GB2495110A - Antenna combining with a weighted sum of antenna signals presented to an RF chain - Google Patents

Antenna combining with a weighted sum of antenna signals presented to an RF chain Download PDF

Info

Publication number
GB2495110A
GB2495110A GB1116768.1A GB201116768A GB2495110A GB 2495110 A GB2495110 A GB 2495110A GB 201116768 A GB201116768 A GB 201116768A GB 2495110 A GB2495110 A GB 2495110A
Authority
GB
United Kingdom
Prior art keywords
text
weights
receiver
accordance
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1116768.1A
Other versions
GB201116768D0 (en
GB2495110B (en
Inventor
Josep Soler Garrido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Europe Ltd
Original Assignee
Toshiba Research Europe Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Research Europe Ltd filed Critical Toshiba Research Europe Ltd
Priority to GB1116768.1A priority Critical patent/GB2495110B/en
Publication of GB201116768D0 publication Critical patent/GB201116768D0/en
Priority to JP2012216195A priority patent/JP5596098B2/en
Priority to US13/630,601 priority patent/US20130077716A1/en
Publication of GB2495110A publication Critical patent/GB2495110A/en
Application granted granted Critical
Publication of GB2495110B publication Critical patent/GB2495110B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0851Joint weighting using training sequences or error signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0865Independent weighting, i.e. weights based on own antenna reception parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Abstract

A receiver (10) comprising a plurality of antennas (12) and (at least) a radio frequency (RF) chain (16), wherein a weighted sum of the antenna signals is presented to the RF chain. Channel estimates are determined on the basis of training symbols extracted from received packets. The weights for the antenna signals are determined on the basis of channel estimates for preceding packets. The receiver may comprise more than one RF chain; antenna combining takes place where the number of antennas is greater than the number of RF chains.

Description

Antenna combining
FIELD
Embodiments described herein relate generally to antenna combining, and to channel estimation for use in antenna combining.
BACKGROUND
Antenna combining is a conventional technique used to increase diversity in wireless systems equipped with antenna arrays. Many combining methods can be implemented, for instance selection combining and maximal ratio combining being popular choices. Although antenna selection provides an opportunity to provide fewer RF chains than available antennas, which has power and cost advantages, it does inhibit training.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates a receiver implementing a method of antenna combining in accordance with a described embodiment; Figure 2 illustrates the method of antenna combining used in the receiver illustrated in figure 1; Figure 3 illustrates experimental results obtained from a simulation of the receiver illustrated in figure 1; and Figure 4 illustrates further experimental results obtained from a further simulation of the receiver illustrated in figure 1.
DETAILED DESCRIPTION
Antenna selection can be used in a receiver where the number of antenna elements exceeds the number of RF chains. By only providing as many RE chains as required to serve the maximum number of active antennas, a receiver can be designed which has benefits in terms of cost, power consumption, complexity and size.
In one approach, a receiver could be conceived which has a plurality of antenna elements but only a single RF chain. The RE chain may comprise the usual mixer, filter and digital to analogue converter elements as might be familiar to the reader. In such a receiver, only one antenna element can be active at any time. An RF switch is provided, to provide connection between the active antenna element and the RF chain.
The RF chain processes the signal received on the active antenna element and presents it to an ADO which then forwards the digitised signal to digital baseband processing. The digital baseband processing includes production of a control signal for controlling the RF switch, determining which of the antenna elements is to be active.
The above described arrangement can be extended, of course, to situations where more than one RF chain is available. In such a case, the RF switch would need to be designed so that it can feed the signals from a corresponding number of antenna elements to respective ones of the available RF chains.
In either of the above scenarios, fewer RF chains are available than are necessary to train the multiple antenna elements.
It would be possible to train all antenna elements for every received packet. This would imply that a packet comprises a series of training symbols, one training symbol per antenna element, followed by a series of data symbols. However, this requirement for training symbols for all antennas imposes substantial overhead on each packet.
Moreover, a fast selection mechanism is required in the RF switch, to enable switching between antennas during the training process. A fast selection mechanism usually implies use of solid-state switches. Such switches have a larger insertion loss than slower MEMS based equivalents. Even using fast switches, guard intervals may be required within transmitted packets in order to perform switching.
Another approach would be to use dedicated packets to train the antennas using dedicated training packets, before data carrying packets are transmitted. The latter could then be received using the antennas identified as being the best possible for reception in the preceding training stage. This does not require in-packet switching or as many training symbols, but incurs a throughput loss due to the extra training packets sent.
Rather than limiting the number of RF chains, a receiver could be provided with as many SF chains as antenna elements. This would enable estimation of the channel at each antenna element from a single training symbol. That assumes that the transmitter sending the training symbol has a single transmission antenna. If the transmitter has multiple transmit antennas, then more training symbols will inevitably be required. The consequence of this approach would be that training data from all antenna elements at the receiver, is available simultaneously. Maximum ratio combining can be applied to the received streams. This has the potential to improve performance over the previously described examples, but a drawback of this approach is the high complexity implied by providing so many RF chains.
One embodiment provides a receiver for receiving packet based communications, the receiver comprising a plurality of antennas, and a radio frequency (RF) processing chain, a signal combiner operable to combine signals received on said antennas into a combined analogue signal to be presented to the SF processing chain, the combined analogue signal being a weighted sum, governed by weights, of said received antenna signals, a training symbol extractor operable to extract a training symbol from a received packet, a channel estimator operable to determine a channel estimate on the basis of an extracted training symbol, and a weight calculator operable to calculate said weights, said weight calculator being operable to determine weights for the receipt of a packet on the basis of channel estimates determined for previously received packets.
Another embodiment provides a method of receiving a packet based communication, for use in a receiver comprising a plurality of antennas and a radio frequency (SF) processing chain, the method comprising combining signals received on said antennas into a combined analogue signal to be presented to the RF processing chain, the combined analogue signal being a weighted sum, governed by weights, of said received antenna signals, and further comprising extracting a training symbol from a received packet, determining a channel estimate on the basis of an extracted training symbol, and calculating said weights, said calculating comprising determining weights for the receipt of a packet on the basis of channel estimates determined for previously received packets.
Another embodiment provides antenna combining to be carried out when the number of antennas in a receiver is greater than the number of radio frequency, RF, chains. In such a case, a weighted sum of the signals detected at the antennas is presented to the or each RF chain. In a packet based communication, weights used to create the or each weighted sum, for a particular packet, can be calculated based on channel estimates determined for preceding packets.
Another embodiment provides arrangements such as set out above, embodied by way of a computer implementation, configured by suitable software. In accordance with this embodiment, a computer program product comprises executable instructions which, when executed by a computer cause the computer to become configured as apparatus in accordance with one of the embodiments described herein, or to perform a method as described herein.
Figure 1 illustrates a wireless communications receiver 10 which is configured in a manner which will be familiar to the person skilled in the art but, which is used in the context of the presently described embodiment, in a new manner.
The receiver 10 comprises a plurality of antenna elements 12, each of which is connected into an RF combiner 14. The RF combiner 14 acts to combine signals received on the antenna elements 12, and forwarding a combined analogue signal to a single RF chain 16. The RF chain 16 conditions the combined analogue signal, and forwards it to analogue to digital converter (ADC) 18, which converts the combined analogue signal into a digital signal stop the digital signal is then passed to a digital baseband unit 20, which processes the digital signal, extracting content, and providing control signals to the RF combiner 14.
In detail, the RF combiner 14 comprises an array of variable gain elements 30, one per antenna element 12, and phase shift devices 32, also one per antenna element 12. A combiner circuit 34 combines the gain varied and phase shifted analogue signals, to provide the combined analogue signal.
In similar detail, the RF chain 16 provides a mixer 36 and a filter 38, to take the combined analogue signal down to analogue baseband, for presentation to the ADC 18.
As used conventionally, the receiver combines signals directly in the analogue (RF) domain, hence saving hardware cost, as signals from the available antenna elements do not need to be converted to the analogue baseband and then to the digital baseband before being combined. Instead, a variable gain and phase shift is applied to each received RE signal and the combiner circuit 34 combines all of them into a single combined analogue signal, which is then converted to analogue baseband and then to the digital domain.
As will be appreciated, this example can be extended to the case of having more than one RF chain. In that case, if Na antennas and NRF chains are available, the RE signals from the Na antennas are combined into NRF RF signals. The weight applied to each received RF signal (a weight being the combination of a gain and a phase shift) is determined in baseband, and typically requires knowledge of the entire multi-antenna channel. Therefore this method has limitations similar to antenna selection systems.
Both its performance and its complexity are in between those of antenna selection and digital domain combining.
In the previously described analogue (RE) antenna combining method, the weights are typically chosen so that the received (possibly averaged over time or frequency) SNR is maximized, or alternatively so that the bit error rate or block error rate of the system is minimized. This requires knowledge of the entire multi-antenna channel and hence poses the same problems as antenna selection systems, i.e. training of all the antenna elements. Typically, multiple training symbols are assumed, so that antenna switching can be performed between them and then achieve full training.
Instead, the embodiment disclosed herein is based on an approach involving processing data from a single training symbol (if a single antenna transmitter is employed) or more generally with a reduced number of symbols, and avoiding change to the antenna selected, or the weights applied, within a symbol. In a method disclosed herein, changes in the antenna configuration are restricted to the time interval within packets. Figure 2 will now be described, to provide the reader with an understanding of this approach.
In this example, the same receiver 10 is used as previously described. l-Iowever, the method for weight (gain and phase shift) calculation is intended to enable estimation of the full multi-antenna channel using a training symbols delivered one per packet, if a single transmission antenna is employed, or a reduced number of training symbols if MIMO transmission is employed, in comparison with earlier examples in the field of the embodiment.
In this example, any transmitted packet can contain data and no packet is reserved solely for use in training. This is because, when weights, to be applied for a particular packet, are calculated, this is done in a manner which involves sacrifice of performance to a very small extent, in order to allow for full channel estimation. This full channel estimation can be used for calculation of weights for the next packet, saving training overhead.
The described embodiment takes advantage of the low Doppler spread of typical indoor channels, which means channel variations in time are relatively slow. By this route, channel estimation can be conducted by making use of the current packet, and a number of previously received packets. Channel estimation takes place after each packet is received. This means that channel change can take place between packets, and the method of the presently described embodiment will accommodate that change.
The only requirement is that the rate of change in the channel is sufficiently small so that the channel does not significantly change within a time window comprising J\T, packets. N has the same order of magnitude as the ratio between the number of available antennas and the number of available SF chains. More generally, N can be greater than or equal to Air / N0, with an upper bound on N defined by an implementation specific recognition that the channel does not vary significantly within the time window N: (1) In that case, the training symbols from the last N received packets can be used to estimate the full multi-antenna channel. Conventional channel estimation methods can be applied, for instance minimum mean square error (MMSE) channel estimation.
However1 in certain scenarios, such as in the presence of very low channel variations, it is recognised that the methods described herein may provide poor channel estimates in the illustrated architecture, when weights are selected solely with the intention of improving performance. In that case, similar multi-antenna channels for the packets will result in similar optimal weights. Each channel observation at the receiver after analogue combining consists of the superimposition of the multi-antenna channel according to the employed weights. Therefore, if channels and weights remain relatively constant, the observed combined channel will not change substantially within the N packets, and each of the N packets will essentially provide the same information about the multi-antenna channel. This would render impossible the calculation of the multi-antenna channel. In general1 in order to achieve meaningful multi-antenna channel estimation, a certain degree of orthogonality is required of the combined channel observations. An assumption made in the present disclosure is that the multi-antenna channel does not change significantly within the N packets, and thus that the weights must introduce this degree of orthogonality. Accordingly, determination of the weights is not solely governed by reasons of performance.
In the described method, it is assumed that »= N IN0 consecutive packets can be transmitted within the coherence time of the channel. This is a realistic assumption for typical antenna configurations and indoor channels. Initially the case N0 = 1 is considered for simplicity. Individual channels are denoted with the letter h whereas observed combined channels are denoted with the letter g. Sub-indices denote subcarrier numbers whereas super-indices refer to packet numbers.
The receiver of this example is configured as an OFDM system with subcarriers.
(i-N +1) (0 At the receiver, a set of channel estimates g, . . g for the most recently received N packets is available for k=I...Nb along with the set of previously employed combining weights. . . Considering the channel at subcarrier k, the following can be written: g0 =(w°)'1 hk +Vk (2) where g') =[g_1'lr+I),,*g0] is a N,, xl vector containing the estimated (combined) channel at subcarrier k on the previous N transmissions, w°' is a N,, x Nr matrix where the columns contain the previously used combining weights, i.e.: vv = [w''. .. I (3) and; is a N,, xl noise term which accounts for channel estimation errors as well as for channel variations within the N,, packets considered.
In a simple approximation, if channel variations due to Doppler spread are ignored and only channel estimation errors are considered, it can be assumed that the terms of v are independent and identically distributed (i.i.d.) Gaussian variables with standard deviation c.
In a more sophisticated receiver, channel variations within the N,, packets could be taken into account, if Doppler spread information were available, assigning higher noise variances to estimations from older packets.
Considering the first case, the MMSE estimator for the channel coefficients is = (w° (w0)M +INPXNPy1 W°g (4) where o-= E{hh}. It can be observed that matrix inversion is only performed once per received packet, independently of the number of subcarriers. For the case where Na >1, the N, antennas can be grouped in sets of Nr I Na elements so that the channel coefficients can be obtained with Na independent estimators.
Therefore, the described combining method estimates, upon packet reception, the full channel response. This estimation can be subsequently used in order to calculate the combining weights for the next packet.
The conventional method to determine the weights in order to maximize SNR, as described for instance in US 7,539,274 82, would be to calculate the channel's autocorrelation matrix R and then calculate its eigenvector with the largest associated eigenvalue. That is the optimal weight vector to be applied to the antennas. In OFDM systems, the auto correlation matrix can be averaged in frequency for all the subcarriers employed.
Therefore, w'' can be calculated as the largest eigenvalue of H (5) 14(1+1) = (h (h°) ) where Nb is the number of subcarriers.
Therefore, a method is described for channel estimation using measurements from a single training symbol from multiple received packets and adjusting the combining coefficients only between consecutive packets. The estimation and weight-adjustment method is explained by the flowchart of figure 2.
As shown in the figure, the first step (S1-2) is to receive and decode the packet. A packet marked as "packet (i)' is considered here, where i is an index distinguishing that packet.
The estimated combined channel gO) is used (in step 81-4) to update gk for k = 1: Nsub.
Then, in step S1-6, the individual channels hk are estimated for k = 1: Nsub using equation (4) set out above. The individual channels hk are used (step S1-8) to calculated combining weights for the next packet w00. The digital baseband unit 20 then waits (step Si-la) until the packet (i) is fully received and then applies the new weights, wtO, in preparation for the next packet (1+1).
In order to initially estimate the channel, the first N packets can be used to switch across all the antennas, effectively creating an initial w matrix equal to the identity matrix (or many stacked identity matrices, if N »=N, IN0), and an initial vector of combined channels g where each entry corresponds to the estimated response from each individual antenna. Once this initial training phase is done, combining weights can be calculated using the described method, which effectively tracks slow variations in the channel without resorting to dedicated training packets.
The reader will appreciate that, whereas the identity matrix (or a plurality of stacked matrices) is used in the above example, any easily invertible matrix could be used instead.
However, if the channel does not change, and hence neither does the optimal combining weights between consecutive packets, the resulting W matrix is close to singular and performance of the proposed channel estimator is reduced, as aforementioned. This degradation is particularly large for low Doppler spread values.
In those cases, it can be alleviated by using a larger number of packets for channel estimation N, resulting in an over-determined system spanning a larger time frame.
However, a certain degree of orthogonality in the rows of W is required in order to provide an estimator with requisite performance.
A alternate approach to the computation of the weights, which provides an amelioration of this limitation, is described. The approach initially considers N = Nr / N0. Given a N, / N0 x N, / N0 unitary matrix A = [a1. . aN/N an alternative sub-optimal method obtains the weight coefficients for packets (i)to (i+N-1) from the eigendecomposition of the matrices: (1a)R° +atr(R0)a1aj'l (1-a)R" + car (R'° )a2a (1-a) + air (R(t"r') ) Nt/Na aN/N where er(.) denotes the trace of a matrix, and R is the channel correlation matrix (averaged infrequency) as previously defined.
In the general case, the described approach merely requires that a term proportional to a1a is added to R. The scaling by a and the trace is provided to render the trace of the resultant matrix the same as the original, but the actual equations above can be understood just as an example of a more general idea.
A scalar a c {o. . . 1} determines the trade off between optimality of the weights in terms of performance and orthogonality of the w matrix. This parameter can be determined empirically, and should be set to the lowest possible value that ensures correct channel estimation. Accordingly, the performance deterioration implicit in use of this approach can be kept to a minimum.
The weights used in each packet are therefore biased towards a certain vector ak which changes each packet, sweeping constantly across the possible values. For the previous sequence, weight estimation for packet (i-i-Ne) would be biased towards a1 again. Therefore, at each time instant, the preceding received packets, which are considered for current channel estimation, have been received with sets of combining weights calculated in a way that each of them is deviated from the optimal solution towards a given vector a1 from a set of orthogonal vectors A, mitigating noise enhancement problems in channel estimation.
If a is set to a zero value, the resultant combiner is the same as the first example given above, whereas a = 1 produces a set of combining weights equal to the chosen row of A. Thus, if ci = 1 the weights depend entirely on A and not the channel, and hence no combining gain is obtained. Therefore, it is desired to choose the lowest possible value of a that ensures channel estimation is performed without noise enhancement problems, hence keeping as much of the combining gain as possible.
Simulations have been performed to show that small values of a result in much improved channel estimation with a small degradation of performance compared with optimal weight selection for systems with full training. Finally, extension for a larger number of packets N, is straightforward and can be achieved by sweeping through the Air I Na orthogonal vectors of A as many times as necessary.
An evaluation of the method has been carried out via link level simulation of a Wireless LAN system with a receiver selecting Na = 2 out of Nr = 8 antennas and a single antenna transmitter is presented. Packets comprising 25 data OFDM symbols with Nsub = 64 are spaced ims in time. A time varying channel model was used, with a Doppler spread value corresponding to a receiver velocity of 1 ms1 for a 2.4 0Hz carrier. The performance of different detectors are compared in figure 3, including a detector using random antenna selection, a detector using antenna selection with full training, an analogue antenna combining system with full training, and the approach taken in the method described above (and illustrated in figure 2) with a training scheme as described in figure 1 and using several values of a. It will be observed that packet error rates for a = 0 (equivalent to conventional methods) are much higher than for the full training analogue combining case due to poor channel estimation. However, when a = 0.2 or a = 0.3, error rates approach the performance of full training thanks to the improved channel estimation.
The method can also be verified experimentally using a wireless prototype. In this case the receiver selects 1 out of 4 antennas, and the operating frequency is 5.4 GHZ.
As demonstrated by the results illustrated in figure 4, average packet separation is 2Oms in a fairly static channel condition.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and apparatus described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and apparatus described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.

Claims (1)

  1. <claim-text>CLAIMS: 1. A receiver for receiving packet based communications, the receiver comprising a plurality of antennas, and a radio frequency (RF) processing chain, a signal combiner operable to combine signals received on said antennas into a combined analogue signal to be presented to the RF processing chain, the combined analogue signal being a weighted sum, governed by weights, of said received antenna signals, a training symbol extractor operable to extract a training symbol from a received packet, a channel estimator operable to determine a channel estimate on the basis of an extracted training symbol, and a weight calculator operable to calculate said weights, said weight calculator being operable to determine weights for the receipt of a packet on the basis of channel estimates determined for previously received packets.</claim-text> <claim-text>2. A receiver in accordance with claim 1 wherein a plurality of RF processing chains are provided, and wherein the signal combiner is operable to combine signals received on said antennas into a corresponding plurality of combined analogue signals, the weight calculator being operable to calculate weights defining each combination of signals.</claim-text> <claim-text>3. A receiver in accordance with claim 1 or claim 2, wherein said weight calculator is operable to calculate said weights on the basis of channel estimates determined on receipt of a number of packets greater than or equal to a ratio of the number of antennas to the number of RF processing chains.</claim-text> <claim-text>4. A receiver in accordance with any preceding claim wherein said training symbol extractor is operable to extract exactly one training symbol from each received packet.</claim-text> <claim-text>5. A receiver in accordance with any preceding claim and comprising a data detector operable to detect one or more data symbols in a received packet.</claim-text> <claim-text>6. A receiver in accordance with any preceding claim wherein the weight calculator is operable, for each calculated weight, to calculate a weight comprising a gain coefficient and a phase coefficient. Is</claim-text> <claim-text>7. A method of receiving a packet based communication, for use in a receiver comprising a plurality of antennas and a radio frequency (RF) processing chain, the method comprising combining signals received on said antennas into a combined analogue signal to be presented to the RF processing chain, the combined analogue signal being a weighted sum, governed by weights, of said received antenna signals, and further comprising extracting a training symbol from a received packet, determining a channel estimate on the basis of an extracted training symbol, and calculating said weights, said calculating comprising determining weights for the receipt of a packet on the basis of channel estimates determined for previously received packets.</claim-text> <claim-text>8. A method in accordance with claim 7 for a receiver in which a plurality of RF processing chains are provided, and wherein the signal combining comprises combining signals received on said antennas into a corresponding plurality of combined analogue signals, the weight calculating comprising calculating weights defining each combination of signals.</claim-text> <claim-text>9. A method in accordance with claim 7 or claim 8, wherein said weight calculating comprises calculating said weights on the basis of channel estimates determined on receipt of a number of packets greater than or equal to a ratio of the number of antennas to the number of RF processing chains.</claim-text> <claim-text>10. A method in accordance with any one of claims 7 to 9 wherein said training symbol extracting comprises extracting exactly one training symbol from each received packet.</claim-text> <claim-text>11. A method in accordance with any one of claims 7 to 10 and comprising detecting one or more data symbols in a received packet.</claim-text> <claim-text>12. A receiver in accordance with any one of claims 7 to 11 and wherein the weight calculating comprises, for each calculated weight, calculating a weight comprising a gain coefficient and a phase coefficient.</claim-text> <claim-text>13. A computer program product comprising computer executable instructions which, when executed by a computer, cause the computer to perform a method in accordance with any one of claims 7 to 12.</claim-text> <claim-text>14. A computer program product in accordance with claim 13 and comprising a computer readable storage medium.</claim-text> <claim-text>15. A computer program product in accordance with claim 13 and comprising a computer receivable signal.</claim-text>
GB1116768.1A 2011-09-28 2011-09-28 Antenna combining Expired - Fee Related GB2495110B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1116768.1A GB2495110B (en) 2011-09-28 2011-09-28 Antenna combining
JP2012216195A JP5596098B2 (en) 2011-09-28 2012-09-28 Antenna synthesis
US13/630,601 US20130077716A1 (en) 2011-09-28 2012-09-28 Antenna combining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1116768.1A GB2495110B (en) 2011-09-28 2011-09-28 Antenna combining

Publications (3)

Publication Number Publication Date
GB201116768D0 GB201116768D0 (en) 2011-11-09
GB2495110A true GB2495110A (en) 2013-04-03
GB2495110B GB2495110B (en) 2014-03-19

Family

ID=44994160

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1116768.1A Expired - Fee Related GB2495110B (en) 2011-09-28 2011-09-28 Antenna combining

Country Status (3)

Country Link
US (1) US20130077716A1 (en)
JP (1) JP5596098B2 (en)
GB (1) GB2495110B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6193062B2 (en) * 2013-09-03 2017-09-06 株式会社東芝 Aggregation / relay station equipment
US9143364B2 (en) * 2013-10-10 2015-09-22 Broadcom Corporation IQ imbalance estimation using broadcast signals
KR102120796B1 (en) * 2014-05-13 2020-06-09 삼성전자주식회사 A beamforming apparatus, a method for forming beams, an ultrasonic imaging apparatus and an ultrasonic probe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027540A1 (en) * 2001-07-31 2003-02-06 Da Torre Serge Barbosa Diversity combiner and associated methods
GB2386476A (en) * 2002-03-14 2003-09-17 Toshiba Res Europ Ltd Determining a first set of weights for an adaptive antenna and using that determination to determine a second set of weights
EP1376896A1 (en) * 2002-06-20 2004-01-02 Evolium S.A.S. Iterative channel estimation for receiving wireless transmissions using multiple antennas
US7653415B2 (en) * 2002-08-21 2010-01-26 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222101A (en) * 1991-05-03 1993-06-22 Bell Communications Research Phase equalizer for TDMA portable radio systems
JPH07231286A (en) * 1994-02-18 1995-08-29 Oki Electric Ind Co Ltd Propagation path estimating device and mobile communication receiver
US5793891A (en) * 1994-07-07 1998-08-11 Nippon Telegraph And Telephone Corporation Adaptive training method for pattern recognition
US6185259B1 (en) * 1996-06-12 2001-02-06 Ericsson Inc. Transmitter/receiver for GMSK and offset-QAM
US6172970B1 (en) * 1997-05-05 2001-01-09 The Hong Kong University Of Science And Technology Low-complexity antenna diversity receiver
US6226612B1 (en) * 1998-01-30 2001-05-01 Motorola, Inc. Method of evaluating an utterance in a speech recognition system
US6201955B1 (en) * 1998-05-29 2001-03-13 Motorola, Inc. Method and apparatus for receiving a radio frequency signal using a plurality of antennas
US6968022B1 (en) * 1999-09-23 2005-11-22 Princeton University Method and apparatus for scheduling switched multibeam antennas in a multiple access environment
JP3423659B2 (en) * 2000-02-07 2003-07-07 三菱電機株式会社 Wireless receiver
WO2001078254A1 (en) * 2000-04-07 2001-10-18 Nokia Corporation Multi-antenna transmission method and system
US9130810B2 (en) * 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US7103115B2 (en) * 2001-05-21 2006-09-05 At&T Corp. Optimum training sequences for wireless systems
AU2002310456A1 (en) * 2001-06-15 2003-01-02 Salary.Com Compensation data prediction
US7349667B2 (en) * 2001-10-19 2008-03-25 Texas Instruments Incorporated Simplified noise estimation and/or beamforming for wireless communications
US7088791B2 (en) * 2001-10-19 2006-08-08 Texas Instruments Incorporated Systems and methods for improving FFT signal-to-noise ratio by identifying stage without bit growth
JP2003209501A (en) * 2002-01-16 2003-07-25 Matsushita Electric Ind Co Ltd Receiver and reception method
JP4412926B2 (en) * 2002-09-27 2010-02-10 株式会社エヌ・ティ・ティ・ドコモ Adaptive equalization apparatus and program thereof
US7756483B2 (en) * 2003-06-16 2010-07-13 Broadcom Corporation Adaptive channel quality estimation algorithm to support link adaptation
US8391322B2 (en) * 2003-07-09 2013-03-05 Broadcom Corporation Method and system for single weight (SW) antenna system for spatial multiplexing (SM) MIMO system for WCDMA/HSDPA
US8027704B2 (en) * 2003-08-21 2011-09-27 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
US7328033B2 (en) * 2003-10-01 2008-02-05 Rappaport Theodore S Wireless network system and method
JP4292093B2 (en) * 2004-02-24 2009-07-08 富士通株式会社 Array antenna system, weight control device, and weight control method
JP2005252844A (en) * 2004-03-05 2005-09-15 Sharp Corp Receiving apparatus
EP1757000B1 (en) * 2004-06-18 2011-05-11 Nokia Corporation Frequency domain equalization of frequency-selective mimo channels
US8098683B2 (en) * 2004-10-06 2012-01-17 Broadcom Corporation Method and system for implementing a single weight (SW) single channel (SC) MIMO system with no insertion loss
US20060104341A1 (en) * 2004-11-16 2006-05-18 Magee David P Systems and methods for providing training data
JP3724501B1 (en) * 2004-11-30 2005-12-07 三菱電機株式会社 Demodulator, diversity receiver and demodulation method
KR100708482B1 (en) * 2005-03-04 2007-04-18 삼성전자주식회사 Channel equalizer and method for equalizing channel
US20080285686A1 (en) * 2005-07-29 2008-11-20 Norman Beaulieu Antenna Selection Apparatus and Methods
JP4938679B2 (en) * 2005-10-21 2012-05-23 パナソニック株式会社 Inter-carrier interference canceling apparatus and receiving apparatus using the same
JP4852984B2 (en) * 2005-11-09 2012-01-11 株式会社日立製作所 Multi-channel transmission system using multiple base stations
US7564910B2 (en) * 2006-04-17 2009-07-21 Zoran Kostic Method and system for communications with reduced complexity receivers
US7477192B1 (en) * 2007-02-22 2009-01-13 L-3 Communications Titan Corporation Direction finding system and method
US20090040107A1 (en) * 2007-06-12 2009-02-12 Hmicro, Inc. Smart antenna subsystem
CN101325569B (en) * 2007-06-15 2013-09-04 安捷伦科技有限公司 Robust channel evaluation for communication system
WO2009018655A1 (en) * 2007-08-06 2009-02-12 Universite Laval Method and apparatus for signal acquisition in ofdm receivers
US7773030B2 (en) * 2008-07-31 2010-08-10 Samsung Electronics Co., Ltd. Method and system for antenna training and communication protocol for multi-beamforming communication
WO2010049993A1 (en) * 2008-10-28 2010-05-06 株式会社日立製作所 Multi-user mimo wireless communication method and multi-user mimo wireless communication device
US8494807B2 (en) * 2009-01-23 2013-07-23 Oxfordian Llc Prognostics and health management implementation for self cognizant electronic products
US20110150119A1 (en) * 2009-12-18 2011-06-23 Mark Kent Method and system for channel estimation in an ofdm based mimo system
US8533224B2 (en) * 2011-05-04 2013-09-10 Google Inc. Assessing accuracy of trained predictive models
US8554703B1 (en) * 2011-08-05 2013-10-08 Google Inc. Anomaly detection
US8385305B1 (en) * 2012-04-16 2013-02-26 CBF Networks, Inc Hybrid band intelligent backhaul radio
US8928542B2 (en) * 2011-08-17 2015-01-06 CBF Networks, Inc. Backhaul radio with an aperture-fed antenna assembly
US8866663B2 (en) * 2011-12-27 2014-10-21 Massachusetts Institute Of Technology Methods and apparatus for sensing organic tissue

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027540A1 (en) * 2001-07-31 2003-02-06 Da Torre Serge Barbosa Diversity combiner and associated methods
GB2386476A (en) * 2002-03-14 2003-09-17 Toshiba Res Europ Ltd Determining a first set of weights for an adaptive antenna and using that determination to determine a second set of weights
EP1376896A1 (en) * 2002-06-20 2004-01-02 Evolium S.A.S. Iterative channel estimation for receiving wireless transmissions using multiple antennas
US7653415B2 (en) * 2002-08-21 2010-01-26 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication

Also Published As

Publication number Publication date
GB201116768D0 (en) 2011-11-09
JP5596098B2 (en) 2014-09-24
US20130077716A1 (en) 2013-03-28
GB2495110B (en) 2014-03-19
JP2013081173A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
CN101133670B (en) Radio base station device and terminal device
EP2086140B1 (en) Mimo-ofdm communication system and mimo-ofdm communication method
CN100553186C (en) OFDM channel estimating and multiple transmit antennas are followed the tracks of
EP2272180B1 (en) Method for transmitting and receiving signals in open-loop spatial multiplexing mode
US7825856B2 (en) Low complexity blind beamforming weight estimation
EP1830487B1 (en) Multiple input multiple output communication apparatus
US20100246494A1 (en) System and Method for Communications Using Spatial Multiplexing with Incomplete Channel Information
RU2010138737A (en) ADAPTIVE TO TRANSMISSION SPEED TRANSMISSION DIAGRAM FOR SYSTEMS WITH A LARGE NUMBER OF INPUTS AND OUTPUTS (BKVV)
RU2006135107A (en) TRANSMISSION SPACE AND SPATIAL EXTENSION FOR A COMMUNICATION SYSTEM WITH ANYTHE ANTENNAS USING MULTIPLEXING WITH ORTHOGONAL FREQUENCY DIVERSITY
CA2547493A1 (en) Multi-antenna system to simultaneous support of miso and mimo receivers
JP4518999B2 (en) MIMO receiving antenna selection device
US20080075190A1 (en) Apparatus and method for selecting antennas in MIMO multi-carrier system
TW201347451A (en) Receiving method and apparatus, and communication system using the same
Ganesh et al. Channel estimation analysis in MIMO-OFDM wireless systems
EP2044717B1 (en) Multicarrier transmission with time diversity and/or frequency diversity
JP2007089130A (en) Radio apparatus
EP2221990B1 (en) Apparatus and method for supporting multiple-input multiple-output and beamforming simultaneously in wireless communication system
WO2007058218A1 (en) Signal separating method and signal separating device
GB2495110A (en) Antenna combining with a weighted sum of antenna signals presented to an RF chain
EP2204924A1 (en) Radio communication device and radio reception method
US8687675B2 (en) Method and system for transmitting/receiving data in communication system
Astawa et al. An RF signal processing based diversity scheme for MIMO-OFDM systems
Nuckelt et al. Linear diversity combining techniques employed in Car-to-X communication systems
US9755883B1 (en) Systems and methods for detecting beam-formed orthogonal frequency division multiplexing (OFDM) packets
KR20090054133A (en) Method and apparatus for adaptive receive signal decoding by chnnel variation in communication system

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20170928