GB2487875A - Method of deploying and powering an electrically driven device in a well - Google Patents

Method of deploying and powering an electrically driven device in a well Download PDF

Info

Publication number
GB2487875A
GB2487875A GB1208550.2A GB201208550A GB2487875A GB 2487875 A GB2487875 A GB 2487875A GB 201208550 A GB201208550 A GB 201208550A GB 2487875 A GB2487875 A GB 2487875A
Authority
GB
United Kingdom
Prior art keywords
powered device
power connector
electrical
power
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1208550.2A
Other versions
GB201208550D0 (en
GB2487875B (en
Inventor
Philip Head
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artificial Lift Co Ltd
Original Assignee
Artificial Lift Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Artificial Lift Co Ltd filed Critical Artificial Lift Co Ltd
Priority to GB1208550.2A priority Critical patent/GB2487875B/en
Publication of GB201208550D0 publication Critical patent/GB201208550D0/en
Publication of GB2487875A publication Critical patent/GB2487875A/en
Application granted granted Critical
Publication of GB2487875B publication Critical patent/GB2487875B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/028Electrical or electro-magnetic connections
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/023Arrangements for connecting cables or wirelines to downhole devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/02Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for locking the tools or the like in landing nipples or in recesses between adjacent sections of tubing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/128Adaptation of pump systems with down-hole electric drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics (AREA)
  • Earth Drilling (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

A production tube 20 includes a power line terminating in a first power connector 45 and an orientation profile 27 disposed in the vicinity of the first power connector. A powered device 30 having a second power connector 43 and a radially extending orientation means 41 is lowered down the production tube, causing the extending orientation means to be urged radially outwards to engage with the orientation profile and orient the device, so that the first and second power connectors engage to connect the powered device to the power line in an automatic manner.

Description

SYSTEM FOR DEPLOYThG AND POWERING AN ELECTRICALLY
DRIVEN DEVICE IN A WELL
This invention relates to a method of deploying an electrical submersible powered fluid transducer system, such as a gas compressor or an electrical submersible pump. generally known as an ESP, in an oil and/or gas production well.
The disposing in wells of electrical submersible systems has been done for many years using jointed tubular conduits with an electrical motor, and a fluid transducer connected to the bottom of the jointed tubing. Consecutive joints of tubular conduits are connected and lowcred into a well with the assistance of a rig mast and hoisting equipment, whilst unspooling and connecting to the outer diameter of the tubing a continuous length of electrical power transmission cable. This method of disposing the electrical submersible fluid transducer system is well know to those familiar with the art of producing non-eruptive sources of oil and gas from the subtcrrancan environment. The retrieval of these electrical submersible fluid transducer systems is also commonly accomplishcd by pulling the jointed tubing out of the well simultaneously with the electrical submersible motor and fluid transducer system and the electrical power transmission cable. The following prior art references are believed to be pertinent to the invention claimed in the present application: U.S. Pat Nos. 3,939,705; 4,105,279; 4,494.602; 4,589,717; 5,180,140; 5,746.582 and 5871,051; International patent application No. W098/22692 and European patent specifications Nos. 470576 and 745176. U.S. Pat Nos. 3,835,929, and 5.191,173 teach the art of deploying and retrieving an electrical submersible system in oil wells using coiled or continuous tubing. These coiled tubing disposal methods often use large coiled tubing spool diameters owing to the radius of curvature possible of the continuous tubing. Hence the surface spooling devices that these systems require to inject and retrieve the continuous tubing arc cumbersome, and require special surface and subterranean equipment for deployment and intervention.
Other previous art disclosed in the literature teaches the disposal and retrieval of the subterranean electrical fluid transducer system with wireline or wire rope as structural support for simultaneously disposing the electrical power transmission cable with the system. Hence these wircline methods and apparatus involve the use of large and unique surface intervention equipment to handle the weight and spool used for the electrical power cable and the wire rope to be run in the well. U.S. Pat. No. 5,746,582 discloses the retrieval of a submersible pumps whilst leaving an electrical motor and cable in a well.
Hence the method of U.S. Pat. No. 5,746,582 teaches the retrieval and deployment of the mechanical portion of an electrical submersible fluid transmission system whilst leaving the electrical motor and other component parts of the electrical submersible system disposed in the disposal of the electrical motor separately from the electrical power transmission cable. In the case of artificially lifted wells powered with electrical submersible motor systems, the current art is to dispose the required transducer assembly, for example a pump or compressor assembly, with an electrical motor and electrical power cable simultaneously into the well with a supporting member.
This supporting member is jointed tubing from a surface rig, a coiled tubing unit with continues tubing or braided cable. The tubing or a braided cable is required as the electrical power cable is not able to support its own weight in thc well and hence must bc connected and disposed in thc well with a structural member for support. In the case of jointed pipe deployed from a rig, the power cablc is attachcd to thc electrical motor on surface, and thc cable is attached to the tubing as the electrical motor, transducer, and tubing are disposed into the well casing or tubing. The attach Inent of the cable to the tube is done by the use of steel bands, cast clamps. and other methods known to those familiar with the oil and gas business. In other methods, the power cable is placed inside of continuous tubing or attached to the outside of continuous tubing with bands as taught by U.S. Pat. No. 5,191,173. This continuous tubing is often referred to in the industry as coiled tubing. U.S. Pat. No. 3,535,929 teaches the use of the continuous tubing with the electrical power transmission cable inside of the tube. In all cases where electrical submersible fluid transducers systems are disposed and retrieved from wells the electric motor and electrical power transmission cable are deployed or retrieved simultaneously.
It is well known to those familiar with electrical submersible power cable that the action of removing the cable from the well can result in damage to the electrical power transmission cable, in a variety of ways. The damage inflicted on the electrical power cable can be due to bending stresses imposed on the cable during the disposal and retrieval. The conventional electrical power cable insulation, wrapping, and shields can develop stress cracks from the spooling of the cable over sheaves and spools devices used to deploy the cable. Another failure mode associated with submersible power transmission cable is caused form impact loads or crushing of the cable as it is disposed or retrieved in the wells. It is also well known that gases found in subterranean environments impregnated the permeability of the electrical power transmission cable's insulation, wrapping and shields. This gas is trapped in the permeability of the insulation at a pressure similar to the pressure found inside the well. When the cable is retrieved from the well the electrically powered transmission cable is exposed to ambient pressures. This will create a pressure differential between gas encapsulated in the cable insulation aiid the ambient surface pressure conditions. The rate of impregnated gas expansion from the higher pressure inside of the cable insulation expanding towards the lower pressure of the ambient conditions can sometimes exceed the cable insulation permeability's ability to equalise the pressure differential. The result is a void, or stressing of the insulation, and premature failure of the cable. The requirement to retrieve and dispose the electrical power transmission cable with the electrical submersible fluid traducer system also requires the use of specialised surface intervention equipment. This can require very large rigs, capable of pulling tubing, electrical power transmission cable, and electrical submersible fluid transducers. In the offshore environment these well intervention methods require semi-submersible drill ships and platforms. In the case of jointed conduit deployed in a plurality of threaded lengths, normally 9-12 m each, the pulling equipment is a drilling or pulling rig at surface. In the case that the electrical power transmission cable and assembly are disposed connected to or in continuous tubing, a specialised coiled tubing rig is required at surface. This coiled tubing unit consisting of an injector head, a hydraulic power unit, and a large diameter spooling device containing the continuous coiled tubing all located on the surface. This disposal and retrieval method requires significant space at the earth's surface or sea floor. The reasons for intervening in a well to retrieve or dispose an electrical submersible transducer system are well know to those familiar with the art of fluid removing fluids from wells. There are at least two classical reasons for intervention in wells disposed with electrical submersible fluid transducer systems. These include the need to increase fluid production, or the need tO repair the disposed electrical submersible power system. The reason for requiring increased fluid production is dependent on many factors, including but not limited to economical and reservoir management techniques discussed in the literature. The reasons for intervening for repair or to replace jhe electrical submersible fluid transducer systems are due to normal equipment wear and the subsequent loss of fluid production capacity, catastrophic equipment failure, and changes in the fluid production capacity of the subterranean fluid reservoir. The equipment failures can be caused due to subterranean electrical failures in the electrical motor windings, electrical motor insulation degradation due to heat or mechanical wear, conductive fluid leaking into the motor, wear or failure of the fluid transducer parts, wear of electrical motor bearings, shaft vibrations, changes in inflow performance of the reservoir, and other phenomena known to those familiar with the art of fluid production from wells. Therefore, it is often required to change out component parts of the electrical submersible fluid transducer system, but not necessarily the electrical power transmission cable.
However, owing to prior art the power cable is retrieved when the electrical motor or the motor seals fail.
According to the present invention, there is provided a system as defined m the claims.
A preferred embodiment includes: a power line disposed along a production tube, terminating in a first power connector, an orientation profile disposed in the vicinity of the first power connector, an assembly including a powered device including a second power connector, an extending orientation means capable of radial outward movement from the assembly the powered device being lowered down the production tube, causing the extending orientation means to be urged radially outwards to engage with the orientation profile and orient the, so that the first power connector means and second power connector means engage to connect the powered device to the power line in an automatic manner.
Fig. la shows a side view of the well casing and production tubing installed in a well.
Fig. lb shows a side view of the ESP system to be deployed in the production tubing of figure Ia; Fig. 2 shows a side view of the ESP system actually deployed in the production tubing; Fig. 3 shows a diagrammatic view of the ESP system and the production tubing during the ESP's deployment; Fig. 4 shows a diagrammatic view of the ESP system and the production tubing at a later stage of the ESP' s deployment Fig. 5 shows a diagrammatic view of the ESP system and the production tubing at the final engaged stage of the ESP's deployment; Figs. 6 to S shows a sectional side view of the engaging and connecting portions of the ESP system through the stages of deployment and final connection.
Referring to figure Ia, a production tubing 20 is disposed in a well casing 10.
The production tubing includes an upwardly pointing electrical wet connect 25, beneath a window' 22 in the production tubing 20. The production tubing also includes a profile 27 above the window 22, and further up the production tubing 20 is an motor can 29 where the production tubing 20 has a larger internal and external diameter than the rest of the production tubing. The motor can includes inlet slots 31.
The wet connect 25 is supplied with power from the surface, for example using a power cable disposed in the annulus between the production tubing 20 and the casing 30.
Referring also to figure lb. an ESF assembly 30 comprises a pump 32, motor 34, long skate assembly 36, electrical plug assembly 38 and an instrumentation assembly 40. The long skate assembly 36 includes a skate 41 radially protruding from the main body of the long skate assembly. The electrical plug assembly 38 includes a plug 43 radially protruding from the main body of the electrical plug assembly 38.
Referring to figure 2, in operation the ESP assembly 30 is deployed iii the production tubing 20 from a wirelinc (not shown) having a standard GS pulling tool profile, so that the wirelinc can be disconnected after the ESP assembly has fully deployed, and if necessary the ESP assembly may be retrieved at some future point. The electrical contact 44 of the plug 43 contacts the electrical contact 45 of the wet connect 25.
In operation, the wet connect 25 suppliers power to the motor 34 via the electrical plug 43. The motor 34 drives the pump 32, so that well fluid is drawn up from beneath production tubing 20 in the annulus between the well casing 10 and the production tubing 20, until it reaches the inlet slots I in the production tubing 20 (the annulus above the well casing 10 and the production tubing 20 is sealed at some point above the inlet slots 31). Well fluid is thence drawn up through the annulus between the motor 34 and the production tubing in the motor can 29 of the production tubing, before entering the pump inlet 37. The fluid is then ejected from the pump 32 through a pump outlet 35 located above a pack off seal 33 on the pump which seals the outer diameter of the pump 32 against the production tubing 20. The well fluid then continues up the production tub ing 20 until the surfacc of the weU.
Referring to figure 3, this shows a representation of the side profile together with a face on view of the production tube 20, beside the ESP assembly 30.
The skate 41 and the plug arm 43 are both radially extendable from the long skate assembly 36 and the electrical plug assembly 38 respectively. The radial movement of the skate 41 is outwardly biased. Further, the radial movement of the skate 41 activates the radial movement of the plug arm; the mechanisms for this will be described in more detail below after describing the general vet connect installation procedure.
The motor can 29 of the production tubing 20 features a funnel shaped profile 26 on the side of the production tubing wall. More accurately, figure 3 shows the profile on the inner surface of the production tubing as if the tubing were unfurled and pressed flat; the top of the funnel' profile is actually defined by an ellipse lying at a slanted angle to the axis of the assembly, extending around the entire circumference of the inside of the production tubing 20 As the ESP asseniblv 30 is lowered, the skate 41 engages with the funnel shaped profile 26. The funnel shaped profile 26 then narrows to a channel 2R, so that as the ESP assembly 30 is lowered further, the skate 41, which engages the funnel whatever orientation the assembly happens to be at as it descends, and is forced to align itself with the channel 28, in turn aligning the entire ESP assembly 30.
Referring to figure 4, further lowering of the ESP assembly 30 causes the skate 41 to follow the profile 27. This in turn activates the plug arm 43 to extend from the electrical plug assembly 32 so that the plug arm protrudes through window 22. Finally, referring to figure 5, the skate 41 reaches the bottom of profile 27 and is pressed back into the long skate assembly 36 by the profile 27 to protect the skate 41 from become sealed up. At the same time, the plug arm 43 engages with the wet connect 25 to supply the ESP assembly 30 with power.
Referring to figure 6, the skate 41 bears against various inner radii of the production tubing 20 and profiles upon the production tubing; a first inner radius of the production tubing 20 itself, a second inner radius of the motor can 29, funnel 26 and channel 28, and a third inner radius of the profile 27, are respectively represented by three dotted lines.
The skate 41 contained in long skate assembly 36 is outwardly biased by springs 50, however the skate includes a piston 55 which is constrained from outward movement by engaging with a restraint ring 56, which is in turn attached by shear pins 57 to a fixed cylinder 54 (the fixed cylinder being immovably attached to the long skate assembly 36 itself). A chamber 52 between the restrain ring 56 and the fixed cylinder 54 is at atmospheric pressure. In the state, the skate is not deployed, and the ESP assembly 30 can be run past large internal diameter well parts near the surface.
As the ESP assembly 30 is lowered down the well, the long skate assembly 36 is open to the well environment, and the hydrostatic pressure increases. At a sufficient depth (say when the hydrostatic pressure reaches l000psi), there is sufficient force on the restraint ring 56 between the hydrostatic pressure on one side and the atmospheric pressure of chamber 52 to force the restraint riug 56 to break the shear pins 57 and force the restrain ring radially outwards, compressing the chamber 52. The piston 55 of the skate 41 is now no longer constrained by the restraint ring 56, and the skate 41 is now free to move radially outwards until its progress is constrained by the inner diameter of the part of well it has reached (or until legs 62, 63 of the skid 41 abut the housing of the assembly 36). as shown in figures 8 and 9.
Referring back to figure 6, the plug arm 43 is also biased radially outwards by a spring 60. The plug is constrained however by a release pin 64, which engages with a slot 66 on the plug arm 43. The release pin 64 is upwardly biased by a spring 65. While the skid 41 is still in its undeployed position, a downwardly extending leg 62 abuts the release pin 64, so that the release pin remains engaged with the plug arm 43.
Referring to figures 7 and 8, as the skid 41 moves radially outward to into profile 27, the leg 62 moves sufficiently to allow the release pin 64 to move upwards. This releases the plug arm 43, so that spring 60 pushes the plug arm radially outwards until it is constrained by the retaining lugs 72 abutting the housing of the plug assembly 38, or by abutting some profile in the production tubing 20 or well casing 10. Whatever method is used to constrain the plug arm 43 once released, it is displaced a predefined distance through the window 22 in order that the contact 44 of the plug arm 43 is aligned with the contact 45 of the wet connect 25. As the ESP assembly is lowered, the plug arm 43 and wet connect 25 engage, so that an electrical connection is made.
After the release pin 64 has disengaged from the plug arm 43, it lies to one side of the leg 62 of the skid 41, with a shoulder portion of the pin 64 abutting the leg 62. The release pin does not however constrain the skid 41, though and the skid is free to move radially inwards should the profile of the tubing the skid is in pushes the skid back inside the assembly 36.
The ESP assembly may be removed, by using a fishing tool to connect with a GS profile above the pump 32 (not shown). As the ESP assembly is pulled up the production tubing, the skid 41 and plug arm 34 are pushed radially inwardly into the long skid assembly 36 and plug assembly 3S by the inner diameter of the part of the tubing they happen to be at, allowing the ESP assembly to move freely.

Claims (5)

  1. Claims 1. A system for installing an electrically powered device downhole in a well, comprising: a power line disposed along a production tube, the power line terminating in a first power connector, the production tube having an orientation profile disposed in the vicinity of the first power connector; and a powered device including a second power connector and an extending orientation means; the extending orientation means being arranged to move radially outwardly from the powered device from a retracted position to an extended position when the powered device is lowered down the production tube, and in the extended position to engage with the orientation profile to orient the powered device to an oriented position in which the second power connector may engage the first power connector to connect the powered device to the power line; wherein the extending orientation means is restrained in the retracted position by a restraining means in the powered device, the restraining means being operable by exposure to a predetermined hydrostatic pressure to release the extending orientation means for radially outward movement to the extended position.
  2. 2. A system according to claim 1, wherein the second power connector is arranged to move radially outwardly when the powered device is in the oriented position.
  3. 3. A system according to claim 1 or claim 2, wherein the extending orientation means is arranged to retract radially inwardly when the second power connector engages with the first power connector.
  4. 4. A system according to any preceding claim, wherein the production tube includes a first portion having a first inner radius, and a second portion arranged below the first portion and having a second inner radius greater than the first inner radius; and the powered device is arranged in the second portion when the first and second power connectors are engaged together.
  5. 5. A system according to any preceding claim, wherein the powered device is a submersible pump and electric motor.
GB1208550.2A 2009-12-01 2009-12-01 System for deploying and powering an electrically driven device in a well Active GB2487875B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1208550.2A GB2487875B (en) 2009-12-01 2009-12-01 System for deploying and powering an electrically driven device in a well

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1208550.2A GB2487875B (en) 2009-12-01 2009-12-01 System for deploying and powering an electrically driven device in a well
GB0920978.4A GB2478108B (en) 2009-12-01 2009-12-01 Method of deploying and powering an electrically driven device in a well

Publications (3)

Publication Number Publication Date
GB201208550D0 GB201208550D0 (en) 2012-06-27
GB2487875A true GB2487875A (en) 2012-08-08
GB2487875B GB2487875B (en) 2013-04-24

Family

ID=41572931

Family Applications (2)

Application Number Title Priority Date Filing Date
GB1208550.2A Active GB2487875B (en) 2009-12-01 2009-12-01 System for deploying and powering an electrically driven device in a well
GB0920978.4A Ceased GB2478108B (en) 2009-12-01 2009-12-01 Method of deploying and powering an electrically driven device in a well

Family Applications After (1)

Application Number Title Priority Date Filing Date
GB0920978.4A Ceased GB2478108B (en) 2009-12-01 2009-12-01 Method of deploying and powering an electrically driven device in a well

Country Status (1)

Country Link
GB (2) GB2487875B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2504102B (en) 2012-07-17 2017-12-06 Accessesp Uk Ltd Fixed wet connection system for an electrical submersible pump
WO2018013095A1 (en) 2016-07-13 2018-01-18 Fmc Technologies, Inc. System for installing an electrically submersible pump on a well

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2264315A (en) * 1992-02-24 1993-08-25 Inst Francais Du Petrole Establishing electrical connection with a tool in a well
WO2003040517A1 (en) * 2001-11-05 2003-05-15 Weatherford/Lamb, Inc. Docking station assembly and methods for its use in a wellbore
GB2403490A (en) * 2003-07-04 2005-01-05 Phil Head Method of deploying and powering a powered device in a well

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831156A (en) * 1997-03-12 1998-11-03 Mullins; Albert Augustus Downhole system for well control and operation
US20020050361A1 (en) * 2000-09-29 2002-05-02 Shaw Christopher K. Novel completion method for rigless intervention where power cable is permanently deployed
US20080311776A1 (en) * 2007-06-18 2008-12-18 Halliburton Energy Services, Inc. Well Completion Self Orienting Connector system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2264315A (en) * 1992-02-24 1993-08-25 Inst Francais Du Petrole Establishing electrical connection with a tool in a well
WO2003040517A1 (en) * 2001-11-05 2003-05-15 Weatherford/Lamb, Inc. Docking station assembly and methods for its use in a wellbore
GB2403490A (en) * 2003-07-04 2005-01-05 Phil Head Method of deploying and powering a powered device in a well

Also Published As

Publication number Publication date
GB201208550D0 (en) 2012-06-27
GB2478108B (en) 2013-04-24
GB2487875B (en) 2013-04-24
GB0920978D0 (en) 2010-01-13
GB2478108A (en) 2011-08-31

Similar Documents

Publication Publication Date Title
CA2375808C (en) Method of deploying an electrically driven fluid transducer system in a well
CA2531364C (en) Method of deploying and powering an electrically driven device in a well
US9587466B2 (en) Cementing system for riserless abandonment operation
US20130062050A1 (en) Mating unit enabling the deployment of a modular electrically driven device in a well
EP3289176B1 (en) Method and system for deploying an electrical load device in a wellbore
US10533381B2 (en) Wet connection system for downhole equipment
US11746630B2 (en) Deployment of a modular electrically driven pump in a well
US8813839B2 (en) Method of deploying and powering an electrically driven device in a well
US20170159388A1 (en) Method And Apparatus For Retrieving A Tubing From A Well
US20100307774A1 (en) Device and method for isolating a section of a wellbore
US11085260B2 (en) Wireline-deployed ESP with self-supporting cable
US8146668B2 (en) Downhole tubular lifter and method of using the same
GB2487875A (en) Method of deploying and powering an electrically driven device in a well
CA2731039C (en) Method of deploying and powering an electrically driven device in a well
CN215169881U (en) Coiled tubing electric submersible pump well completion system
GB2484331A (en) Modular electrically driven device in a well
NO20110685A1 (en) System for placing an electrically driven device in a well
NO20120645A1 (en) System for placing an electrically driven device in a well

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20210114 AND 20210120