GB2497248A - A graphene transistor with a self-aligned gaTE - Google Patents

A graphene transistor with a self-aligned gaTE Download PDF

Info

Publication number
GB2497248A
GB2497248A GB1305445.7A GB201305445A GB2497248A GB 2497248 A GB2497248 A GB 2497248A GB 201305445 A GB201305445 A GB 201305445A GB 2497248 A GB2497248 A GB 2497248A
Authority
GB
United Kingdom
Prior art keywords
metal portion
self
oxide layer
metal oxide
aligned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1305445.7A
Other versions
GB2497248B (en
GB201305445D0 (en
Inventor
Phaedon Avouris
Damon Brooks Farmer
Yu-Ming Lin
Yu Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of GB201305445D0 publication Critical patent/GB201305445D0/en
Publication of GB2497248A publication Critical patent/GB2497248A/en
Application granted granted Critical
Publication of GB2497248B publication Critical patent/GB2497248B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

A graphene-based field effect transistor includes source and drain electrodes that are self-aligned to a gate electrode. A stack of a seed layer and a dielectric metal oxide layer is deposited over a patterned graphene layer. A conductive material stack of a first metal portion and a second metal portion is formed above the dielectric metal oxide layer. The first metal portion is laterally etched employing the second metal portion, and exposed portions of the dielectric metal oxide layer are removed to form a gate structure in which the second metal portion overhangs the first metal portion. The seed layer is removed and the overhang is employed to shadow proximal regions around the gate structure during a directional deposition process to form source and drain electrodes that are self-aligned and minimally laterally spaced from edges of the gate electrode.
GB1305445.7A 2010-09-07 2011-07-20 A graphene transistor with a self-aligned gate Expired - Fee Related GB2497248B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/876,454 US8344358B2 (en) 2010-09-07 2010-09-07 Graphene transistor with a self-aligned gate
PCT/US2011/044619 WO2012033569A1 (en) 2010-09-07 2011-07-20 A graphene transistor with a self-aligned gate

Publications (3)

Publication Number Publication Date
GB201305445D0 GB201305445D0 (en) 2013-05-08
GB2497248A true GB2497248A (en) 2013-06-05
GB2497248B GB2497248B (en) 2014-12-31

Family

ID=45770020

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1305445.7A Expired - Fee Related GB2497248B (en) 2010-09-07 2011-07-20 A graphene transistor with a self-aligned gate

Country Status (4)

Country Link
US (3) US8344358B2 (en)
GB (1) GB2497248B (en)
TW (1) TWI518905B (en)
WO (1) WO2012033569A1 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012028292A2 (en) * 2010-05-05 2016-11-01 Univ Singapore graphene doping method, photodetector and device
US8476765B2 (en) * 2010-12-06 2013-07-02 Stmicroelectronics, Inc. Copper interconnect structure having a graphene cap
US9257509B2 (en) 2010-12-21 2016-02-09 The Trustees Of Columbia University In The City Of New York Electrical devices with graphene on boron nitride
US8617941B2 (en) * 2011-01-16 2013-12-31 International Business Machines Corporation High-speed graphene transistor and method of fabrication by patternable hard mask materials
US8431923B2 (en) * 2011-02-07 2013-04-30 Micron Technology, Inc. Semiconductor structure and semiconductor device including a diode structure and methods of forming same
US20120276718A1 (en) * 2011-04-27 2012-11-01 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Method of fabricating graphene-based field effect transistor
CN102956467B (en) * 2011-08-19 2015-06-03 中国科学院上海微系统与信息技术研究所 Method for preparing gate medium on surface of graphene
US8969154B2 (en) * 2011-08-23 2015-03-03 Micron Technology, Inc. Methods for fabricating semiconductor device structures and arrays of vertical transistor devices
KR101830782B1 (en) * 2011-09-22 2018-04-05 삼성전자주식회사 Electrode structure including graphene and feield effect transistor having the same
US8772910B2 (en) 2011-11-29 2014-07-08 International Business Machines Corporation Doping carbon nanotubes and graphene for improving electronic mobility
US8895417B2 (en) * 2011-11-29 2014-11-25 International Business Machines Corporation Reducing contact resistance for field-effect transistor devices
US8633055B2 (en) * 2011-12-13 2014-01-21 International Business Machines Corporation Graphene field effect transistor
US8901680B2 (en) * 2012-04-12 2014-12-02 International Business Machines Corporation Graphene pressure sensors
KR101906972B1 (en) * 2012-04-18 2018-10-11 삼성전자주식회사 Graphene switching devece including tunable barrier
CN103378064B (en) * 2012-04-28 2016-08-10 中芯国际集成电路制造(上海)有限公司 Metal interconnection structure and preparation method thereof
US9472450B2 (en) 2012-05-10 2016-10-18 Samsung Electronics Co., Ltd. Graphene cap for copper interconnect structures
US8809153B2 (en) 2012-05-10 2014-08-19 International Business Machines Corporation Graphene transistors with self-aligned gates
US9117667B2 (en) * 2012-07-11 2015-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Carbon layer and method of manufacture
KR101919423B1 (en) * 2012-08-01 2018-11-19 삼성전자주식회사 Graphene semiconductor, and electronic device comprising the same
US8741756B2 (en) 2012-08-13 2014-06-03 International Business Machines Corporation Contacts-first self-aligned carbon nanotube transistor with gate-all-around
US8932919B2 (en) * 2012-11-21 2015-01-13 International Business Machines Corporation Vertical stacking of graphene in a field-effect transistor
CN103839821B (en) * 2012-11-27 2016-08-31 中芯国际集成电路制造(上海)有限公司 Transistor and manufacture method thereof
KR20140067600A (en) 2012-11-27 2014-06-05 삼성디스플레이 주식회사 Switching element, display substrate and method of manufacturing the same
US8796096B2 (en) 2012-12-04 2014-08-05 International Business Machines Corporation Self-aligned double-gate graphene transistor
US8609481B1 (en) 2012-12-05 2013-12-17 International Business Machines Corporation Gate-all-around carbon nanotube transistor with selectively doped spacers
TWI467767B (en) * 2012-12-07 2015-01-01 Univ Nat Taiwan Graphene transistor
KR101920724B1 (en) 2012-12-11 2018-11-21 삼성전자주식회사 Electronic device including graphene
CN103117316B (en) * 2013-01-30 2015-08-05 中国科学院苏州纳米技术与纳米仿生研究所 Based on the grapheme transistor of metamaterial structure, photo-detector and application thereof
US9099305B2 (en) * 2013-04-30 2015-08-04 Stmicroelectronics S.R.L. Method for coupling a graphene layer and a substrate and device comprising the graphene/substrate structure obtained
US9276077B2 (en) * 2013-05-21 2016-03-01 Globalfoundries Inc. Contact metallurgy for self-aligned high electron mobility transistor
US9231094B2 (en) 2013-05-21 2016-01-05 Globalfoundries Inc. Elemental semiconductor material contact for high electron mobility transistor
US8889475B1 (en) 2013-05-30 2014-11-18 International Business Machines Corporation Self-aligned bottom-gated graphene devices
KR102100415B1 (en) 2013-07-15 2020-04-14 삼성전자주식회사 Tunneling device and method of manufacturing the same
US8901666B1 (en) * 2013-07-30 2014-12-02 Micron Technology, Inc. Semiconducting graphene structures, methods of forming such structures and semiconductor devices including such structures
WO2015021479A1 (en) * 2013-08-09 2015-02-12 The Trustees Of Columbia University In The City Of New York Systems and methods for assembling two-dimensional materials
US9356178B2 (en) 2013-10-18 2016-05-31 University Of Central Florida Research Foundation, Inc. Plasmonic phototransistor
US9490323B2 (en) 2014-06-13 2016-11-08 Samsung Electronics Co., Ltd. Nanosheet FETs with stacked nanosheets having smaller horizontal spacing than vertical spacing for large effective width
CN104166307A (en) * 2014-08-14 2014-11-26 深圳市贝特瑞纳米科技有限公司 Graphical method for graphene thin film, functional device and application of graphene thin film
CN104319237B (en) * 2014-10-11 2018-05-22 中国科学院微电子研究所 The method that graphene top gate FET device is prepared by self-registered technology
US9685564B2 (en) 2015-10-16 2017-06-20 Samsung Electronics Co., Ltd. Gate-all-around field effect transistors with horizontal nanosheet conductive channel structures for MOL/inter-channel spacing and related cell architectures
US10276698B2 (en) 2015-10-21 2019-04-30 International Business Machines Corporation Scalable process for the formation of self aligned, planar electrodes for devices employing one or two dimensional lattice structures
US9698363B1 (en) * 2015-12-30 2017-07-04 International Business Machines Corporation RF-transistors with self-aligned point contacts
CN107230724A (en) * 2016-03-24 2017-10-03 上海新昇半导体科技有限公司 Graphene field effect transistor and its manufacture method
CN107346787A (en) * 2016-05-05 2017-11-14 上海新昇半导体科技有限公司 Microelectronic structure and forming method thereof
US10038060B2 (en) 2016-05-19 2018-07-31 Qualcomm Incorporated Graphene NMOS transistor using nitrogen dioxide chemical adsorption
US11222959B1 (en) * 2016-05-20 2022-01-11 Hrl Laboratories, Llc Metal oxide semiconductor field effect transistor and method of manufacturing same
JP6851804B2 (en) * 2016-12-14 2021-03-31 住友電気工業株式会社 Semiconductor device
US10170702B2 (en) * 2017-01-12 2019-01-01 International Business Machines Corporation Intermetallic contact for carbon nanotube FETs
WO2018169024A1 (en) * 2017-03-17 2018-09-20 Ricoh Company, Ltd. Field-effect transistor, method for producing same, display element, display device, and system
US20180308696A1 (en) * 2017-04-25 2018-10-25 Texas Instruments Incorporated Low contact resistance graphene device integration
US10164018B1 (en) * 2017-05-30 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor interconnect structure having graphene-capped metal interconnects
CN107290389B (en) * 2017-06-12 2020-02-07 苏州慧闻纳米科技有限公司 Gas-sensitive material for detecting low-concentration formaldehyde at room temperature, preparation method thereof and gas-sensitive sensor
US10580924B2 (en) * 2018-04-04 2020-03-03 The Florida International University Board Of Trustees Graphene devices for terahertz detection and emission
US11982918B2 (en) 2018-04-25 2024-05-14 Wuxi Clearink Limited Apparatus and method for reflective image display with dielectric layer
US10325982B1 (en) 2018-05-17 2019-06-18 Northrop Grumman Systems Corporation Drain ledge for self-aligned gate and independent channel region and drain-side ridges for SLCFET
WO2021028158A1 (en) 2019-08-15 2021-02-18 Amo Gmbh Wireless sensor for photons and/or foreign substances having a graphene fet
WO2021028157A1 (en) 2019-08-15 2021-02-18 Amo Gmbh Sensor for detecting photons incident on the surface thereof and/or foreign substances accumulating on the surface thereof
US11545558B2 (en) * 2020-09-28 2023-01-03 Paragraf Limited Method of manufacturing a transistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100012912A1 (en) * 2008-07-15 2010-01-21 Sandisk 3D Llc Electronic devices including carbon-based films having sidewall liners, and methods of forming such devices
US20100051897A1 (en) * 2008-08-29 2010-03-04 Advanced Micro Devices, Inc. Device and process of forming device with device structure formed in trench and graphene layer formed thereover
US20100086875A1 (en) * 2008-10-06 2010-04-08 Sandisk 3D Llc Method of making sub-resolution pillar structures using undercutting technique
US20100127271A1 (en) * 2008-11-26 2010-05-27 Palo Alto Research Center Incorporated Electronic circuit structure and method for forming same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170120B2 (en) 2005-03-31 2007-01-30 Intel Corporation Carbon nanotube energy well (CNEW) field effect transistor
US7492015B2 (en) 2005-11-10 2009-02-17 International Business Machines Corporation Complementary carbon nanotube triple gate technology
WO2008023399A1 (en) * 2006-08-21 2008-02-28 Fujitsu Limited n-TYPE SEMICONDUCTOR CARBON NANOTUBES, PROCESS FOR PRODUCTION THEREOF, AND PROCESS FOR PRODUCTION OF SEMICONDUCTOR DEVICES
US20080128760A1 (en) * 2006-12-04 2008-06-05 Electronics And Telecommunications Research Institute Schottky barrier nanowire field effect transistor and method for fabricating the same
US20080293228A1 (en) 2007-05-25 2008-11-27 Kalburge Amol M CMOS Compatible Method of Forming Source/Drain Contacts for Self-Aligned Nanotube Devices
US7858454B2 (en) * 2007-07-31 2010-12-28 Rf Nano Corporation Self-aligned T-gate carbon nanotube field effect transistor devices and method for forming the same
US20090174435A1 (en) 2007-10-01 2009-07-09 University Of Virginia Monolithically-Integrated Graphene-Nano-Ribbon (GNR) Devices, Interconnects and Circuits
WO2009129194A2 (en) 2008-04-14 2009-10-22 Massachusetts Institute Of Technology Large-area single- and few-layer graphene on arbitrary substrates
US8106383B2 (en) * 2009-11-13 2012-01-31 International Business Machines Corporation Self-aligned graphene transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100012912A1 (en) * 2008-07-15 2010-01-21 Sandisk 3D Llc Electronic devices including carbon-based films having sidewall liners, and methods of forming such devices
US20100051897A1 (en) * 2008-08-29 2010-03-04 Advanced Micro Devices, Inc. Device and process of forming device with device structure formed in trench and graphene layer formed thereover
US20100086875A1 (en) * 2008-10-06 2010-04-08 Sandisk 3D Llc Method of making sub-resolution pillar structures using undercutting technique
US20100127271A1 (en) * 2008-11-26 2010-05-27 Palo Alto Research Center Incorporated Electronic circuit structure and method for forming same

Also Published As

Publication number Publication date
TW201212235A (en) 2012-03-16
GB2497248B (en) 2014-12-31
US20120056161A1 (en) 2012-03-08
TWI518905B (en) 2016-01-21
US8753965B2 (en) 2014-06-17
WO2012033569A1 (en) 2012-03-15
US8680512B2 (en) 2014-03-25
US20120329260A1 (en) 2012-12-27
US8344358B2 (en) 2013-01-01
US20130009133A1 (en) 2013-01-10
GB201305445D0 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
GB2497248A (en) A graphene transistor with a self-aligned gaTE
GB201320100D0 (en) Self-aligned carbon electronics with ambedded gate electrode
WO2014051728A3 (en) Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates
GB2494017A (en) Graphene/nanostructure fet with self-aligned contact and gate
GB201313089D0 (en) Radiation hardened transistors based on graphene and carbon nanotubes
WO2011071598A3 (en) Quantum-well-based semiconductor devices
JP2017201685A5 (en)
JP2011135063A5 (en)
WO2011126761A3 (en) Two step poly etch ldmos gate formation
JP2013016785A5 (en)
EP2605283A3 (en) In situ grown gate dielectric and field plate dielectric
JP2013175710A5 (en) Method for manufacturing semiconductor device
GB2515930A (en) A Method of fabricating tunnel transistors with abrupt junctions
GB201217771D0 (en) Finfet parasitic capacitance reduction using air gap
WO2014051740A3 (en) Non-planar iii-v field effect transistors with conformal metal gate electrode & nitrogen doping of gate dielectric interface
JP2010093240A5 (en)
TW201613105A (en) Semiconductor device and manufacturing method thereof
WO2012069606A3 (en) Process for fabricating a field-effect transistor device implemented on a network of vertical nanowires, the resulting transistor device, an electronic device comprising such transistor devices and a processor comprising at least one such device
EP2763179A3 (en) High Electron Mobility Transistor (HEMT)
EP2273540A3 (en) Field-effect transistor and method for fabricating field-effect transistor
JP2014204122A5 (en)
WO2010132319A8 (en) Adjusting threshold voltage for sophisticated transistors by diffusing a gate dielectric cap layer material prior to gate dielectric stabilization
JP2013149963A5 (en) Method for manufacturing semiconductor device
EP2555247A3 (en) Thin film transistor including a nanoconductor layer
EP2230686A3 (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20160720