GB2477507A - Control of luminance of gas discharge lamp using variable frequency drive - Google Patents

Control of luminance of gas discharge lamp using variable frequency drive Download PDF

Info

Publication number
GB2477507A
GB2477507A GB1001744A GB201001744A GB2477507A GB 2477507 A GB2477507 A GB 2477507A GB 1001744 A GB1001744 A GB 1001744A GB 201001744 A GB201001744 A GB 201001744A GB 2477507 A GB2477507 A GB 2477507A
Authority
GB
United Kingdom
Prior art keywords
vfd
control
luminance
lamp
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB1001744A
Other versions
GB201001744D0 (en
Inventor
Tsvi Blumin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to GB1001744A priority Critical patent/GB2477507A/en
Publication of GB201001744D0 publication Critical patent/GB201001744D0/en
Priority to PCT/IB2011/050461 priority patent/WO2011095936A1/en
Publication of GB2477507A publication Critical patent/GB2477507A/en
Priority to IL221259A priority patent/IL221259A0/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • H05B41/2882Load circuits; Control thereof the control resulting from an action on the static converter
    • H05B41/2883Load circuits; Control thereof the control resulting from an action on the static converter the controlled element being a DC/AC converter in the final stage, e.g. by harmonic mode starting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3925Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by frequency variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A system for the control of luminance of a gas discharge lamp 32 includes a variable frequency drive (VFD) accepting AC voltage supply. The VFD comprises a rectifier 20, a DC bus 22, a DC to AC converter 24 and control circuitry 26. The VFD output has a constant ratio of frequency to AC voltage such that raising the frequency of the output of the VSD results in an equivalent rise in the voltage. The lamp requires a ballast but the power factor correction condenser usually associated with the lamp is to be removed. The VFD is of the type that is otherwise used for driving AC electric motors. The controller may use PWM (pulse width modulation).

Description

METHOD FOR THE CONTROL OF LUMINANCE OF GAS
DISCHARGE LAMPS
FIELD OF THE INVENTION
The present invention relates to the control of luminance of gas-discharge lamps and the use of apparatus for such application.
BACKGROUND OF THE INVENTION
The role of lamps is to illuminate a certain location, be it an indoor space or an outdoors environment, so as to make objects discernible to the observers.
Ambient light however is subject to changes over time, sometimes quite rapidly and typically following a diurnal cycle of natural light intensity change. Artificial light is intended to compensate for the lack of natural light during dark hours of the day, in dark places, or for many other local reasons. For implementing control over the Illumination, it is required to increase or decrease the amount of illuminating elements, e.g. lamps, or change the luminance of existing ones, or both.
Gas discharge lamps are light sources that are often used for general purpose lighting, both indoor, such as in homes, houses, industrial spaces, as well as outdoors e.g. street lighting. In such divices, the illumination is produced as the free electrons accelerated by the electric field inside the lamp collide with gas atoms and other atoms inside the lamp. The collision causes electrons in orbit to jump to a higher energy state. When such electrons revert to their original state, energy is released in the form of light. . Typically noble gasses are used for such lighting, xenon, neon, helium and argon are mostly used or some combination thereof. When the electrons are accelerated in an electric field through the gas ions, some electrons are raised to a high level of energy and when they return to their basic level of energy, the surplus energy is discharged in the form of photons, sensed by the eyes as light. The gas discharge lamps are also referred to as electric discharge lamps, vapour lanips, and more rarely just as discharge lamps. In addition to the noble gas, metals or metal salts may be added to the container in which the gas is disposed. Typically, gas discharge lamps operate more efficaciously at higher frequency AC input. In order to prevent self destruction, gas discharge lamps employ a ballast, referred to also as choke, which contains a coil, usually wound over iron core. The ballast may be integral with the lamp or it physically placed outside of the lamp and connected electrically to the lamp.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention may be understood upon reading of the following detailed description of non-limiting exemplary embodiments thereof, with reference to the following drawings, in which: Fig.! is a schematic description of the fundamental modules of a luminance control system, in accordance with the invention; Fig. 2 is a schematic description of a pulse width modulation control over output frequency; Fig. 3 is a schematic description of service programs and their function within the framework of the command module; Fig. 4 is a schematic description of exemplary inputs provided to a service program.
The following detailed description of the invention refers to the accompanying drawings referred to above. Dimensions of components and features shown in the figures are chosen for convenience or clarity of presentation and are not necessarily shown to scale. Wherever possible, the same reference numbers will be used throughout the drawings and the following
description to refer to the same and like parts.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
In accordance with the present invention, the luminance of a gas discharge lamp is controlled by a device otherwise used for driving AC electric motors.
The term driving is used hereinafter, as known in the art, to define the ability to control the rotational speed of an AC electric motor. More specifically, the device used in accordance with the present invention is a variable frequency drive (VFD), also known as variable voltage variable frequency drive. In VFD the ratio between the output voltage and output frequency that feeds the motor is kept constant. As can be seen in Fig. 1 to which reference is now made, rectifier module 20, receiving constant AC power supply, rectifies the voltage, smoothes it out and feeds it to DC bus 22. The current is modified by a DC/AC converter 24 by modulating it as will be dwelt upon in some detail further below. Control sub -unit 26 includes programmable/human command module 28 and control circuitry to regulate the functionality of converter 24. Gas discharge lamp 32 is fed modulated AC current. In accordance with the present invention, the power factor correction condenser of the gas discharge lamp, if present, is removed in order for the control by a system as described above to take place. If such power factor correction condenser is not installed in the gas discharge lamp circuitry, then applying the system of the invention obviates the use of such a correction condenser.
One prevalent variant of the VFD is the pulse width modulation (PWM) technique for voltage output control. PWM drives are well known in the art for applying control over the speed and frequency of power tolls, as can be seen in US patent 6,696,814 B2. In this method, the DC/AC converter uses switching to form a quasi alternating current. The switches are in implemented as thyristors, bipolar transistor devices or transistorized devices or as IGBTs, for more details see for example US 6,462,974, the contents of which are incorporated herein by reference. The control over the output voltage is not a closed loop control, and change of the output voltage level, negative or positive, is approximated by the switching only. As a schematic description of the above discussed matter, as can be seen in Fig. 2, the series of positive switching -on, each described by a rectangle in zone 58, provides an average output voltage level as described by line 60. A series of negative switching -on as in zone 66 provides a negative voltage value 68 which is smaller in absolute amplitude. In zone 72, the switch was turned on only for a very few times, providing for a low absolute voltage level 74 as compared to levels 68 and 60. In PWM, the length of time that the switches are turned on is constant, and thus the control over the output voltage level is determined solely by the rate of the switches turned on/off. Currently, PWM technology utilizes insulated gate bipolar transistors (IGBTs) permits very high switching rate, such as 1-20 KHz, allowing for very high resolution of the change in amplitude of the output wave, for obtaining a smooth quasi-sinusoidal output wave.
Programming and applying control over the luminance of the gas discharge lamps In VFD, the output voltage, and the waveform in general can be controlled by pre-programming or on -line for several AC voltage output rates and programs, such as gradual increase or decrease of amplitude. As mentioned above the modern PWM circuits employing IGBT lend themselves to easy and accurate control over voltage supply by the PWM circuit. As such, the PWM circuitry does not offer a full feedback controlled voltage supply loop. However, for the sake of keeping track of required illumination levels, a light sensor can be added to complete the loop. To help explain the implementation of the service programming in the framework of the command module, reference is first made to Fig. 3, exemplifying a specific combination of some of the command module's structural subunits. Command module 28 includes a programming terminal 42, which can either be local or an external computer linked to command module 28.
Service program select key 44 is a selection terminal connected to a set of pre-stored service programs (PSSPs) 46 and to one or more storable service programs (SSP) 48 produced by the user using programming terminal 42 at his/her desire.
The programming terminal may be used to change parameters in existing PSSP.
The PSSPs are stored in a non volatile memory such a flash memory or EPROM and the SSP is also storable upon request of the user, in the same place, typically.
This/these memories are connected to a processor on which the programs run. As can be seen in Fig. 4 to which reference is now made, the service program 72, preprogrammed or else, derives clock data (time) from clock 74, and optionally signals from sensor/s 76, connected through an adapter (not shown) to the processor on which service program (SP) 72 runs.
The term service control in the context of the present invention relates to illumination specific applications associated with luminance control. A pre-supplied set of programs that are intended to offer alternative illumination features, such as for different lamp types or different lighting regimes is the PSSP and SSP. Typically the producer of the VFD provides also a human/ programmed command module that facilitates manual or automated control of the electro-mechanical load by the VFD. In the context of the present invention, additional services are provided to accommodate the VFD to its usage in the control application over the luminance driven by the VFD. An example of usage of such automated control, is the application of different lighting regimes employing respective different voltage output levels, set for different hours of the day. For example, a sensor connected to the processor running an SP senses that natural luminance is low, and that the lamp or lamps such a s street lamps are to be turned on. The SP would wait for, say 15 minutes, getting clock pulses, to preclude the influence induced by a passing cloud, after which, if darkness prevails, the VFD would start turning on the associated lamp at a gradual controlled rate until full programmed, luminance is obtained. Lights can be turned on a fixed hour, such as four in the morning. Another example, is a working room, in which lights are to be turned on at a fraction luminance during the day and luminance is raised during night hours. User intervention may be applied as long as the program permits. Yet another example is an infrared motion sensor, that detects the presence of a person entering a room, in such an example, the entrance invokes the SP to start a cascade of events that leads to automatic illumination of a room, or hallway.
Since gas discharge lamps are inherently different than electromechanical loads, some limitations may be inserted into the service programs in order to prevent damages to the lamps! ballast and other electronic components of the illumination hardware. In case the original program parameters of the producer of the VFD may be found to be unacceptable with respect to current parameters supplied to the lamp, or else be found too limiting, change may be require. In order to adapt the VFD to the control/drive of the gas discharge lamp, some experimentation may be required in order study the security and or efficiency aspects of the current parameters and possible limitations bestowed by the VFD.
In another aspect of the invention a communications interface is installed.
As can be seen in Fig. 5, control sub -unit 26 is connected to a communications subunit 84 which is capable of receiving, sending and processing of data, digital or analog, or both, wired or wireless, to and from the control subunit.
Implementing the communications aspect of the invention, permits turning illumination on or off from a distant location, without the need to actually physically contact the lamp. Else, it is possible to remotely select a specific pre-stored service programs. The communications interface is able to send to a control centre data regarding functionality or condition of the lamp.
Three phase, single phase and other input applications An arrangement in accordance with the present invention is applicable for three phase AC line and a single phase line voltage. The AC line used dictates the architecture of the rectifier circuit. For each phase two solid state rectifiers are required, and for the output switching, for each phase an equal set of switches is required. An advantage of the system of the invention stems from the fact that any AC or DC source that can feed the DC bus (see Fig. 1) can be used to supply electrical energy to the device of the invention. The advantage is evident also in cases of failure or partial failure of the source line. In case of failing of one or two phases out of the three phases, the DC bus may continue functioning and either a single phase or three phase supply continue to flow at the output of the system, depending on the architecture of the DC/AC converter. Moreover the system of the invention may use DC supply instead of AC supply, if the DC bus 22 is fed directly by external DC.
The system of the invention can also be used for emergency lighting energy supply. To such an end, for example, a battery is connected to DC bus 22 using a relay, such that when the mains AC supply fails, the relay connects the battery to DC bus 22 to feed converter 24.
In another aspect of the present invention, it has been shown experimentally that using the system of the invention, can shorten the time the illuminations starts. In gas discharge lamps, typically a period of time passes since turning on the switch and the actual illumination begins. The implementation of a VFD in accordance with the invention can shorten the time to full illumination considerably.

Claims (7)

  1. CLAIMS1. A system for controlling luminance of a gas -discharge lamp, the system comprising: * a VFD type controller of an AC motor, connected to said gas discharge lamp; * a ballast connected to said lamp, * a control subunit controlling voltage output level of said VFD type controller.
  2. 2. A system for controlling luminance of a gas -discharge lamp as in claim 1, wherein said controller is also a pulse width modulation device.
  3. 3. A system as in claim 1, wherein said control subunit includes a programmable/human command module.
  4. 4. A system as in claim 3, wherein a set of pre-stored service programs is selectable by a user.
  5. 5. A system as in claim 3, including a programming terminal for adding service programs or changing parameters in existing programs.
  6. 6. A system as in claim 1, wherein said VFD type controller is fed by AC input power.
  7. 7. A system as in claim 1, wherein said VFD type controller is fed by DC input power.
GB1001744A 2010-02-03 2010-02-03 Control of luminance of gas discharge lamp using variable frequency drive Withdrawn GB2477507A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1001744A GB2477507A (en) 2010-02-03 2010-02-03 Control of luminance of gas discharge lamp using variable frequency drive
PCT/IB2011/050461 WO2011095936A1 (en) 2010-02-03 2011-02-03 Method for the control of luminance of gas discharge lamps
IL221259A IL221259A0 (en) 2010-02-03 2012-08-02 Method for the control of luminance of gas discharge lamps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1001744A GB2477507A (en) 2010-02-03 2010-02-03 Control of luminance of gas discharge lamp using variable frequency drive

Publications (2)

Publication Number Publication Date
GB201001744D0 GB201001744D0 (en) 2010-03-24
GB2477507A true GB2477507A (en) 2011-08-10

Family

ID=42082405

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1001744A Withdrawn GB2477507A (en) 2010-02-03 2010-02-03 Control of luminance of gas discharge lamp using variable frequency drive

Country Status (3)

Country Link
GB (1) GB2477507A (en)
IL (1) IL221259A0 (en)
WO (1) WO2011095936A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2029134A (en) * 1978-08-25 1980-03-12 Esquire Inc Variable frequency dimming for high intensity gaseous discharge lamps
US20070076444A1 (en) * 2005-10-03 2007-04-05 Mc Nulty Thomas C Using a variable frequency drive for non-motor loads

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570347B2 (en) * 2000-06-01 2003-05-27 Everbrite, Inc. Gas-discharge lamp having brightness control
TWI381772B (en) * 2006-12-12 2013-01-01 Ind Tech Res Inst Preheat control device for modulating voltage of gas-discharge lamp
JP2009044915A (en) * 2007-08-10 2009-02-26 Sanken Electric Co Ltd Power supply device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2029134A (en) * 1978-08-25 1980-03-12 Esquire Inc Variable frequency dimming for high intensity gaseous discharge lamps
US20070076444A1 (en) * 2005-10-03 2007-04-05 Mc Nulty Thomas C Using a variable frequency drive for non-motor loads

Also Published As

Publication number Publication date
IL221259A0 (en) 2012-10-31
WO2011095936A1 (en) 2011-08-11
GB201001744D0 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
US8907582B2 (en) Kickstart for dimmers driving slow starting or no starting lamps
US8618751B2 (en) Phase control with adaptive parameters
JP4637804B2 (en) Multistage dimming control device for gas discharge lamp and dimming control method thereof
JP4661736B2 (en) Dimmer
JP4681696B2 (en) Multi-input electronic ballast with processor
US20120081035A1 (en) Power Conversion and Control Systems and Methods for Solid-State Lighting
US20100277072A1 (en) Calibration Of Lamps
US6011329A (en) Electrical circuit cycling controller
US8446101B2 (en) Control switch
WO2014147065A1 (en) A driver for a light source
US9723666B2 (en) Lighting device and lighting fixture using same
AU2005297572B2 (en) Modulation of a PFC during DC operation
CN102217422A (en) System for control of ballast illumination in step dimming and continuous dimming modes
US20140035480A1 (en) Method for the control of luminance of gas discharge lamps
US20130119880A1 (en) Power Conversion and Control Systems and Methods for Solid-State Lighting
US9265105B2 (en) Power conversion and control systems and methods for solid-state lighting
GB2477507A (en) Control of luminance of gas discharge lamp using variable frequency drive
US8022639B2 (en) Dimming fluorescent ballast system with shutdown control circuit
JP2001155531A (en) Elevating lighting device
US20120081023A1 (en) Power Conversion and Control Systems and Methods for Solid-State Lighting
JP3195803B2 (en) Dimmer
CN110915300B (en) Retrofit Light Emitting Diode (LED) lighting device for connection to a ballast
KR102012917B1 (en) Time delay automatic dimming device and power consumption control method using it
US20080048590A1 (en) Voltage Regulator
CN103905023B (en) Electric equipment

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)