GB2461415A - Centrifugal pump impeller - Google Patents

Centrifugal pump impeller Download PDF

Info

Publication number
GB2461415A
GB2461415A GB0913975A GB0913975A GB2461415A GB 2461415 A GB2461415 A GB 2461415A GB 0913975 A GB0913975 A GB 0913975A GB 0913975 A GB0913975 A GB 0913975A GB 2461415 A GB2461415 A GB 2461415A
Authority
GB
United Kingdom
Prior art keywords
vane
pump
vanes
passage
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0913975A
Other versions
GB0913975D0 (en
GB2461415B (en
Inventor
David M Eslinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gemalto Terminals Ltd
Schlumberger Holdings Ltd
Original Assignee
Gemalto Terminals Ltd
Schlumberger Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/676,589 external-priority patent/US7857577B2/en
Application filed by Gemalto Terminals Ltd, Schlumberger Holdings Ltd filed Critical Gemalto Terminals Ltd
Publication of GB0913975D0 publication Critical patent/GB0913975D0/en
Publication of GB2461415A publication Critical patent/GB2461415A/en
Application granted granted Critical
Publication of GB2461415B publication Critical patent/GB2461415B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • F04D13/10Units comprising pumps and their driving means the pump being electrically driven for submerged use adapted for use in mining bore holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/688Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for liquid pumps

Abstract

The impeller has a plurality of vanes 58, and has its performance improved by a passage 60 formed through one or more vanes of the plurality of vanes such that the dimension of the passage measured in a direction extending away from the vane base extends through at least twenty five percent of the length of the vane.

Description

METHODS OF IMPROVING PUMP PERFORMANCE
BACKGROUND
This invention relates to methods of improving pump performance.
Centrifugal pumps are used in many environments to pump a variety of fluids.
For example, centrifugal pumps are used for electric submersible pumps placed within wells or in other submerged environments. The electric submersible pumps often are used in the production of petroleum or in the transfer of other fluids in well related environments.
Electric submersible pumps are formed with multiple pump stages that each have an impeller and a diffuser. Each pump stage can experience hydraulic losses due to secondary flow patterns that develop within the stage. Common causes of secondary flow are Coriolis forces in impellers as well as the curvature of vanes and passages in both impellers and diffusers. The secondary flow commonly has a lower velocity than the core flow and often collects at the suction/hub corner in diffusers and at the suctionlshroud corner in impellers.
SUMMARY
According to the present invention, there is provided a method of improving the performance of a centrifugal pump, the method comprising: providing a pump impeller with a plurality of vanes; and creating a passage through one or more vanes of the plurality of vanes such that the meridional dimension of the passage extends through at least twenty five percent of a meridional length of a vane.
This method provides a cost-effective technique for improving the pumping efficiency of centrifugal pumps, especially when each vane of the pump is provided with such a passage and each passage exposed to a low energy flow, i.e. secondary flow, region along the vane. Each passage thus enables the flow of a small amount of fluid from the low energy region to an opposite side of the vane to reduce the secondary flow effects and improve pumping efficiency.
BRIEF DESCRIPTION OF THE DRAWINGS
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and: Figure 1 is a front elevation view of an electric submersible pumping system deployed in a wellbore and having a centrifugal pump, according to an embodiment of the present invention; Figure 2 is a schematic front elevation view of a centrifugal pump having a plurality of stages each containing an impeller and a diffuser, according to an embodiment of the present invention; Figure 3 is an orthogonal view of a pump component vane having a passage extending through the vane to a low energy flow region, according to an embodiment of the present invention; Figure 4 is an orthogonal view of a portion of a pump component with a vane comprising the passage, according to an embodiment of the present invention; Figure 5 is an orthogonal view of another pump component with vanes comprising the passage, according to an embodiment of the present invention; and Figure 6 is a front view of a pump component illustrating orientation of the passage to enable sand casting of the pump component, according to an embodiment of the present invention.
DETAILED DESCRIPTION
In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The present invention generally relates to a technique for pumping fluids. A centrifugal pump utilizes pump components, such as impellers andlor diffusers, having passages oriented to reduce hydraulic losses due to secondary flow patterns.
The secondary flow patterns create low energy fluid flow regions within the stages of the centrifugal pump. The low energy flow regions may develop along flow inducing or directing vanes within individual stages of the centrifugal pump. Higher energy fluid flow regions often are located immediately across the vane in an adjacent flow path. One or more passages can be formed through the vane and into communication with the low energy flow region. These passages enable a small amount of fluid to pass from the low energy flow region on one side of the vane to an opposite side of the vane, thereby reducing hydraulic losses otherwise associated with the low energy flow region.
Referring generally to Figure 1, one embodiment of a centrifugal pump deployed in a pumping application is illustrated. In this embodiment, a centrifugal pump 20 is utilized in a well environment. Centrifugal pump 20 is formed as an electric submersible pump 22 coupled into an electric submersible pumping system 24. Electric submersible pumping system 24 may comprise a variety of components depending on the particular application or environment in which it is used. By way of example, electric submersible pumping system 24 comprises a submersible motor 26 to power submersible pump 22. Additionally, a motor protector 28 may be positioned between submersible motor 26 and submersible pump 22 to protect the internal motor oil of submersible motor 26 and to balance internal and external pressure differentials.
In the embodiment illustrated, electric submersible pumping system 24 is designed for deployment in a well 30 formed within a geological formation 32 containing desirable production fluids, such as hydrocarbon based fluids. The electric submersible pumping system 24 actually is deployed in a wellbore 34 drilled into geological formation 32. In some applications, a weilbore casing 36 is used to line the wellbore 34. A plurality of openings or perforations 38 is formed through weilbore casing 36 to accommodate fluid flow between the surrounding geological formation 32 and wellbore 34.
The electric submersible pumping system 24 is deployed in wellbore 34 by an appropriate deployment system 40. Depending on the application, deployment system may comprise cable, production tubing, coil tubing, or other appropriate deployment systems. Deployment system 40 is coupled to electric submersible pump 22 or to another appropriate component of pumping system 24 by a connector 42.
Power is provided to submersible motor 26 via a power cable 44. The submersible motor 26, in turn, powers submersible pump 22 which draws fluid in through a pump intake 46. The fluid can be pumped to a desired location via, for example, tubing forming deployment system 40.
The illustrated centrifugal pump 20 and electric submersible pumping system 24 are examples of many potential centrifugal pumps, pumping systems, and pumping applications. For example, centrifugal pump 20 can be utilized in many types of pumping applications, including production applications, injection applications, fluid transfer applications and other pumping applications. Additionally, electric submersible pumping system 24 may comprise additional or alternate components depending on the specific pumping application and pumping environment.
As illustrated in Figure 2, centrifugal pump 20 comprises at least one stage and usually a plurality of stages 48 disposed within an outer pump housing 50. Each stage 48 comprises pump components for inducing and directing fluid flow. As illustrated, the pump components in each stage comprise an impeller 52 and a diffuser 54. Impellers 52 are rotated by an appropriate power source, such as submersible motor 26, to pump fluid through centrifugal pump 20 in the direction of arrow 55.
Each rotating impeller 52 moves fluid from the upstream diffuser 54 into and through the downstream diffuser 54 and into the next impeller until the fluid is expelled from centrifugal pump 20. The impellers 52 utilize vanes 56 contoured to capture and move fluid in the desired direction as the impellers are rotated. The diffusers 54 also comprise vanes 58 contoured such that each diffuser directs the flow of fluid from the upstream impeller to the next sequential impeller until the fluid is expelled from the centrifugal pump.
The impeller vanes 56 and the diffuser vanes 58 can have secondary flow patterns that develop within stages 48. The secondary flow patterns result in regions of lower velocity and thus lower energy flow relative to the core flow through centrifugal pump 20. Commonly, a higher energy fluid flow region is located immediately across a given vane from the low energy flow region. The secondary flow patterns create hydraulic losses and thus a reduced pumping efficiency.
As illustrated in Figure 3, one or more passages 60 are disposed in selected vanes 56 and/or 58. For the purpose of explanation, the vane illustrated in Figure 3 has been labeled a diffuser vane 58 but the discussion also applies to impeller vanes 56. Vane 58 separates adjacent, sequential flow paths 62, and passages 60 extend through or across vane 58 between flow paths 62. Each passage 60 extends into fluid communication with a secondary flow or low energy fluid flow region 66. In this example, passages 60 extend through the vane from low energy fluid flow region 66 in flow path 62 to a relatively high energy fluid flow region 68 in the next sequential flow path 62 on an opposite side of the vane. The passage or passages 60 allows a small amount of fluid to pass from low energy region 66 to an opposite side of the vane, resulting in reduced hydraulic losses.
A variety of passage designs can be used to reduce hydraulic losses. For example, one of the passages 60 illustrated in Figure 3 is disposed along a base 70 of the vane and is generally low lying relative to the base. The other illustrated passage is formed with a dimension that extends a greater distance relative to base 70. For example, the second passage 60 has a dimension greater than twenty five percent of a meridional extent 72 of the vane. Base 70 can be a hub base or a shroud base depending on the pump component in which passages 60 are formed.
The number of passages 60 used in a given vane also can vary. As illustrated in Figure 4, for example, a single passage 60 is disposed through vane 56 of one of the impellers 52. The passage or passages 60 can be disposed through single vanes, selected vanes, or all of the vanes utilized in a given impeller 52 and/or diffuser 54.
Additionally, passages 60 can be used in only the impellers, only the diffusers, or in both the impellers and the diffusers within centrifugal pump 20.
As illustrated in Figure 5, for example, individual passages 60 are disposed through each vane 58 of the diffuser 54. In this embodiment, passages 60 are disposed along bases 70 of vanes 58 proximate a hub 74 of diffuser 54. The hub side passages are positioned to correct a suction/hub side corner separation, i.e. secondary flow, which can create hydraulic losses in the pump stage. However, additional passages or other passage configurations can be used depending on the design of the impeller, the contour of the vanes, and the pumping efficiency parameters.
In the impeller and diffuser embodiments illustrated, the passages 60 have geometries and orientations selected to enable sand casting of the pump components without requiring subsequent machining. The ability to form the entire pump component, e.g. pump impeller or pump diffuser, in a sand casting procedure enables production of cost-effective pump impellers and pump diffusers by avoiding subsequent formation procedures, e.g. machining procedures, to form the passages 60.
Passages 60 are designed with a geometry and orientation to enable a sand casting procedure in which removal of a vane passage insert from a sand core does not disturb the sand core. This allows the entire pump impeller 52 or pump diffuser 54, including passages 60, to be formed during a single sand casting procedure. As illustrated in Figure 6, each of the passages 60 is oriented along a vane insert pull angle 76. The vane insert pull angle 76 is selected according to the design of the impeller 52 or diffuser 54 to enable a clean removal of the vane passage insert during the sand casting procedure. It should be noted that casting techniques other than sand casting techniques also can be used in some pump component formation applications.
The use of pump components having vanes with passages positioned to reduce the detrimental effects of secondary flow provides a cost effective approach to improving pumping efficiency of centrifugal pumps. Additionally, by orienting the passages along a suitable vane insert pull angle 76, the cost of manufacturing these pump components also can be reduced. The size and shape of the pump components as well as the number and contour of pump component vanes 56, 58 can be adjusted depending on factors such as the desired centrifugal pump design and the environment in which the centrifugal pump is utilized. Furthermore, the number, location and configuration of passages 60 can be adjusted according to the vane configuration and contour as well as other pumping parameters.
Accordingly, although only a few embodiments of the present invention have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this invention. Accordingly, such modifications are intended to be included within the scope of this invention as defined in the claims.

Claims (4)

  1. CLAIMSI. A method of improving the performance of a centrifugal pump, the method comprising: providing a pump impeller with a plurality of vanes; and creating a passage through one or more vanes of the plurality of vanes such that the meridional dimension of the passage extends through at least twenty five percent of a meridional length of a vane.
  2. 2. The method of claim 1, wherein creating comprises creating the passage in each vane of the plurality of vanes.
  3. 3. The method of claim I or claim 2, wherein creating comprises creating the passage along a base of the vane.
  4. 4. The method of any preceding claim, wherein creating comprises orienting each passage between a low energy flow region on one side of the vane and a high energy flow region on an opposite side of the vane.
GB0913975A 2007-02-20 2009-08-11 Centrifugal pumps Active GB2461415B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/676,589 US7857577B2 (en) 2007-02-20 2007-02-20 System and method of pumping while reducing secondary flow effects
GB0801716A GB2446918B (en) 2007-02-20 2008-01-31 Methods of making centrifugal pump impellers and/or diffusers, and centrifugal pumps incorporating such impellers and/or diffusers

Publications (3)

Publication Number Publication Date
GB0913975D0 GB0913975D0 (en) 2009-09-16
GB2461415A true GB2461415A (en) 2010-01-06
GB2461415B GB2461415B (en) 2010-06-16

Family

ID=41404154

Family Applications (2)

Application Number Title Priority Date Filing Date
GB0913977A Active GB2461416B (en) 2007-02-20 2009-08-11 Pumping components, methods of making them, and pumping systems
GB0913975A Active GB2461415B (en) 2007-02-20 2009-08-11 Centrifugal pumps

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB0913977A Active GB2461416B (en) 2007-02-20 2009-08-11 Pumping components, methods of making them, and pumping systems

Country Status (1)

Country Link
GB (2) GB2461416B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009735B4 (en) 2014-07-02 2021-07-15 Rosswag Gmbh Impeller of a turbomachine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10331794A (en) * 1997-05-29 1998-12-15 Ishikawajima Harima Heavy Ind Co Ltd Centrifugal compressor
US20040213661A1 (en) * 2003-04-24 2004-10-28 Aleksandar Sekularac Centrifugal compressor wheel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2017550A (en) * 1978-03-28 1979-10-10 Rolls Royce Casting Aerofoils
GB2080165B (en) * 1980-07-17 1984-10-24 Rolls Royce Making article having internal passages eg turbine blade

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10331794A (en) * 1997-05-29 1998-12-15 Ishikawajima Harima Heavy Ind Co Ltd Centrifugal compressor
US20040213661A1 (en) * 2003-04-24 2004-10-28 Aleksandar Sekularac Centrifugal compressor wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009735B4 (en) 2014-07-02 2021-07-15 Rosswag Gmbh Impeller of a turbomachine

Also Published As

Publication number Publication date
GB2461416B (en) 2010-06-16
GB0913975D0 (en) 2009-09-16
GB2461416A (en) 2010-01-06
GB2461415B (en) 2010-06-16
GB0913977D0 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
US7857577B2 (en) System and method of pumping while reducing secondary flow effects
CA2895715C (en) Multiphase pumping system
US8070426B2 (en) System, method and apparatus for open impeller and diffuser assembly for multi-stage submersible pump
CN101403393B (en) System and method for improving flow in pumping systems
US7326037B2 (en) Centrifugal pumps having non-axisymmetric flow passage contours, and methods of making and using same
CA2419458C (en) Electric submersible pump with specialized geometry for pumping viscous crude oil
CN103573673A (en) Apparatus, system and method for pumping gaseous fluid
US20080101921A1 (en) Impeller for centrifugal pump
CA2834727C (en) Diffuser bump vane profile
US10890189B2 (en) Submersible pumping system having thrust pad flow bypass
CA2911772C (en) Nozzle-shaped slots in impeller vanes
CA2390728C (en) Technique for facilitating the pumping of fluids by lowering fluid viscosity
EP3325813B1 (en) Surge free subsea compressor or pump and associated method
JP6712159B2 (en) Diffuser and multi-stage pump device
US11933323B2 (en) Short impeller for a turbomachine
GB2461415A (en) Centrifugal pump impeller
CN113187769A (en) Layered staggered guide vane with low noise characteristic
US7150600B1 (en) Downhole turbomachines for handling two-phase flow
CN107965473A (en) Including the diffuser at least one blade, for fluid compressing device with opening
EP3379083B1 (en) Short impeller for a turbomachine
US11629733B2 (en) Anti-swirl ribs in electric submersible pump balance ring cavity
US11952875B2 (en) Non-axisymmetric hub and shroud profile for electric submersible pump stage