GB2497452A - Drive arrangement for an autonomous surface treating appliance - Google Patents

Drive arrangement for an autonomous surface treating appliance Download PDF

Info

Publication number
GB2497452A
GB2497452A GB1303633.0A GB201303633A GB2497452A GB 2497452 A GB2497452 A GB 2497452A GB 201303633 A GB201303633 A GB 201303633A GB 2497452 A GB2497452 A GB 2497452A
Authority
GB
United Kingdom
Prior art keywords
text
drive
track
robot
chassis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1303633.0A
Other versions
GB201303633D0 (en
GB2497452B (en
Inventor
James Dyson
Peter David Gammack
Mark Stamford Vanderstegen-Drake
Paul Joshua Bott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyson Technology Ltd
Original Assignee
Dyson Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyson Technology Ltd filed Critical Dyson Technology Ltd
Priority to GB1303633.0A priority Critical patent/GB2497452B/en
Publication of GB201303633D0 publication Critical patent/GB201303633D0/en
Publication of GB2497452A publication Critical patent/GB2497452A/en
Application granted granted Critical
Publication of GB2497452B publication Critical patent/GB2497452B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/104Suspension devices for wheels, rollers, bogies or frames
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/32Auto pilot mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

A drive arrangement for a mobile robot comprises a transmission unit for transmitting drive from a motor unit (100, fig 7) to a drive shaft (102, fig 7) extending from the transmission unit along a drive shaft axis, a swing arm 92 coupled to the transmission unit so as to swing angularly about an axis of the drive shaft (102, fig 7), a drive sprocket 94 mounted to the drive shaft (102, fig 7) and a driven pulley 96 mounted on a portion of the swing arm 92 remote from the drive shaft (102, fig 7) and being rotatable about an axis parallel to the drive shaft axis. A track 98 is constrained around the sprocket 94 and the pulley 96, wherein the sprocket 94 and the pulley 96 are arranged such that the track 98 presents an inclined driving surface.

Description

DRIVE ARRANGEMENT FOR AN AUTONOMOUS
SURFACE TREATING APPLIANCE
Technical field
This invention relates to an autonomous surface treating appliance, such as a mobile robotic vacuum cleaner, and also to a drive arrangement for such a machine.
BackQround to the invention Mobile robots are increasingly commonplace and are used in such diverse fields as space exploration, lawn mowing and floor cleaning. The last decade has seen particularly rapid advancement in the field of robotic floor cleaning devices, especially vacuum cleaners, the primary objective of which is to navigate a user's home autonomously and unobtrusively whilst cleaning the floor. The invention will be described in the context of a robotic vacuum cleaner but it is also applicable in general to any type of mobile robot platform, such as robotic lawn mowers.
Common to all mobile robots is the requirement for a drive system. In the context of robotic floor cleaners, a popular approach is to provide the robot body with wheel on each side, each wheel being drivable independently. Therefore, the robot can move linearly by driving both wheels in the same direction at the same speed or can turn by varying the relative rotation of the wheels. Driving both wheels in opposite direction enables the robot to rotate on the spot. Such a system usually will also include a third wheel positioned towards the rear of the robot body which acts as a caster, passively rolling along whilst providing a support for one side of the body. A significant advantage of such a system is that it makes the robot highly maneuverable and also avoids the need for an additional steering mechanism. Examples of autonomous robotic vacuum cleaners using such a drive arrangement are RoombaiM by iRobot and TrilobiteTM by Electrolux.
I
A disadvantage of the wheeled mobile robot as described above is its limited ability to climb over objects, or even over or onto floor coverings such as cables or rugs.
An alternative approach is to equip an autonomous floor cleaner with a tracked drive arrangement, as shown in European patent application no. EP1582132. Such an arrangement tends to improve grip due to the larger contact patch inherent with a track and so it may be better at negotiating obstacles such as rugs and cables. However, due to the increased contact patch the robot drive system is more susceptible to slippage which is a disadvantage because it introduces inaccuracies into the navigation system of the robot.
Summary of the invention
1 5 Against this background, the invention provides an autonomous surface treating appliance comprising a chassis having a drive arrangement and a control system interfaced to the drive arrangement so as enable control of the appliance across a surface to be treated, wherein the drive arrangement comprises at least one traction unit, each traction unit comprising a surface-engaging track constrained around a leading wheel and a trailing wheel, the leading wheel and the trailing wheel being arranged so that a track portion opposing the floor surface and extending between the leading and trailing wheels defines a ramped climbing surface.
Expressed another way, the invention resides in a drive arrangement for a mobile robot comprising a transmission unit for transmitting drive from a motor unit to a drive shaft extending from the transmission unit along a drive shaft axis, a swing arm coupled to the transmission unit so as to swing angularly about an axis of the drive shaft, a sprocket mounted to the drive shaft and a pulley mounted on a portion of the swing arm remote from the drive shaft and being rotatable about an axis parallel to the drive shaft axis, a track constrained around the sprocket and the pulley, wherein the sprocket and the pulley are arranged such that the track presents an inclined driving surface.
This ramped climbing surface relative to the adjacent surface to be treated improves the ability of the robot to climb over imperfections in the surfce to be treated, as well as over raised obstacles such as electrical cables/flexes or edges of rugs thr example.
Moreover, due to the portion of the track fbrward of the trailing wheel, which is inclined relative to the horizontal, a small contact patch is maintained which provides a maneuvering benefit since it does not suffer the extent of slippage that would be experienced if a significant portion of the track was in contact with the floor surface.
This is particularly true on carpeted surfaces where an elongate contact patch as exemplified by known tank-track configurations makes it difficult for a robot to turn on the spot. In contrast to this, the mobile robot of the invention is provided with the climbing advantages of a tracked climbing surface and the maneuvering advantages of a small contact patch in the same way as a plain wheel.
In order to drive the traction units, there may be previded a motor that, in one embodiment, drives the leading wheel in response to commands from the control system. However, it should be appreciated that the trailing wheel may also be the driven wheeL For simplicity and cost, the motor is an electric motor and, more specifically, a brushless DC motor. Other motor drives are possible such as a hydraulic motor drive, albeit at increased cost and weight.
Although the leading wheel may be driven directly by the motor, in the exemplary embodiment a transmission unit is provided to transmit drive from the motor to the leading wheel. The enables the speed of the motor to be down-geared whilst increasing torque and ensuring control accuracy.
The transmission also provides a mounting portion by which the traction unit may be mountable to the chassis of the appliance whilst also providing a fixed point on which a linkage member may be pivotably mounted at one end, and having a second end to which the trailing wheel is mounted. The trailing wheel may therefore swing angularly about the drive axis of the leading wheel.
When travelling over rough surfaces, for example thick pile carpet, improved fraction is required. Thus, in an enhancement of the drive arrangement, biasing means is provided intermediate the transmission case and the linkage member which urges the trailing wheel towards the surface to be treated. Thus, if the chassis is cause to raise due to contact with an obstacle or surface feature, the trailing wheel will be urged into contact with the surface therefore maintaining strong traction.
In order to prevent objects from fouling the tracks the linkage member may include a guard member that at least partially fills a volume bounded by the leading wheel, the trailing wheel and the inner surfaces of the track. This reduces the likelihood that objects such as grit or stones will enter the nip between the track and the wheels, therefore improving the reliability of the fraction units.
A frirther traction enhancement is provided by the configuration of the trailing wheel.
The trailing wheel may rim portion adjacent to and having a larger diameter than a track engaging surface of the trailing wheel. Optionally, the rim portion may extend to the same radial position as the outer surface of the track and may be provided with a smooth or serrated profile. In this embodiment, since the rim portion extends to a radium comparable with the track radius, in circumstances in which robot is travelling over a soft surface such as a rug or carpet, the track will tend to sink into the pile of the carpet whereby the serrated edge of the rim portion will tend to engage the carpet and provide the robot with increased traction. However, on hard surfaces, only the track will contact the floor surface which will benefit the maneuvering ability of the robot.
Although the invention applies to mobile robots and autonomous floor treating appliances in general, is has particularly utility in robotic vacuum cleaners comprising an airflow generator for generating a flow of air between a dirty air inlet and a clean air outlet, and a separating apparatus disposed in the airflow path between the dirty air inlet and the clean air outlet so as to separate dirt from the airflow.
Brief description of the drawings
S
In order that the invention may be more readily understood, reference will now be made, by way of example only, to the accompanying drawings in which: Figure 1 is a front perspective view of a mobile robot in accordance with an embodiment of the invention; Figure 2 is a view from beneath of the mobile robot in Figure 1; Figure 3 is an exploded perspective view of the mobile robot of the invention showing its main assemblies; Figure 4 is a front perspective view of the chassis of the mobile robot; Figure Sa and Sb are perspective views from either side of a fraction unit of the mobile robot; Figure 6 is a side view of the traction unit in Figures 5a and Sb and it orientation relative to a surface; Figure 7 is a section view of the traction unit in Figure 6 along the line A-A; Figure 8 is an exploded perspective view of the fraction unit in Figures Sa, Sb and 6 Figure 9 is a side view of the traction unit in Figure 6, but shown in three swing arm positions; Figure 10 is a front view of the chassis of the mobile robot; Figure Ills a rear view of the chassis of the mobile robot; Figure 12 isa view from underneath of the main body of the mobile robot; Figures 13a, 13b, 13c and 13d are schematic views of the robot in various bump' conditions; and Figure 14 is a schematic systems view of the mobile robot.
Description of the embodiments
With reference to Figures 1, 2,3,4 and 5 of the drawings, an autonomous surface treating appliance in the form of a robotic vacuum cleaner 2 (hereinafter robot') comprises has a main body having four principal assemblies: a chassis (or sole plate) 4, a body 6 which is carried on the chassis 4, a generally circular outer cover 8 which is mountable on the chassis 4 and provides the robot 2 with a generally circular profile, and a separating apparatus 10 that is carried on a forward part of the body 6 and which protrudes through a complementary shaped cut-out 12 of the outer cover 8.
For the purposes of this specification, the terms front' and rear' in the context of the robot will be used in the sense of its forward and reverse directions during operation, with the separating apparatus 10 being positioned at the front of the robot. Similarly, the terms left' and right' will be used with reference to the direction of forward movement of the robot. As will be appreciated from Figure 1, the main body of the robot 2 has the general form of a relatively short circular cylinder, largely for maneuverability reasons, and so has a cylindrical axis C' that extends substantially vertically relative to the surface on which the robot travels. Accordingly, the cylindrical axis C extends substantially normal to a longitudinal axis of the robot U that is oriented in the fore-aft direction of the robot 2 and so passes through the centre of the separating apparatus 10.
The chassis 4 supports several components of the robot 2 and is preferably manufactured from a high-strength injection moulded plastics material, such as ABS (Acrylonitrile Butadiene Styrene), although it could also be made from appropriate metals such as aluminium or steel, or composite materials such a carbon fibre composite. As will be explained, the primaiy function of the chassis 4 is as a drive platform and to carry cleaning apparatus for cleaning the surface over which the robot travels.
With particular reference to Figures 3 and 4, a front portion 14 of the chassis 4 is relatively flat and tray-like in form and defines a curved prow 15 that forms the front of the robot 2. Each flank of the front portion 14 of the chassis has a recess 16, 18 in 1 5 which recesses a respective traction unit 20 is mountable. Note that Figures 2 and 3 shows the chassis 4 with the traction units 20 attached and Figure 4 shows the chassis 4 without the traction units 20 attached.
The pair of traction units 20 are located on opposite sides of the chassis 4 and are operable independently to enable to robot to be driven in forward and reverse directions, to follow a curved path towards thc left or right, or to turn on the spot in either direction, depending on the speed and dircction of rotation of the traction units 20. Such an arrangement is sometimes known as a differential drive, and detail of the traction units will be described more ifilly later in the specification.
The relatively narrow front portion 14 of the chassis 4 widens into rear portion 22 which includes a cleaner head 24 having a generally cylindrical form and which extends transversely across substantially the entire width of the chassis 4 relative to its longitudinal axis L'.
With referencc also to Figure 2, which shows thc undcrsidc of the robot 2, the cleaner head 24 defines a rectangular suction opening 26 that faces the supporting surfacc and into which dirt and debris is drawn into whcn the robot 2 is opcrating. An elongate brush bar 28 is contained within the cleaner head 24 and is driven by an elecnic motor 30 via a reduction gear and drive belt arrangement 32 in a conventional manner, although other drive configurations such as a solely geared transmission are also envisaged.
The underside of the chassis 4 features an elongate sole plate section 25 extending forward of the suction open lug 26 defining a ramped nose at its forward edge. A plurality of channels 33 (only two of which arc labeled for brevity) on the solc platc providc pathways for dirty air bcing drawn towards the suction opening 26. The underside of the chassis 4 also carries a plurality (four in the illustrated embodiment) of passive wheel or rollers 31 which provide ifirther bearing points for the chassis 4 when it is at rest on or moving over a floor surface.
In this embodiment, the cleaner head 24 and the chassis 4 are a single plastics moulding, thus the cleaner head 24 is integral with the chassis 4. However, this need not be the case and the two components could be separate, the cleaner head 24 being suitably affixed to the chassis 4 as by screws or an appropriate bonding technique as would be clear to the skilled person.
The cleaner head 24 has first and second end faces 27, 29 that extend to the edge of the chassis 4 and which arc in line with the cover S of thc robot. Considered in horizontal or plan profile as in Figures 2 and 3, it can be seen that the end faccs 27, 29 of the cleaner hcad 24 are flat and extend at a tangent (labeled as T') to thc covcr at diametrically opposed points along the lateral axis X' of the robot 2. The benefit of this is that the cleaner head 24 is able to run extremely close to the walls of a room as the robot traverses in a wall following' mode therefore being able to clean right up to the wall. Moreover, since the end faces 27, 29 of the cleaner head 24 extend tangentially to both sides of the robot 2, it is able to clean right up to a wall whether the wall is on the right side or the left side of the robot 2. It should be noted, also, that the beneficial edge cleaning ability is enhanced by the traction units 20 being located inboard of the cover 8 meaning that the robot can maneuver in such a way that the cover 8 and therefore also the end faces 27, 29 of the cleaner head 24 are almost in contact with the wall during a wall following operation.
Dirt drawn into the suction opening 26 during a cleaning operation exits the cleaner head 24 via a conduit 34 which extends upwardly from the cleaner head 24 and curves towards the front of the chassis 4 through approximately 90° of arc until it faces in the forwards direction. The conduit 34 terminates in a rectangular mouth 36 having a flexible bellows arrangcmcnt 38 shaped to engagc with a complementary shaped duct 42 provided on the body 6.
The duct 42 is provided on a front portion 46 of the body 6, and opens into a forward facing generally semi-cylindrical recess 50 having a generally circular base platform 48.
The recess 50 and the platform 48 provide a docking portion into which the separating apparatus 10 is mounted, in use, and from which it can be disengaged for emptying purposes.
It should be noted that in this embodiment the separating apparatus 10 consists of a cyclonic scparator such as disclosed in W02008/009886, thc contents of which are incorporatcd herein by referencc. Thc configuration of such scparating apparatus is well known and will not be described any further here, save to say that the separating apparatus may be removably attached to the body 6 by a suitable mechanism such as a quick-release fastening means to allow the apparatus 10 to be emptied when it becomes full. The nature of the separating apparatus 10 is not central to the invention and the cyclonic separating apparatus may instead separate dirt from the airflow by other means that are known in the art for example a fiher-mcmbrane, a porous box filter or some other form of separating apparatus. For embodiments of the apparatus which are not vacuum cleaners, the body can house equipment which is appropriate to the task performed by the machine. For example, for a floor polishing machine the main body can house a tank for storing liquid wax.
When the separating apparatus 10 is engaged in the docking portion 50, a dirty air inlet 52 of the separating apparatus 10 is received by the duct 42 and the other end of the duct 42 is connectable to the mouth 36 of the brush bar conduit 34, such that the duct 42 transfers the dirty air from the cleaner head 24 to the separating apparatus 10. The bellows 38 provide the mouth 36 of the duct 34 with a degree of resilience so that it can mate sealingly with the dirty air inlet 52 of the separating apparatus 10 despite some angular misalignment. Alternatively, the bellows (38) may be replaced by cuff seal of flexible plastics or rubber material that would also providc a degree of resilicncc.
Dirty air is drawn through the separating apparatus 1 0 by an airflow generator which, in this embodiment, is an electrically powered motor and fan unit (not shown), that is located in a motor housing 60 located on the left hand side of the body 6. The motor housing 60 includes a curved inlet mouth 62 that opens at the cylindrical shaped wall of docking portion 50 thereby to match the cylindrical curvature of the separating apparatus 10. Although not seen in Figure 4, the separating apparatus 10 includes a clean air outlet which registers with the inlet mouth 62 when the separating apparatus 10 is engaged in the docking portion 50. In use, the suction motor is operable to create low pressure in the region of the motor inlet mouth 62, thereby drawing dirty air along an airflow path from the suction opcning 26 of the cleaner head 24, through the conduit 34 and duct 42 and through the separating apparatus 10 from dirty air inlet 52 to the clean air outlet. Clean air then passes through the motor housing 60 and is exhausted from the rear of the robot 2 through a filtered clean air outlet 61.
The cover 8 is shown separated from the body 6 in Figure 3 and fixed to it in Figure 1.
Since the chassis 4 and body 6 cany the majority of the functional components of the robot, the cover 8 provides an outer skin that serves largely as a protective shell and to carry a user control interface 70.
The cover 8 comprises a generally cylindrical side wall 71 and a flat upper surface 72 which provides a substantially circular profile corresponding to the plan profile of the body 6, save for the part-circular cut-out 12 shaped to complement the shape of the docking portion 50, and the cylindrical separating apparatus 10. Furthermore, it can be seen that the flat upper surface 72 of the cover 8 is co-planar with an upper surface I Oa of the separating apparatus 10, which therefore sits flush with the cover 8 when it is mounted on the main body.
As can be seen particularly clearly in Figures 1 and 3, the part-circular cut-out 12 of the cover 8 and the semi-cylindrical recess 50 in the body 6 provides the docking portion a horseshoe shaped bay defining two projecting lobes or arms 73 which flank either sidc of the separating apparatus 10 and leave between approximately 5% and 40%, and preferably 20%, of the apparatus 10 protruding from the front of the docking portion 50.
Therefore, a portion of the separating apparatus 10 remains exposed even when the cover 8 is in place on the main body of the robot 2, which enables a user ready access to the separating apparatus 10 for emptying purposes.
Opposite portions of the side wall 71 include an arched recess 74 (only one shown in Figure 3) that fits over a respective end 27, 29 of the cleaner head 24 when the cover 8 is connected to the body 6. As can be seen in Figure 1, a clearance exists between the ends of the cleaner head 24 and the respective arches 74 order to allow for relative movement therebetween in the event of a collision with an object.
On the upper edge of the side wall 71, the cover 8 includes a semi-circular carrying handle 76 which is pivotable about two diametrically opposite bosses 78 between a first, stowed position, in which the handle 76 fits into a complementary shaped recess 80 on upper peripheral edge of the cover 8, and a deployed position in which it extends upwardly, (shown ghosted in Figure 1). In the stowed position, the handle maintains the clean' circular profile of the cover 8 and is unobtrusive to the use during normal operation of the robot 2. Also, in this position the handle serves to lock a rear filter door (not shown) of the robot into a closed position which prevents accidental removal of the filter door when the robot 2 is operating.
In operation, the robot 2 is capable of propelling itself about its environment autonomously, powered by a rechargeable battery pack (not shown). To achieve this, the robot 2 carries an appropriate control means which is interfaced to the battery pack, the traction units 20 and an appropriate sensor suite 82 comprising for example infrared and ultrasonic transmitters and receivers on the front left and right side of the body 6.
The sensor suite 82 provides the control means with information representative of the distance of the robot from various features in an environment and the size and shape of the features. Additionally the control means is interfaced to the suction fan motor and the brush bar motor in order to drive and control these components appropriately. The control means is therefore operable to control the traction units 20 in order to navigate the robot 2 around the room which is to be cleaned. It shou'd be noted that the particular method of operating and navigating the robotic vacuum cleaner is not material to the invention and that several such control methods are known in the art. For example, one particular operating method is described in more detail in W000/3 8025 in which navigation system a light detection apparatus is used. This permits the cleaner to locate itself in a room by identifying when the light levels detected by the light detector apparatus is the same or substantially the same as the light levels previously detected by thc light detector apparatus.
Having described the chassis 4, body 6 and cover 8, the traction units 20 will now be described in further detail with reference to Figures 5 to 9 which show various perspective, sectional, and exploded views of a single traction unit 20 for clarity.
In overview, the traction unit 20 comprises a transmission case 90, a linkage member 92 or swing arm', first and second pulley wheels 94, 96, and a track or continuous belt 98 that is constrained around the pulley wheels 94, 96.
The transmission case 90 houses a gear system which extends between an input motor drive module 100 mounted on an in-board side of one end of the transmission case 90, and an output drive shaft 102 that protrudes from the drive side of the transmission case 90, that is to say from the other side of the transmission ease 90 to which the motor module 100 is mounted. The motor module 100 in this embodiment is a brushless DC motor since such a motor is reliable and efficient, although this does not preclude other types of motors from being used, for example brushed DC motors, stepper motors or even hydraulic drives. As has been mentioned, the motor module 100 is interfaced with the control means to receive power and control signals and is provided with an integral electrical connector 104 for this purpose. The gear system in this embodiment is a gear wheel arrangement which gears down the speed of the motor module 1 00 whilst increasing available torque, since such a system is reliable, compact and lightweight.
However, other gearing arrangements are envisaged within the context of the invention such as a belt or hydraulic transmission arrangement.
The traction unit 20 therefore brings together the drive, gearing and floor engaging ifinctions into a self-contained and independently driven unit and is readily mounted to the chassis 4 by way of a plurality of fasteners 91 (four fasteners in this embodiment), for example screws or bolts, that are received into corresponding mounting lugs 93 defined around the recess of the chassis 4.
The traction unit 20 is mountable to the chassis so that the first pulley wheel 94 is in a leading position when the robot 2 is traveling forwards. In this embodiment, the lead wheel 94 is the driven wheel and includes a centre bore 104 which is receivable onto the drive shaft 102 by way of a press fit. The leading wheel 94 may also be termed a sprocket since it is the driven wheel in the pair. In order to improve the transfer of drive force from the drive shaft 102 to the lead wheel 94, the centre bore 104 of the pulley wheel may be internally keyed to mate with a corresponding external key on the drive shaft. Alternative ways of securing the pulley wheel to the shaft are also envisaged, such as a part-circular clip (circlip') attached to the shaft.
The swing arm 92 includes a leading end that is mounted to the transmission case 90 between it and the lead wheel 94 and is mounted so as to pivot about the drive shaft 102. A bush 106 located in a mounting aperture 108 of the swing arm 92 is received on an outwardly projecting spigot 110 of the transmission case 90 through which the drive shaft 102 protrudes. The bush 106 therefore provides a bearing surface intermediate the spigot 110 and the swing arm 92 to allow the swing arm 92 to pivot smoothly and to prevent splaying relative to the transmission case 90. The bush 106 is made preferably from a suitable engineering plastics such as polyamide which provides the required low friction surface yet high streagth. However, the bush 106 may also be made out of metal such as aluminum, steel, or alloys thereof, which would also provide the necessary frictional and strength characteristics.
As shown in the assembled views, the swing arm 92 is mounted on the spigot 110 and the lead wheel 94 is mounted to the drive shaft 102 outboard of the leading end of the swing arm 92. A stub axle 112 is press fit into a bore located on the opposite or trailing' end of the swing arm 92 and defines a mounting shaft for the rear pulley wheel 96, or trailing wheel' along a rotational axis parallel to the axis of the drive shaft 102.
The trailing wheel 96 includes a centre bore 113 in which a bearing bush 114 is received in a press fit. The bush 114 is received over the axle 112 in a sliding fit so that the bush, and therefore also the trailing wheel 96, are rotatable relative to the swing arm 92. A circlip 116 secures the trailing wheel to the axle 112.
The continuous belt or track 98 provides the interface between the robot 2 and the floor surface and, in this embodiment, is a tough rubberized material that provides the robot with high grip as the robot travels over the surface and negotiates changes in the surface texture and contours. Although not shown iii the figures, the belt 98 may be provided with a tread pattern in order to increase traction over rough terrain.
Similarly, although not shown in the figures. the inner surface 98a of the belt 98 is serrated or toothed so as to engage with a complementary tooth formation 94a provided on the circumferential surface of the leading wheel 94 which reduces the likelihood of the belt 98 slipping on the wheel 94. In this embodiment, the trailing wheel 96 does not carry a complementary tooth formation, although this could be provided if desired. To guard against the belt 98 slipping off the trailing wheel 96, circumferential lips 96a, 96b are provided on its inner and outer rims. As for the leading wheel 94, a circumferential lip 94b is provided on only its outer rim since the belt 98 cannot slip off the inner rim due to the adjacent portion of the swing arm 92.
As will be appreciated, the swing arm 92 fixes the leading and trailing wheels 94, 96 in a spaced relationship and permits the trailing wheel 96 to swing angularly about the leading wheel 94. The maximum and minimum limits of angular travel of the swing arm 92 are defincd by opposed arch-shaped uppcr and lower stop members 122a, 122b that protrude from the drive side of the transmission case 90. A stub or pin 124 extending from the in-board side of the swing arm 92 is engagable with the stops I 22a, 122b to delimit the travel of the swing arm 92.
The traction unit 20 also comprises swing arm biasing means in the form of a coil spring 118 that is mounted in tension between a mounting bracket 126 extending upwardly from the leading portion of the swing arm 92 and a pin 128 projecting from the trailing portion of the transmission case 90. The spring 118 acts to bias the trailing wheel 96 into engagement with the floor surface, in use, and this improves traction when the robot 2 is negotiating an uneven surface such as a thick-pile carpet or climbing over obstaclcs such as electrical cables. Figurc 9 shows three exemplary positions of the traction unit 20 throughout the range of movement of the swing arm 92.
In the exemplary embodiment, when the robot 2 is sitting on a surface the swing arm 92 is in its mimimum travel position' such that the pin 124 is engaged with the upper stop 122a and the spring 118 acts in tension so as to urge the trailing wheel 96 downwards purely to improve traction. However, it should be appreciated that a stronger spring 118 could also be used such that the robot would be suspended on the traction units when placed on a surface.
Figure 6 shows the relative position of the wheels 94, 96 with respect to the floor surface F when the robot 2 is at rest, and in which position the swing arm 92 is at its minimum limit of travel, the pin 124 being engaged with the upper stop I 22a. In this position, a portion of the track 98 around the trailing wheel 96 defines a contact patch 130 with the floor surface whereas a portion of the track 98 forward of the contact patch and extending to the leading wheel is inclined relative to the floor surface F due to the larger radius of the trailing wheel 96 compared to the leading wheel 94. This provides the traction unit 20 with a ramped climbing surface which improves the ability of the robot 2 to climb over imperfections in the floor surface, as well as over raised obstacles such as electrical cables/flexes or edges of rugs for example.
Although in this embodiment, the inclined track surface is largely the result of the trailing wheel 96 having a greater diameter than the leading wheel 94, it should be appreciated that a comparable result would be obtained if the wheels were of the same 1 5 diameter, but the swing arm 92 was configured to be angled more steeply downward when in the minimum travel position. Also, it should be noted that although the swing arm 92 provides the trailing wheel 96 with the ability to push down on the floor surface when travelling over a variety of terrain, the inclined track surface could also be provided with the leading and trailing wheels 94, 96 in fixed positions relative to the chassis 4. To provide the inclined track, the trailing wheel could be a larger diameter than the lcading wheel. Altematively, or in addition, the centre axis of the trailing wheel could lic in a lower horizontal plane compared to the centre of the leading wheel.
In addition to the improvement in climbing ability of the inclined track 98 compared to a simple wheel, the traction unit 20 maintains a small contact patch 130 by virtue of its single trailing wheel 96 which provides a maneuvering benefit since it does not suffer the extent of slippage that would be experienced if a significant portion of the track 98 was in contact with the floor surface.
A further traction enhancement is provided by the outer lip 96b of the trailing wheel 96 which extends radially outwards further than the lip 96a on the inboard side of the wheel 96. As shown clearly in Figure 6, the outer lip 96b extends almost to the same radius as the outer surface of the track 98 and its edge is provided with a toothed or serrated formation. A benefit of this is that, in circumstances in which the robot is travelling over a soft surface such as a rug or carpet, the track 98 will tend to sink into the pile of the carpet whereby the serrated edge of the outer lip 96b will engage the carpet and provide the robot with increased traction. However, on hard surfaces, only the track 98 will contact the floor surface which will benefit the maneuvering ability of the robot.
In an alternative embodiment (not shown), the depth and the thickness of the outer lip 96b is increased such that the surface of the lip 96b lies side by side with the outer surface of the track 98 surrounding the trailing wheel 96, in effect providing a transverse extension of the surface of the track 98. This increases the area of the contact patch 130 also on hard surfaces which maybe desirable in some circumstances. In this embodiment, it should be appreciated that the climbing ability is also retained by the inclined track surface without increasing the contact patch in the longitudinal direction of the track 98.
As has been explained, the traction units 20 of the robot 2 provide an improved ability to travel over deep pile rugs and carpets, and also to negotiate obstacles such as electrical cables lying on the floor and also small steps between floor surfaces.
However, caterpillar' type drive units can be vulnerable to ingress of debris in the nip between the wheels and the belt. To guard against this, the swing arm 92 further includes a raised block-like portion 132 that extends outwardly from the swing arm 92 in the space bounded by the opposing parts of the leading and trailing wheels 94, 96 and the inner surface of the track 98. Side surfaces 132a, 132b, 132c, 132d of the debris guard block 132 are shaped to sit closely next to the adjacent surfaces of the wheels 94, 96 and the belt 98 whilst an outboard surface 134 of the block 132 terminates approximately in line with the outer faces of the wheels 94, 96. The block 132 is therefore shaped to accommodate substantially all of the volume between the wheels 94, 96 and so prevents debris such as grit or stones from fouling the drive arrangement.
Although the block 132 could be solid, in this embodiment the block 132 includes openings 136 which reduce the weight of the spring arm 92 and also its cost. Although thc block 132 preferably is integral with thc swing arm 92, it could also bc a separate component fixed appropriately to the swing arm, for example by clips, screws or adhesive.
Referring now to Figures 10, 11 and 12, these illustrate how thc body 6 is attached to the chassis 4 to enable relative sliding movement between one another and how this relative moment is used by the robot 2 to gathcr information about collisions with objects in its path.
To enable relative sliding movement bctwccn the chassis 4 and thc body 6, front and rear engagement means fix the chassis 4 and the body 6 together so that they cannot be separated in the vertical direction, that is to say in a direction normal to the longitudinal, axis L of the robot 2, but arc permitted to slide with rcspcct to one another by a small amount.
Turning firstly to the front portions of the main body, as best illustrated in Figure 11, a front engagement means includes a centrally located opening 140 shaped like a racetrack or a para-truncated circle that is defined in the front portion of the body 6, specifically in a central position in the platform 48. A slidable pivoting member in the fbrm of a gudgeon pin 142 is receivcd through the opening and includes a sleeve section 142a that extends a short way below the opening 140 and an upper flange 142b.
The engagement means also includes a complementary structure on the forward portion of the chassis 4 in the form of a walled-recess 144, which is also racetrack shaped to correspond to the shape of the opening 140 in the platform 48. The body 6 is mountable on the chassis 4 so that the opening 140 on the platform 140 body 6 overlies the recess 144 in the chassis 4. The gudgeon pin 142 is then secured to the floor of the recess 144 by a suitable mechanical fastener such as a screw; the gudgeon pin 142 is shown ghosted in its position in the recess 144 in Figure 10. The body 6 is therefore joined to the chassis 4 against vertical separation. However, since the gudgeon pin 142 is fixed immovably to the chassis 4 whilst being held slidably in the opening 140, the body 6 can slide relative to the gudgeon pin 142 and can pivot angularly about it due to its rounded shape.
S
The forward portion of the chassis 4 also includes two channels 145, one located on either side of the recess 144, which serve as a supporting surface for respective rollers 147 provided on the underside of the body 6 and, more specifically, on the platform 48 either side of the opening 140. The rollers 147 provide support for the body 6 on the chassis 4 and promote smooth sliding movement between the two parts and are shown in ghosted form in Figure 10.
The rear engagement means constrains movement of a rear portion 150 of the body 6 relative to the chassis 4. From a comparison between Figure 11 and Figure 12, it can be seen that a rear portion 146 of the chassis 4 behind the cleaner head 24 includes a bump detection means 148 which also serves as a secure mounting by which means the rear portion 150 of the body 6 is connected to the chassis 4.
Each side of the bump detection means includes a body support means; both body support means are identical and so only one will be described in detail for brevity. The body support means comprises a sleeve-like tubular supporting member 152 that sits in a dished recess 154 defined in the chassis 154. In this embodiment, the dished recess 154 is provided in a removable chassis portion in the form of a plate member 155 that is fixed across the rear portion 146 of the chassis 4. However, the recesses 154 could equally be an integral part of the chassis 4.
A spring 156 is connected to the chassis 154 at its lower end and extends through the sleeve member 152, wherein the end of the spring terminates in an eyelet 158. The sleeve 152 and the spring 156 engage with a complementaiy socket 160 on the underside of the body 6, which socket 160 includes a raised wall I 60a with which the upper end of the sleeve 152 locates when the body 6 is mounted onto the chassis 4.
When mounted in this way, the spring 156 extends into a central opening 162 in the socket 160 and the eyelet 158 is secured to a securing pin within the body 6-Note that the securing pin is not shown in the figures, but may be any pin or suitable securing point to which the spring can attach.
S
Since the supporting sleeve members 152 arc movably mounted between the chassis 4 and the body 6, the sleeve members 152 can tilt in any direction which enables the body 152 to rock' linearly along the longitudinal axis L' of the robot, but also for the rear portion of the body 6 to swing angularly, pivoting about the gudgeon pin 142 by approximately 10 degrees as constrained by the rear engagement means as will now be explained furthcr. In this embodiment, the springs 156 provide a self-centering force to the supporting sleeve members 152 which urge the sleeves members 152 into an upright position, this action also providing a resetting force for the bump detection system. In an alternative embodiment (not shown), the supporting sleeve members 152 could be solid, and a force to reset' the position of the body relative to the chassis could be provided by an alternative biasing mechanism.
Although the sleeve members 152 allow the body 6 to ride' on the chassis 4 with a certain amount of lateral movement, they do not securely connect the rear portion 150 of the body 6 to the chassis 4 against vertical separation. For this purpose, the bump detection means 148 includes first and second guiding members in the form of posts or rods 160, 162 provided on the body 6 which engage with respective pins 164, 166 provided on the chassis 4. As can be seen in Figure 12, the pins 164, 166 extend through respective windows 168, 170 defined in the plate member 1 55 and are retained there by a respective washer 172, 174. In order to mount the rear portion 150 of the body 6 onto the rear portion 146 of the chassis 4, the guiding members 160, 162 are push fit onto the pins 164, 166 until they contact their respective washer 172, 174. The movement of the rear portion 150 of the body 6 is therefore constrained to conform to the shape of the windows 168, 170 such that the windows serves as a guiding track. In this embodiment, the windows 168, 170 are generally triangular in shape and so this will permit the body 6 to slide linearly with respect to the gudgeon pin 142 but also to swing angularly about it within the travel limits set by the windows 168, 170. However, it should be noted that the permitted movement of the body 6 can be altered by appropriate re-shaping of the windows 168, 170.
The bump detection means 148 also includes a switching means 180 to detect movement of the body 6 relative to the chassis 4. The switching means 180 includes first and second miniature snap-action switches 180a, 180b (also commonly known as micro switches') provided on the underside of the rear portion 150 of the body 6 that, when the body 6 is mounted to the chassis 4, are located either side of an actuator 1 82 provided in a central part of the rear portion 146 of the chassis 4. In this embodiment, the actuator 182 takes thc form of a wedge-shape having angled leading edges for activating the switches 180a, 180b. Although not shown in the Figures, the switches 1 80a, I SOb are interfaced with the control means of the robot. The location of the switches 180a, 180b relative to the wedge-shaped actuator 182 is shown in Figure 12; note that the switches I 80a, 180b are shown in dotted lines. As can be seen, the switches I 80a, 180b are positioned such that their activating arms 183 are positioned directly adjacent and either side of the angled forward edges of the wedge-shaped actuator 182.
The switches 180a, 180b are activated in circumstances where the robot 2 collides with an obstacle when the robot is navigating around a room on cleaning task. Such a bump detection facility is desirable for an autonomous vacuum cleaner since scnsing and mapping systems of such robots can be fallible and sometimes an obstacle will not be detected in time. Other robotic vacuum cleaners operate on a random bounce' methodology in which a means to detect a collision is essential. Therefore, a bump detection facility is needed to detect collisions so that a robot can take evasive action.
For example the control means may determine simply to reverse the robot and then to resume forward movement in a different direction or, alternatively to stop forward movement, to turn 90° or 180° and then to resume forward movement once again.
Activation of the switches 180a, I 80b will now be explained with reference to Figures 13a, 13b, 13c and 13d, which show a schematic representation of the chassis 4, body, 6 and bump detection means in different bump situations. In the following figures, the parts common with the previous figures are referred to with the same reference numerals.
Figure I 3a shows the relative positions of the body 6, the chassis 4, the gudgeon pin 142, the body pivot opening 140, the switches 180a, 180b and the wedge-shaped actuator 182 in a non-collision position. As can be seen, neither switch 180a, I 80b has been activated as indicated by the reference X'.
Figure 13b shows the robot 2 in a collision with an obstacle in the dead ahead' position, as indicated by the arrow C. The body 6 is caused to move backward linearly, that is to say along its longitudinal axis L and, accordingly, the two switches I 80a, I 80b are moved backwards with respect to the wedge-shaped actuator 182 thereby triggering the switches l8Oa, 180b substantially at the same time as indicated by the check marks.
Alternatively, if the robot 2 collides with an obstacle on its right hand side, as indicated by the arrow C in Figure 13c, the body 6 will be caused to swing about the gudgeon pin 142 to the left and, in these circumstances, the switches 1 SOa, I 80b will move to the left with respect to the actuator 182 with the result that the right hand switch lOb is activated bcfore activation of the lcft hand switch 1 80a as indicatcd by the check mark for switch 180b.
Conversely, if the robot 2 collides with an obstacle on its left hand side, as indicated by the arrow C in Figure 13d, the body 6 will be caused to swiig to the right, in which case the switches 180a, 180b will move to the right with respect to the actuator 182, which therefore triggers the left hand switch 180a before the right hand switch 180b as indicated by the check mark for switch I 80a.
Although in the oblique angle collisions shown in Figures 13c and I 3d only one of the switches I 80a, 180b is shown as activated, it should be appreciated that such a collision may also activate the other one of the switches, albeit at a later time than the first activated switch.
Since the switches I 80a, I 80b are interfaced to the control means of the robot, the control means can discern thc direction of impact by monitoring the triggering of the switches 180a, 180b, and the relative timing between triggering events of the switches.
Since the robot 2 is able to detect collisions by sensing relative linear and angular movement betwccn the body 6 and the chassis 4, thc invention avoids the nccd to mount a bump shell onto the front of the robot as is common with known robotic vacuum cleaners. Bump shells can be fragile and bulky so the invention increases the robustness of the robot and also makes possible a reduction in size and complexity.
For completeness, Figure 14 shows schematically the control means of the robot and its interfaces with the components described above. Control means in the form of a controller 200 includes appropriate control circuifry and processing functionality to process signals received from its various sensors and to drive the robot 2 in a suitable manner. The controller 200 is interfaced into the sensor suite 82 of the robot 2 by which mcans the robot gathers information about its immediate environmcnt in order to map its cnvironmcnt and plan an optimum route for cleaning. A mcmoiy module 201 is provided for the controller to carry outs its processing functionality and it should be appreciated that the memory module 201 could alternatively be integrated into the controller 200 instead of being a separate component as shown here.
The controller 200 also has suitable inputs from the user interface 204, the bump detection means 206 and suitable rotational sensing means 208 such as rotary encoders provided on the traction units 20. Power and control inputs are provided to the traction units 20 from the controller 200 and also to the suction motor 210 and the brush bar motor 212.
Finally, a power input is provided to the controller 200 from the battery pack 214 and a charger interface 216 is provided by which means the controller 200 can carry out charging of the battery pack 214 when the battery supply voltage has dropped below a
suitable threshold.
Many variations are possible without departing from the inventivc concept. For example, although the traction units 20 have been described as having a continuous rubberized belt or track, the invention could also be performed with a track that comprises numerous discrete track or tread sections linked together to form a chain.
In the embodiment above, the body 6 has been described as being able to move linearly as well as angularly about the chassis. However, it should be appreciated that this is such that collisions can be detected from a wide range of angles and that the invention resides also in a bump detection system in which the body moves linearly or angularly to the chassis instead of a combination of such movement.
The sensing means has been described as comprising snap-action switches disposed either side of a wedge-shaped actuator and that such an arrangement conveniently enables the switches to be activated when the body moves linearly (both switches activated simultaneously) or angularly (one switch activated bcforc thc other).
However, thc skilled person will apprcciatc that other switch mcchanisms are possible, for example contactless switches such as a light-gate switch, or a maguetic/Flall effect switch.

Claims (1)

  1. <claim-text>CLAIMS1. A drive arrangement for a mobile robot comprising a transmission unit for transmitting drive from a motor unit to a drive shaft extending from the transmission unit along a drive shaft axis, a swing arm coupled to the transmission unit so as to swing angularly about an axis of the drive shaft, a drive sprocket mounted to the drive shaft and a driven pulley mounted on a portion of the swing arm remote from the drive shaft and being rotatable about an axis parallel to the drive shaft axis, a track constrained around the sprocket and the pulley, wherein the sprocket and the pulley arc arranged 1 0 such that the track presents an inclined driving surface.</claim-text> <claim-text>2. The drive arrangcment of Claim 1, including a single driven pulley.</claim-text> <claim-text>3. The drive arrangement of Claim 1 or Claim 2, wherein the driven pulley has a greater diameter than the diameter of the sprocket.</claim-text> <claim-text>4. The drive arrangement of any of the preceding claims, wherein the motor unit is a brushless DC electric motor.</claim-text> <claim-text>5. The drive arrangement of any of the preceding claims, wherein the swing arm includes a guard member that at least partially fills a volume bounded by the sprocket, the pulley and the track.</claim-text> <claim-text>6. The drive arrangement of any of the preceding claims, wherein biasing means is provided between the transmission unit and the swing arm.</claim-text> <claim-text>7. The drive arrangement of any of the preceding claims, wherein the pulley includes a track engaging face and a rim portion adjacent to and having a diameter that is greater than the diameter of the track engaging surface.</claim-text> <claim-text>8. The drive arrangement of Claim 7, wherein the rim portion extends to the same radial position as the outer surface of the track.</claim-text> <claim-text>9. The drive alTangement of Claim 7 or 8, wherein the rim portion has a serrated profile.</claim-text> <claim-text>10. The drive arrangement of any of the preceding claims, wherein the track is constrained around the outer surface of the pulley.</claim-text>
GB1303633.0A 2013-03-01 2013-03-01 Drive arrangement for an autonomous surface treating appliance Active GB2497452B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1303633.0A GB2497452B (en) 2013-03-01 2013-03-01 Drive arrangement for an autonomous surface treating appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1303633.0A GB2497452B (en) 2013-03-01 2013-03-01 Drive arrangement for an autonomous surface treating appliance

Publications (3)

Publication Number Publication Date
GB201303633D0 GB201303633D0 (en) 2013-04-17
GB2497452A true GB2497452A (en) 2013-06-12
GB2497452B GB2497452B (en) 2013-10-23

Family

ID=48142213

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1303633.0A Active GB2497452B (en) 2013-03-01 2013-03-01 Drive arrangement for an autonomous surface treating appliance

Country Status (1)

Country Link
GB (1) GB2497452B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103847827A (en) * 2013-08-14 2014-06-11 中国科学院合肥物质科学研究院 Spinule type wall climbing robot with bionic vibration absorption structure
CN104859735A (en) * 2015-05-07 2015-08-26 青岛理工大学 Overturning-type obstacle-surmounting vehicle
EP3081133A1 (en) * 2015-04-13 2016-10-19 Samsung Electronics Co., Ltd. Robot cleaner having a driving unit
US20190090703A1 (en) * 2015-11-20 2019-03-28 Samsung Electronics Co., Ltd. Wheel assembly and robot cleaner having same
US11596286B2 (en) 2018-12-28 2023-03-07 Sharkninja Operating Llc Wheel assembly for robotic cleaner and robotic cleaner having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216269607U (en) * 2021-09-27 2022-04-12 东莞市本末科技有限公司 Robot leg routing fixing structure and robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507058A (en) * 1993-07-09 1996-04-16 H-Tech, Inc. Automatic pool cleaning apparatus
JP2007244722A (en) * 2006-03-17 2007-09-27 Sharp Corp Self-propelled vacuum cleaner
CN101972128A (en) * 2010-04-15 2011-02-16 雷学军 Bionic intelligent air purification robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507058A (en) * 1993-07-09 1996-04-16 H-Tech, Inc. Automatic pool cleaning apparatus
JP2007244722A (en) * 2006-03-17 2007-09-27 Sharp Corp Self-propelled vacuum cleaner
CN101972128A (en) * 2010-04-15 2011-02-16 雷学军 Bionic intelligent air purification robot

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103847827A (en) * 2013-08-14 2014-06-11 中国科学院合肥物质科学研究院 Spinule type wall climbing robot with bionic vibration absorption structure
EP3081133A1 (en) * 2015-04-13 2016-10-19 Samsung Electronics Co., Ltd. Robot cleaner having a driving unit
US9758006B2 (en) 2015-04-13 2017-09-12 Samsung Electronics Co., Ltd. Driving unit and robot cleaner having the same
CN104859735A (en) * 2015-05-07 2015-08-26 青岛理工大学 Overturning-type obstacle-surmounting vehicle
US20190090703A1 (en) * 2015-11-20 2019-03-28 Samsung Electronics Co., Ltd. Wheel assembly and robot cleaner having same
US11083353B2 (en) * 2015-11-20 2021-08-10 Samsung Electronics Co., Ltd. Wheel assembly and robot cleaner having same
US11627850B2 (en) 2015-11-20 2023-04-18 Samsung Electronics Co., Ltd. Wheel assembly and robot cleaner having same
US11596286B2 (en) 2018-12-28 2023-03-07 Sharkninja Operating Llc Wheel assembly for robotic cleaner and robotic cleaner having the same

Also Published As

Publication number Publication date
GB201303633D0 (en) 2013-04-17
GB2497452B (en) 2013-10-23

Similar Documents

Publication Publication Date Title
US10647366B2 (en) Autonomous surface treating appliance
EP2753484B1 (en) Drive arrangement for a mobile robot
AU2016200220B2 (en) Autonomous vacuum cleaner
US9427123B2 (en) Autonomous surface treating appliance
US9883778B2 (en) Mobile robot
GB2497452A (en) Drive arrangement for an autonomous surface treating appliance