of the main body part 105 and the externa! chamfer 149 of the enclosure part 107.
In this embodiment the main body part 105 and the enclosure part 107 are formed of stainless steel.
In this embodiment the main body part 105 and the enclosure part 107 are fabricated by casting, here investment casting, but other fabrication methods could be employed.
Figures 10(a) and (b) illustrate a testing tool 151 in accordance with one embodiment of the present Invention for pressure testing the fixing of the
- 12 -
tube elements 93 to the through bores 119, 121 of the main body parts 105 of the tube end couplings 103.
The testing tool 151 comprises a test body 153, which includes a chamber 155, which, when the testing tool 151 is fitted to the main body part 105 of one tube end coupling 103, is fluidly connected to one through bore 119, 121 of the main body part 105 under test.
In this embodiment the test body 153 includes a first, coupling port 156, here a circular aperture, and a sealing element 157, here an annular seal, which surrounds the coupling port 156, such as to provide for sealing engagement between the chamber 155 and the main body part 105 under test,
In this embodiment the coupling port 156 is shaped and sized to fit over the upstand 135 of one of the through bores 119, 121 of the main body part 105, with the sealing element 157 engaging the surface 117 of the main body part 105,
In this embodiment the test body 153 further includes a pressure connection port 159 which is fluidly connected to the chamber 155 and allows for connection of one or both of a pressure source 160 for delivery of a pressure to the chamber 155 or a pressure detector 161 for detection of a pressure at the chamber 155,
The testing tool 151 further comprises a clamping arrangement 162 for clamping the test body 153 to the main body part 105 under test.
In this embodiment the clamping arrangement 162 comprises a clamp body
163 to which the test body 153 is movably disposed, and a clamping fixture
164 for clamping the clamp body 163, and the test body 153 which is supported thereby, to the main body part 105 under test, here by engagement with one clamping fixture 129a, b on the main body part 105,
- 13 -
In this embodiment the damping fixture includes a pair of clamping arms 165af b, which are configured to engage a respective pair of clamping fixtures 129a, b on the main body part 105.
In this embodiment the clamping arms 165a, b are movably disposed to the clamp body 163, here plvotaily coupled, and each include a detent 166, here a lug, at one end thereof for engagement with the counterpart detent 130 of the clamping fixture 129a, b of the main body part 105.
In this embodiment the clamping arrangement 162 further comprises a biasing mechanism 167 for biasing the test body 153 relative to the clamp body 163, such as to fix the test body 153 in sealing engagement with the respective through bore 119, 121, here by sealing engagement with the surface 117 of the main body part 105.
In this embodiment the biasing mechanism 167 comprises a drive member 168 which is axially dispiaceable relative to the clamp body 163, here by a threaded coupling 169 with the clamp body 163, such that rotation of the drive member 168 causes axial displacement of the test body 153. In other embodiments the drive member 168 could be operated by an electrically-operated actuator.
The testing tool 151 further comprises a pressure source 160 which is fluidly connected to the pressure connection 159 of the test body 153, and a pressure detector 161 for providing an indication of the acceptability of the fixing of the tube elements 93 to the through bores 119, 121 of the main body part 105 under test.
With this configuration of the main body part 105 of the tube end coupling 103, and, through use of the testing too! 151, the acceptability of the fixing of each main body part 105 can be assured before completing the tube end
- 14 -
coupling 103 by fixing, here welding, the enclosure part 107 to the respective main body part 105,
Referring particularly to Figures 11 to 13, in this embodiment the fins 87 each comprise a single, continuous sheet element 171, which includes a plurality of apertures 173 through which extend respective ones of the tube elements 93 of the tube sections 91 of the respective heat exchanger assembly 75a-c, and a plurality of fin coupling elements 175 which are located within each aperture 173 to interface the tube elements 93 of the tube sections 91 to the sheet elements 171, as will be described further hereinbelow,
By forming the fins 87 from a single, continuous sheet element 171, a uniform temperature distribution can be promoted over the length of the heat exchanger assembly 75a-c, in the sense of the flow direction of the heated gas flow through the housing 31.
In this embodiment the sheet element 171 is formed from stainless steel sheet having a thickness of 1 mm,
In this embodiment the apertures 173 each include a locator 177, here a cut-out, which acts to locate the rotational position of the respective fin coupling element 175 within the aperture 173.
In this embodiment the fin coupling elements 175 each comprise a body part 181 which is thermally connected to the sheet element 171 and includes an aperture 183 through which extends a respective one of the tube elements 93, and a flange 185 which extends from the body part 181 and around the aperture 183 therein and through the respective aperture 173 in the sheet element 171, and is thermally connected to the respective tube element 93.
- 15 -
In this embodiment the flange 185 comprises a tubular section, here having a length of at least 3 mm, which is a close fit to the outer diameter of the tube elements 93 of the tube sections 91.
By utilizing fin coupling elements 175 of the kind as described, fitting of the sheet elements 171 to the tube elements 93 of the tube sections 91 is facilitated, as the apertures 173 in the sheet elements 171 can be made greater than the outer diameter of the tube elements 93, which allows for relatively-free movement of the sheet elements 171 over the array of tube elements 93 to the required positions along the axial length of the tube elements 93, with fitting of the fin coupling elements 175 to a respective sheet element 171 only being required when the sheet element 171 is in the required axial position.
In addition, with this configuration, the flange 185, which is a close fit to the respective tube element 93, can have an extended length, which promotes thermal transfer between the tube element 93 and the sheet element 171.
In this embodiment the body part 181 has the form of a flat, annular part, in the manner of a thin washer, and the flange 185 extends in one direction orthogonally thereto,
In this embodiment the fin coupling elements 175 each further comprise at least one, here a plurality of projections 191 which extend in an opposite direction to the flange 185,
In this embodiment the projections 191 each comprise an upstand which extends in an opposite direction to the flange 185, and act to support the adjacent sheet element 171, as will be described in more detail hereinbelow.
With this configuration, the spacing d of the sheet elements 171 is set by the length of the projections 191, thus allowing the spacing d of the sheet elements 171 to be precisely controlled.
- 16 -
In this embodiment the projections 191 extend from an outer peripheral edge of the body part 181, which is spaced radially from the flange 185.
In this embodiment the projections 191 are located to one, rear side of the fin coupling element 175, in the sense of the gas flow direction through the housing 31, and present a forwardly-facing surface 193 which acts to disrupt the gas flow to the rear side of the respective tube element 93, here by causing a vortical flow, which is such as to promote heat transfer between the gas flow and the respective tube element 93.
In this embodiment the fin coupling element 175 includes a locator 195, here a lug, which is configured to locate with the locator 177 in the respective aperture 173 in the sheet element 171 of the fin 87, thereby locating the rotational position of the respective fin coupling element 175 within the aperture 173, and ensuring that the projections 191 on the fin coupling element 175 are located in the required orient relative to the tube element 93 as to promote heat transfer.
In one embodiment the fin coupling element 175 could be coated at least partially with a brazing material, which allows for brazing of the fin coupling elements 175 to the tube elements 93 and the sheet element 171, thus avoid brazing material having to be provided separately where the fixing of the coupling elements 175 is by brazing.
In one embodiment the fin coupling elements 175 are formed of stainless steel and coated with brazing material, in one embodiment with a thickness of less than 0.5 mm, optionally less than 0.3 mm, optionally less than 0.2 mm. In one embodiment the coating has a thickness of about 0.1 mm.
In one embodiment the coating of brazing material is of pure, oxygen-free copper.
- 17 -
In this embodiment the heat exchanger assemblies 75a-c are manufactured as follows.
In a first step, one support element 77a is located in a jig,
In a second step, the tube sections 91 are in turn located in the jig and arranged such that the tube elements 93 thereof extend in a required pattern through the apertures in the one support element 77a, and such that the bends 96 of the tube sections 91 are located outwardly, here downwardly, of the one support element 77a, with the elongate tube elements 93 of the tube sections 91 extending in parallel relation upwardly from the one support element 77a.
In a third step, a fin coupling element 175 is located over each of the tube elements 93. This fin coupling element 175 acts as a spacer to space the first sheet element 171 from the one support element 77a.
In a fourth step, a ring of brazing material, which has an internal diameter corresponding to the outer diameter of the tube elements 93, is located over each of the tube elements 93 so as to be positioned at the aperture 183 in the body part 181 of the fin coupling element 175, In this embodiment the ring of brazing material is formed of pure, oxygen-free copper.
In a fifth step, a ring of brazing material, which has an internal diameter corresponding to the outer diameter of the body part 181 of the fin coupling element 175, is located over each of the fin coupling elements 175 so as to be positioned at the junction of the body part 181 of the fin coupling element 175 and the sheet element 171. In this embodiment the ring of brazing material is formed of pure, oxygen-free copper.
In a sixth step, a sheet element 171 is located over the tube elements 93, by passing the tube elements 93 through the respective apertures 173 in the sheet element 171. As the apertures 173 in the sheet element 171 have a
18 -
greater diameter than the outer diameter of the tube elements 93, the sheet element 171 can be fitted relatively easily over the tube elements 93.
In a seventh step, a fin coupling element 175 is located over each of the tube elements 93, and the flange 185 of the fin coupling element 175 is located in the respective aperture 173 in the sheet element 171, with the locator 195 of the fin coupling element 175 being located in the locator 177 of the respective aperture 173 in the sheet element 171.
In an eighth step, a ring of brazing material, which has an internal diameter corresponding to the outer diameter of the tube elements 93, is located over each of the tube elements 93 so as to be positioned at the aperture 183 in the body part 181 of the fin coupling element 175, In this embodiment the ring of brazing material is formed of pure, oxygen-free copper.
In a ninth step, a ring of brazing material, which has an internal diameter corresponding to the outer diameter of the body part 181 of the fin coupling element 175, is located over each of the fin coupling elements 175 so as to be positioned at the junction of the body part 181 of the fin coupling element 175 and the sheet element 171. In this embodiment the ring of brazing material is formed of pure, oxygen-free copper.
The sixth to ninth steps are then repeated to build up a stack of fins 87 along the length of the tube elements 93.
In a tenth step, the other support element 77b is located over the tube elements 93, by passing the tube elements 93 through the respective apertures in the other support element 77b.
In an eleventh step, this core assembly is vacuum brazed, which provides a very strong rigid matrix, with each of the tube elements 93 being fixed to each of the sheet elements 171, and the sheet elements 171 having a predefined spacing d.
- 19 -
In a twelfth step, the pipe end couplings 103 are attached to the open ends 97 of the tube elements 93 of respective pairs of adjacent tube sections 91.
In this embodiment each pipe end coupling 103 is attached as follows.
In a first sub-step, the main body part 105 of each pipe end coupling 103 is located over the open ends 97 of the tube elements 93 of adjacent tube sections 91, such that the open ends 97 of the tube elements 93 extend into the through bores 119, 121 in the main body part 105, and the open ends 97 of the tube elements 93 are expanded, in this embodiment by from about 4% to about 5%, such as to engage the grooves 131 in the respective through bores 119, 121.
In a second sub-step, the open ends 97 of the expanded tube elements 93 are each fixed to the respective upstands 135 of the through bores 119, 121, here by providing a weld in the channel defined by the external chamfer 101 on the open end 97 of the tube element 93 and the internal chamfer 137 in the upstand 135 of the respective through bore 119, 121.
In a third sub-step, the tube elements 93 are further expanded, in this embodiment by from about 4% to about 5%, such as further to engage the grooves 131 in the respective through bores 119, 121,
In a fourth sub-step, the effectiveness of the coupling of the tube elements 93 to the main body part 105 is tested using the testing tool 151, in the manner as described above.
In a fifth sub-step, where an effective coupling of the tube elements 93 to the main body past 105 is determined, the enclosure part 107 of the pipe end coupling 103 is fixed to the main body part 105, in this embodiment by providing an annular weld at the junction of the internal chamfer 127 of the main body part 105 and the external chamfer 149 of the enclosure part 107.
- 20 -
As discussed hereinabove, in one alternative embodiment, the fourth, fifth, eighth and ninth steps can be omitted where the fin coupling elements 175 are pre-coated with brazing material.
The steam generation module 11 further comprises a superheater unit 201 which is located at an upstream end thereof and upstream of the at least one heat exchanger unit 71a, b, and is operative further to raise the temperature of the received working fluid, in this embodiment saturated steam, to a temperature of from about 300 °C to about 400 °C, preferably at a temperature of about 350 °C, and with a pressure of up to 60 bar, thereby providing superheated fluid.
The superheater unit 201 comprises at least one superheater circuit 203, in this embodiment a plurality of superheater circuits 203a~c, which each comprise superheater pipework 205, and each has an input fluidly connected to the output of a respective one of the heat exchanger circuits 75a-c and an output from which a superheated fluid, in this embodiment superheated steam, is delivered.
In this embodiment the superheater pipework 205 comprises a plurality of coils 206, which accommodate longitudinal and lateral expansion.
In this embodiment, as illustrated in Figures 15(a) to (c), the superheater coils 206 comprise a coil element 207, here a helically-wound coil, having an inlet 208 and an outlet 209, which are located on the longitudinal axis thereof.
In this embodiment the coil element 207 is wound about the longitudinal axis.
With this symmetric configuration, the spring force caused by expansion of the coil 206 is uniform.
- 21 -
In this embodiment the colls 206 comprise slip couplings 210, here in the form of sleeves, which shroud the inlet 208 and the outlet 209 of the coil element 207, such as to protect the coil element 207 from frictlonal engagement with support elements 211a, b.
In this embodiment the superheater unit 201 comprises first and second support elements 211a, b which support the superheater pipework 205 of the superheater circuits 203a-c and are disposed in spaced relation and define a width of the superheater unit 201,
In this embodiment the support elements 211a, b each include a rail guide 215 at the lower edge thereof, which overlies a respective one of the rails 47a, b of the support 46 of the housing 31, such as to provide for sliding engagement with the rails 47a, b,
In this embodiment the support elements 211a, b of the superheater unit 201 are formed from stainless steel sheet having a thickness of 6 mm.
In this embodiment the support elements 211a, b of the superheater unit 201 have the same spacing as the support elements 77a, b of the heat exchanger assemblies 75a-c of the at least one heat exchanger unit 71a, b,
In this embodiment, as illustrated in Figures 14(a) to (f), the coils 206 of the superheater circuits 203a-c extend in spaced, parallel relation between the support elements 211a, b.
In this embodiment the superheater pipework 205 is formed of stainless steel tube having an external diameter of 19.05 mm and a wall thickness of 1.65 mm.
In this embodiment the steam generation module 11 further comprises a pressure-relief valve (not illustrated) which provides for venting of the
- 22 -
steam generation module 11 in the event of the system pressure exceeding a predetermined threshold, here 65 bar. In this embodiment the pressure relief valve is located downstream of the superheater unit 201.
Finally, it will be understood that the present invention has been described in its preferred embodiments and can be modified in many different ways without departing from the scope of the Invention as defined by the appended claims.
- 23 -

Claims (1)

1. A heat exchanger assembly, comprising;
heat exchanger pipework which comprises a plurality of elongate tube elements which extend in spaced relation, and a plurality of pipe end couplings which fluidly connect open ends of respective tube elements, wherein the pipe end couplings each comprise a main body part to which the open ends of the respective tube elements are fixed, and an enclosure part which is fixed to the main body part and provides a closed fluid connection between the open ends of the respective tube elements; and a plurality of fins which extend in spaced relation and substantially orthogonally to the tube elements.
2. The assembly of claim 1, wherein the tube elements and the pipe end couplings together provide a single continuous flow path which extends in alternate directions across a width of the heat exchanger assembly.
3. The assembly of claim 1 or 2, wherein the heat exchanger pipework comprises a plurality of U-shaped tube sections, which each provide two spaced elongate tube elements, one ends of which are fluidly connected by a 180 degree bend and the other ends of which are open and in spaced relation.
4. The assembly of any of claims 1 to 3, wherein the main body part comprises a body, which includes a flange which encloses a surface, and first and second bores which extend to the surface and provide fluid communication thereto.
5. The assembly of claim 4, wherein the flange defines an annular seat to which the enclosure part is fixed.
- 24 -
6. The assembly of claim 5, wherein the flange defines an upstand, which extends around the seat, to which the enclosure part is fixed by an annular weld.
7. The assembly of claim 6, wherein the upstand includes an inwardly-inclined interna! chamfer for receiving the weld.
8. The assembly of any of claims 4 to 7, wherein the bores each Include at least one groove, optionally a plurality of grooves, into which the open end of a respective one of the tube elements is expanded.
9. The assembly of any of claims 4 to 8, wherein the bores each terminate at an upstand which projects from the surface and to which the open end of the respective one of the tube elements is fixed by an annular weld.
10. The assembly of claim 9, wherein the upstand includes an inwardly-inclined internal chamfer, the open end of the respective tube element includes an outwardly-inclined annular chamfer, and the chamfers together define a channel for receiving the weld.
11. The assembly of any of claims 4 to 10, wherein the enclosure part includes an interna! cavity which defines an arcuate surface having first and second bend radii, which are disposed opposite the bores in the main body part, thereby defining a 180 degree bend between the through bores.
12. The assembly of claim 11, wherein the enclosure part includes a flange, which extends around the internal cavity, to which the main body part is fixed by an annular weld.
13. The assembly of claim 12, wherein the flange of the enclosure part defines an outwardly-inclined external chamfer for receiving the weld.
- 25 -
14, The assembly of claim 12 or 13, wherein the flange defines an annular seat, which corresponds to an annular seat as defined by the flange of the main body part,
15, The assembly of any of claims 1 to 14, wherein the main body part and the enclosure part are formed of stainless steel,
16, The assembly of claim 15, wherein the main body part and the enclosure part are fabricated by casting,
17, The assembly of any of claims 1 to 16, wherein the fins each comprise a sheet element, optionally a single, continuous sheet element, which includes a plurality of apertures through which extend respective ones of the tube elements.
18, The assembly of claim 17, wherein the sheet element has a thickness of at least about 1 mm,
19, The assembly of claim 17 or 18, wherein the sheet elements are spaced by a spacing of at least about 2 mm, optionally at least about 3 mm.
20, The assembly of any of claims 17 to 19, wherein the fin apertures in the sheet element each include a locator element, optionally a cutout.
21, The assembly of any of claims 17 to 20, wherein the fins each further comprise a plurality of fin coupling elements which are located within respective ones of the fin apertures to interface the tube elements to the sheet elements.
- 26 -
22. The assembly of claim 21, wherein the fin coupling elements each comprise a body part which is thermally connected to the sheet element and includes an aperture through which extends a respective one of the tube elements, and a flange which extends from the fin body part around the aperture therein and through the respective fin aperture in the sheet element and is thermally connected to the respective tube element.
23. The assembly of claim 22, wherein the flange comprises a tubular section which is a close fit to the outer dimension of the tube elements.
24. The assembly of claim 23, wherein the flange has a length of at least 3 mm.
25. The assembly of any of claims 22 to 24, wherein the fin body part has the form of a flat, annular part.
26. The assembly of any of claims 22 to 24, wherein the fin coupling elements each further comprise at least one projection, optionally a plurality of projections.
27. The assembly of claim 26, wherein the at least one projection is disposed radially outwardly of the flange.
28. The assembly of claim 27, wherein the at least one projection extends from an outer peripheral edge of the body part.
29. The assembly of any of claims 26 to 28, wherein the flange and the at least one projection extend in opposite directions,
30. The assembly of claim 29, wherein the at least one projection has a length which acts to space the adjacent sheet element.
- 27 -
31. The assembly of any of claims 26 to 30, wherein the fin coupling elements each comprise a plurality of projections, which are located to one, rear side of the fin coupling element In a gas flow direction through the heat exchanger assembly, and present a forwardly-facing surface which acts to disrupt a gas flow to a rear side of the respective tube element.
32. The assembly of any of claims 22 to 31, wherein the fin coupling elements each include a locator, optionally a lug, which is configured to locate with a locator in a respective aperture of the sheet element, thereby locating the rotational position of the respective fin coupling element.
33. The assembly of any of claims 1 to 32, further comprising:
first and second support elements which are disposed in spaced relation at respective ends of the tube elements and define a width of the heat exchanger assembly.
34. A pipe end coupling for fluidly connecting open ends of tube elements, the pipe end coupling comprising:
a main body part to which open ends of tube elements are fixed, wherein the main body part comprises a body, which includes a flange which encloses a surface, and first and second bores which extend to the surface and provide fluid communication thereto and to which the open ends of the tube elements are fixed; and an enclosure part which is fixed to the main body part and provides a closed fluid connection between the open ends of the tube elements.
35. The coupling of claim 34, wherein the flange defines an annular seat to which the enclosure part is fixed.
- 28 -
36. The coupling of claim 35, wherein the flange defines an upstand, which extends around the seat, to which the enclosure part is fixed by an annular weld,
37. The coupling of claim 36, wherein the upstand includes an inwardly-inclined internal chamfer for receiving the weld,
38. The coupling of any of claims 34 to 37, wherein the bores each include at least one groove, optionally a plurality of grooves, into which the open end of a respective one of the tube elements is expanded.
39. The coupling of any of claims 34 to 38, wherein the bores each terminate at an upstand which projects from the surface and to which the open end of the respective one of the tube elements is fixed by an annular weld,
40. The coupling of claim 39, wherein the upstand includes an inwardly-inclined internal chamfer, the open end of the respective tube element includes an outwardly-inclined annular chamfer, and the chamfers together define a channel for receiving the weld.
41. The coupling of any of claims 34 to 40, wherein the enclosure part includes an internal cavity which defines an arcuate surface having first and second bend radii, which are disposed opposite the bores in the main body part, thereby defining a 180 degree bend between the through bores.
42. The coupling of claim 41, wherein the enclosure part includes a flange, which extends around the internal cavity, to which the main body part is fixed by an annular weld.
- 29 -
43, The coupling of claim 42f wherein the flange of the enclosure part defines an outwardly-inclined external chamfer for receiving the weld.
44, The coupling of claim 42 or 43, wherein the flange defines an annular seat, which corresponds to an annular seat as defined by the flange of the main body part,
45, The coupling of any of claims 34 to 44, wherein the main body part and the enclosure part are formed of stainless steel.
46, The coupling of claim 45, wherein the main body part and the enclosure part are fabricated by casting.
47, A method of manufacturing a heat exchanger assembly, comprising the steps of:
providing a plurality of tube elements, at least one ends of which are open;
arranging the tube elements to extend in spaced relation with a defined pattern, with the open ends of the tube elements extending to one common end;
providing a plurality of sheet elements, optionally single, continuous sheet elements, which each include a plurality of apertures;
providing a plurality of fin coupling elements, each comprising a body part which includes an aperture, and a flange which extends from the fin body part;
locating a fin sheet element over the tube elements, by passing the open ends of the tube elements through the respective fin apertures in the fin sheet element;
locating a fin coupling element over each of the open ends of the tube elements, with the flange of each fin coupling element being located in the respective fin aperture in the fin sheet element;
locating brazing material at each of the fin coupling elements;
- 30 -
repeating the fin sheet element locating, the fin coupling element locating and the brazing material locating steps to build up a stack of fins along a length of the tube elements, providing a heat exchanger arrangement;
brazing the heat exchanger arrangement, with each of the tube elements being thermally connected to each of the sheet elements by the respective fin coupling elements;
providing a plurality of pipe end couplings, wherein the pipe end couplings each comprise a main body part which comprises a body, which includes a flange which encloses a surface, and first and second bores which extend to the surface and provide for fluid communication thereto, and an enclosure part which, when fixed to the main body part, provides a closed fluid connection between the first and second bores; and fixing pipe end couplings to the open ends of the tube elements of adjacent tube sections, wherein the pipe end coupling fixing step comprises, for each pipe end coupling, the steps of:
fixing the open ends of the tube elements in the respective bores of the main body part; and fixing the enclosure part to the main body part, such as to provide a closed fluid connection between the open ends of the tube elements,
The method of claim 47, wherein the brazing material locating step comprises the step of locating a ring of brazing material, which has an internal dimension corresponding to an outer dimension of the tube elements, over each of the tube elements so as to be positioned at the aperture of the fin coupling element,
The method of claim 47 or 48, wherein the brazing material locating step comprises the step of locating a ring of brazing material, which has an internal dimension corresponding to an outer dimension of the body part of the fin coupling element, over each of the fin coupling
- 31 -
elements so as to be positioned at a junction of the body part of the fin coupling element and the fin sheet element,
50. The method of any of claims 47 to 49, wherein the brazing material comprises oxygen-free copper,
51, The method of any of claims 47 to 50, further comprising the steps of:
providing first and second support elements, which each include a plurality of support apertures;
prior to the fin sheet element locating step, locating a first support element over the tube elements, by passing the open ends of the tube elements through the respective support apertures in the first support element; and prior to the brazing step, locating a second support element over the tube elements, by passing the open ends of the tube elements through the respective support apertures in the second support element,
52, The method of any of claims 47 to 51, wherein the fin sheet element has a thickness of at least about 1 mm,
53. The method of any of claims 47 to 52, wherein the flange comprises a tubular section which is a close fit to an outer dimension of the tube elements.
54. The method of claim 53, wherein the flange has a length of at least 3 mm.
55, The method of any of claims 47 to 54, wherein the fin coupling elements each further comprise at least one projection, optionally a plurality of projections.
- 32 -
56. The method of claim 55, wherein the at least one projection is disposed radially outwardly of the flange.
57. The method of claim 56, wherein the at least one projection extends from an outer peripheral edge of the fin body part.
58. The method of any of claims 55 to 57, wherein the flange and the at least one projection extend in opposite directions,
59. The method of claim 58, wherein the at least one projection has a length which acts to space the adjacent sheet element.
60. The method of claim 59, wherein the fin sheet elements are spaced by a spacing of at least about 2 mm, optionally at least about 3 mm.
61. The method of any of claims 55 to 60, wherein the fin coupling elements each comprise a plurality of projections, which are located to one, rear side of the fin coupling element in a gas flow direction through the heat exchanger assembly, and present a forwardly-facing surface which acts to disrupt a gas flow to a rear side of the respective tube element,
62. The method of any of claims 47 to 61, wherein the fin apertures in the fin sheet element each include a locator element, optionally a cut-out, and the fin coupling elements each include a locator, optionally a lug, and the locators on the fin coupling elements are located in the locators on the respective fin apertures of the fin sheet element, thereby locating the rotational position of the fin coupling elements.
63. The method of any of claims 47 to 61, wherein the fin body part has the form of a flat, annular part.
- 33 -
64. The method of any of claims 47 to 63, wherein the tube elements are provided by a plurality of U-shaped tube sections, each comprising two spaced elongate tube elements, one ends of which are fluidly connected by a 180 degree bend and the other ends of which are open and in spaced relation.
65. The method of any of claims 47 to 64, wherein the flange of the main body part defines an annular seat to which the enclosure part is fixed,
66. The method of claim 65, wherein the flange of the defines an upstand which extends around the seat, and the enclosure part fixing step comprises the step of:
welding the enclosure part to the main body part with an annular weld at the upstand,
67. The method of claim 66, wherein the upstand includes an inwardly-inclined interna! chamfer for receiving the weld.
68. The method of any of claims 47 to 67, wherein the bores each include at least one groove, optionally a plurality of grooves, and the tube element fixing step comprises, for each tube element, the step of: expanding the open end of the tube element into the respective bore.
69. The method of claim 68, wherein the open end of the tube element is expanded by from about 3% to about 5%, optionally from about 4% to about 5%.
70. The method of claim 68 or 69, wherein the bores each terminate at an upstand which projects from the surface, and the tube element fixing step further comprises, for each tube element, the step of; welding the open end of the tube element to the respective upstand with an annular weld.
- 34 -
71. The method of claim 70, wherein the upstand includes an inwardly-inclined internal chamfer, the open end of the respective tube element includes an outwardly-inclined external chamfer, and the chamfers together define a channel for receiving the weld.
72. The method of claim 70 or 71, wherein the tube element fixing step further comprises, for each tube element, the step of:
subsequent to the tube element welding step, expanding the open end of the tube element into the respective bore.
73. The method of claim 72, wherein the open end of the tube element is expanded by from about 3% to about 5%, optionally from about 4% to about 5%.
74. The method of any of claims 47 to 73, further comprising, for each pipe end coupling, the step of:
prior to the enclosure part fixing step, pressure testing the fixing of the open ends of the tube elements to the pipe end coupling.
75. The method of claim 74, wherein the pressure testing step comprises the steps of:
providing a pressure testing tool, which comprises a test coupling for fiuidiy connecting to at least one of the tube elements at the pipe end coupling;
fiuidiy connecting the test coupling to at least one of the tube elements at the pipe end coupling;
applying a pressure to the test coupling to determine acceptability of the fixing of at least one tube element to a respective bore of the main body part.
76. The method of claim 75, wherein the main body part includes at least one detent, optionally a plurality of detents, and the test coupling
- 35 -
includes at least one engagement fixture, optionally a plurality of engagement fixtures, for engaging the at least one detent on the main body part to fix the test coupling to the main body part.
77. The method of claim 76, wherein the at least one engagement fixture comprises a clamping mechanism for clamping the test coupling to the main body part under test.
78. The method of claim 77, wherein the clamping mechanism comprises at least one clamp catch, optionally a plurality of clamp catches, which engages the at least one detent on the main body part.
79. The method of any of claims 75 to 78, wherein the test coupling comprises a test enclosure part, which, when the testing tool is fitted to the main body part of one pipe end coupling, fluidly connects the bores of the main body part under test, and a seal which provides for sealing engagement with a seat of the main body part under test,
80. The method of any of claims 47 to 79, wherein the enclosure part includes an internal cavity, optionally defining an arcuate surface having first and second bend radii, which are disposed opposite the bores in the main body part, thereby defining a 180 degree bend between the through bores.
81. The method of claim 80, wherein the enclosure part includes a flange which extends about the internal cavity, and the enclosure part welding step comprises the step of:
welding the flange of the enclosure part to the main body part with an annular weld.
82. The method of 81, wherein the flange defines an outwardly-inclined external chamfer for receiving the weld,
- 36 -
83, The method of claim 81 or 82, wherein the flange defines an annular seat, which corresponds to an annular seat as defined by the flange of the main body part.
84, The method of any of claims 47 to 83, wherein the main body part and the enclosure part are formed of stainless steel,
85, The method of claim 84, wherein the main body part and the enclosure part are fabricated by casting.
GB1201671.3A 2012-01-31 2012-01-31 A pipe end coupling for use in the manufacture of a heat exchanger assembly Active GB2499573B (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
GB1201671.3A GB2499573B (en) 2012-01-31 2012-01-31 A pipe end coupling for use in the manufacture of a heat exchanger assembly
EP22199816.4A EP4148324A2 (en) 2012-01-31 2013-01-31 Steam generation
EP13724306.9A EP2872827B1 (en) 2012-01-31 2013-01-31 Heat exchanger assembly, a fin for and method of manufacturing such an assembly
EP21196725.2A EP3961094A1 (en) 2012-01-31 2013-01-31 Heat exchanger assembly and steam generator comprising said assembly
PCT/GB2013/000040 WO2013114071A2 (en) 2012-01-31 2013-01-31 Steam generation
PCT/GB2013/000039 WO2013114070A2 (en) 2012-01-31 2013-01-31 Steam generation
EP13721979.6A EP2847514B1 (en) 2012-01-31 2013-01-31 Steam generation
US14/447,748 US10845131B2 (en) 2012-01-31 2014-07-31 Steam generation
US14/447,730 US9952003B2 (en) 2012-01-31 2014-07-31 Steam generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1201671.3A GB2499573B (en) 2012-01-31 2012-01-31 A pipe end coupling for use in the manufacture of a heat exchanger assembly

Publications (3)

Publication Number Publication Date
GB201201671D0 GB201201671D0 (en) 2012-03-14
GB2499573A true GB2499573A (en) 2013-08-28
GB2499573B GB2499573B (en) 2016-11-02

Family

ID=45876416

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1201671.3A Active GB2499573B (en) 2012-01-31 2012-01-31 A pipe end coupling for use in the manufacture of a heat exchanger assembly

Country Status (1)

Country Link
GB (1) GB2499573B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1559949A (en) * 1922-01-03 1925-11-03 D H Burrell & Co Inc Return bend header for pipes
GB991914A (en) * 1962-10-24 1965-05-12 Foster Wheeler Ltd Tube connecting members
GB1309900A (en) * 1971-10-26 1973-03-14 Refrigeration Appliances Ltd Pipework for use in heat-exchanging equipment
FR2670572A1 (en) * 1990-12-12 1992-06-19 Valeo Thermique Habitacle Connection (header) box for air-conditioning evaporator and method for its mounting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430692A (en) * 1967-06-16 1969-03-04 John Karmazin Return bend construction for heat exchangers
AT394511B (en) * 1989-12-28 1992-04-27 Vaillant Gmbh METHOD FOR PRODUCING A PIPE BEND, AND USE OF THE PIPE BEND

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1559949A (en) * 1922-01-03 1925-11-03 D H Burrell & Co Inc Return bend header for pipes
GB991914A (en) * 1962-10-24 1965-05-12 Foster Wheeler Ltd Tube connecting members
GB1309900A (en) * 1971-10-26 1973-03-14 Refrigeration Appliances Ltd Pipework for use in heat-exchanging equipment
FR2670572A1 (en) * 1990-12-12 1992-06-19 Valeo Thermique Habitacle Connection (header) box for air-conditioning evaporator and method for its mounting

Also Published As

Publication number Publication date
GB201201671D0 (en) 2012-03-14
GB2499573B (en) 2016-11-02

Similar Documents

Publication Publication Date Title
US9952003B2 (en) Steam generation
KR101367484B1 (en) Steam generator
US8708035B2 (en) Heat exchanger in a modular construction
US20100024382A1 (en) Heat recovery steam generator for a combined cycle power plant
WO2016094817A1 (en) Tubeless heat exchanger for a fluid heating system and methods of manufacture thereof
GB2499574A (en) Fins of a heat exchanger spaced and located on tubes by coupling elements
GB2499376A (en) Pressure testing a joint with a heat exchanger tube
CN109564077B (en) Heat exchanger and system and method for assembling a heat exchanger
EP0203104A1 (en) Boiler having improved heat absorption
GB2499573A (en) Heat exchanger with pipe couplings joining tube elements
GB2499572A (en) Heat exchanger with coupled U-shaped tubes and brazed sheet fins
GB2499571A (en) A steam generator having a heat exchanger and a superheater
GB2499375A (en) Steam generator with coiled superheaters
US20130048245A1 (en) Heat Exchanger Having Improved Drain System
CN103822384B (en) SOLAR BOILER plate is arranged
JP2013124625A (en) Heat exchanger
CN110057209B (en) Tube type light pipe evaporator and welding method thereof
TW201423002A (en) Geothermal heat exchanging system and geothermal generator system and geothermal heat pump system using the same
CN218545416U (en) Fixing device of rocket engine spiral pipe and rocket engine heat exchanger
Gardner et al. Development of a solar thermal supercritical steam generator
RU2013129455A (en) EVAPORATION AND PRESSURE REDUCER IN SELF-PROPELLED GAS SYSTEMS
CN109855282B (en) Radiation type high-power heating system and heating method for liquid metal sodium
US20240052761A1 (en) Exhaust gas flow regulator and heat recovery steam generator having same
CN209944299U (en) Superheater for boiler
TW201030286A (en) Once-through steam generator