GB2440183A - Shielding for pin in underwater electrical connector - Google Patents

Shielding for pin in underwater electrical connector Download PDF

Info

Publication number
GB2440183A
GB2440183A GB0614054A GB0614054A GB2440183A GB 2440183 A GB2440183 A GB 2440183A GB 0614054 A GB0614054 A GB 0614054A GB 0614054 A GB0614054 A GB 0614054A GB 2440183 A GB2440183 A GB 2440183A
Authority
GB
United Kingdom
Prior art keywords
collar
conductive
insulating sleeve
connecting pin
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0614054A
Other versions
GB2440183B (en
GB0614054D0 (en
Inventor
Michael Christopher Marklove
Jonathan Hardisty
Wesley Barrett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tronic Ltd
Original Assignee
Tronic Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tronic Ltd filed Critical Tronic Ltd
Priority to GB0614054A priority Critical patent/GB2440183B/en
Publication of GB0614054D0 publication Critical patent/GB0614054D0/en
Publication of GB2440183A publication Critical patent/GB2440183A/en
Application granted granted Critical
Publication of GB2440183B publication Critical patent/GB2440183B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/523Dustproof, splashproof, drip-proof, waterproof, or flameproof cases for use under water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/013Sealing means for cable inlets

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)

Abstract

A penetrator connector for use in an underwater, wet or conductive environment has a connecting pin 1 with a conductive core 2 and an insulating sleeve 3 around it. The insulating sleeve has a reduced external diameter over part of its length to form an annular recess 20, and a conductive collar 22 is received in the recess to retain the connecting pin in place and to provide an earth shield. This avoids having an earth screen (15, Fig 1) embedded in the insulating sleeve which would provide a point of weakness.

Description

<p>-I-</p>
<p>Electrical Connection Apparatus The invention relates to apparatus for providing an electrical connection path into equipment in an underwater, wet or conductive environment.</p>
<p>Underwater penetrators are used to provide an electncal connection path through a sealed interface into underwater equipment, for example to connect electrically a conductor of an underwater cable to equipment such as a pump. The conductor of the cable is terminated in a gland assembly which provides a sealed enclosure protecting a connection of the cable conductor to what is commonly referred to as a "penetrator pin". The penetrator pin typically consists of a copper conductive core surrounded by a sleeve of insulating material. The penetrator pin is supported by and passes axially through a metal support flange of the penetrator.</p>
<p>The insulation of the cable may be sealed to the gland assembly by various means including elastomeric seals and encapsulation. The sealed region of the gland assembly may be filled with oil or the like and have one or more flexible diaphragms or walls to allow the pressure inside the assembly to balance with respect to the external pressure and so avoid any tendency for water or other contamination to enter into the gland assembly. The penetrator pin is therefore pressure compensated external of the equipment such as a pump by the gland assembly, but there may be pressure differentials from one end of the penetrator pin to the other (gland end to equipment end), resulting in positive or negative pressure differentials acting directly on the penetrator pin.</p>
<p>A known penetrator pin is shown in Figure 1. The penetrator pin I has a copper conductive core 2 surrounded by an insulating sleeve 3 made of epoxy resin.</p>
<p>The penetrator pin extends across an interface between a gland assembly 4 and an item of underwater equipment (not shown). At its gland assembly end, the conductive core 2 is connected to a conductor 17 of an underwater cable. A diaphragm support ring 18 supports one end of diaphragms 19 which protect the conductor 17 and its connection to the conductive core 2 of the penetrator pin. At its other end, the conductive core 2 is connected to the underwater equipment (the connection is not shown). The penetrator pin is supported by a support flange 5.</p>
<p>The flange is secured by bolts 6 to the gland assembly 4 and by bolts 7 to a mating flange 8 which forms part of the underwater equipment. The support flange 5 is formed with an axial socket 9 which receives the penetrator pin 1.</p>
<p>The penetrator pin 1 has an annular flange 10 which projects radially outwardly from the central part of the penetrator pin. The flange 10 is supported in the support flange socket 9 between a first compliant seal 11 engaging one annular axial face of the flange 10 and a second compliant seal 12 engaging the opposite annular axial face of the flange 10. A retaining ring 13 is screwed into position to clamp the flange 10 against a shoulder 14 of the socket 9, with the sealing rings 11 and 12 providing resilient bearing surfaces for the flange 10. Due to differential pressures at the gland end and equipment end of the penetrator pin 1, it is subject to axial thrust forces which have to be resisted by the flange 10 carried by the penetrator support flange 5.</p>
<p>A generally cylindrical earth screen 15, made of copper mesh, is embedded in the epoxy resin insulating sleeve 3 and is electrically connected to the penetrator support flange 5 by radially extending conductors 16. The purpose of the earth screen 15 is to protect the insulating sleeve 3 from high electrical stresses in regions of the sleeve where there would otherwise be electrical stress concentration, such as where the epoxy resin is in close proximity to the shoulder 14 of the penetrator support flange 5. Lines of equal electric potential in the epoxy resin become closely spaced at such a discontinuity in the shape of the eaithed support flange 5. The electrical stresses can be significant where high voltages are involved, for example at 14 kV and above.</p>
<p>The earth screen 15 is positioned between the conductive core 2 and the support flange 5 and so screens the epoxy material radially outwardly of the earth screen 15, whereby high electrical stresses are reduced and diverted away from such problem areas. The screen itself is generally cylindrical with curved, flared axial ends, so avoiding sharp discontinuities and hence the creation of high electrical stress concentrations in the epoxy resin material radially inwardly of the screen.</p>
<p>Whilst the arrangement of Figure 1 has been used successfully in the past, the present inventors have now recognised that the provision of the earth screen embedded in the material of the insulating sleeve creates a discontinuity in what would otherwise be a homogeneous material and a potential mechanical weakness, in particular a cylindrical surface along which the insulating sleeve material may shear under the axial loading on the penetrator pin caused by pressure differentials between the gland assembly end and the equipment end.</p>
<p>According to one aspect of the present invention, there is provided apparatus for providing an electrical connection path into equipment in an underwater, wet or conductive environment, the apparatus comprising a connecting pin having a conductive core and an insulating sleeve around the conductive core, and a collar around the sleeve for axially retaining the connecting pin in the apparatus, the collar comprising conductive material to provide an earth shield radially outwardly of the conductive core.</p>
<p>With such an arrangement, the conductive collar which is located externally of the insulating sleeve can provide an earth shielding function. The use of an earth shield within the body of material forming the insulating sleeve, with any consequent tendency for the insulating sleeve material to fracture under axial loading on the penetrator pin, is avoided.</p>
<p>The conductive collar may engage directly with the insulating material (e.g. epoxy resin) of the insulating sleeve. Preferably, however, a conductive coating is provided on the outside of the insulating sleeve. This ensures that earthing can be provided evenly along the outer surface so as to avoid any localised electrical stress concentration.</p>
<p>The conductive collar may only be conductive in a region in contact with the external surface of the sleeve (or coating on the sleeve), so it could for example be a strong plastics material with a radially inner conductive lining or plate or the like.</p>
<p>The collar is preferably made from metal.</p>
<p>Preferably, a layer of conductive or semi-conductive compliant material is provided between the insulating sleeve and the conductive collar. This can provide a certain degree of compliance between the penetrator pin and the collar, so as to smooth the transfer of all mechanical loading between the two in response to axial loading on the penetrator pin. In addition, because the resilient material of this layer is conductive or semi-conductive, the earth shielding effect is ensured.</p>
<p>In certain preferred embodiments, the insulating sleeve has a reduced external diameter over part of its length to form an annular recess, and the collar is at least partly received in the recess. With such an arrangement, because the conductive collar is received in an external annular recess of the insulating sleeve, this helps it to resist axial thrust forces on the penetrator pin. The use of an external radially outwardly projecting flange as part of the insulating sleeve, such as the flange 10 shown in Figure 1, which is at risk of shearing or fracturing under axial loading, can be avoided.</p>
<p>In a preferred embodiment, the collar, viewed in longitudinal cross-section, has a radially inner profile having an axial end portion which slants, in a direction towards the axial end of the collar, from a radially inner position to a radially outer position. By providing an appropriately shaped slanted axial end portion, the lines of equal electrical potential can be guided radially outwardly without being unduly concentrated. High voltage gradients in the insulating sleeve can be avoided. Such a slanted arrangement may be sufficient at only one end of the collar, but preferably there is a slanted axial end portion at each end of the collar. There may be a central portion and respective slanted end portions. The central portion may be cylindrical and coaxial with the connecting pin.</p>
<p>It may be desirable to avoid sharp changes of direction in the radially inner profile of the collar, so as to minimise electric stress concentrations. Preferably, the collar, viewed in longitudinal cross-section, has a radially inner profile which is curved. In the embodiments having at least one slanted end portion, the slant may have a varying gradient, i.e. a curve. If there is a central cylindrical portion, the transition between this and a slanted end portion is preferably curved.</p>
<p>In the embodiments in which the insulating sleeve has an annular recess, this preferably has a shape complementary to the shape of the radially inner profile of the collar. Any conductive coating on the insulating sleeve or resilient conductive or semi-conductive layer between the sleeve and the collar preferably also has such a complementary shape.</p>
<p>Axial end portions of the annular recess of the insulating sleeve can provide respective axial abutments between the sleeve and the collar, resisting relative longitudinal movement in both axial directions. Thus, by providing the annular recess of the insulating sleeve with end portions which have a radial component as well as an axial one, as viewed in longitudinal cross-section, the end portions can serve to transfer axial loads caused by differential pressures at the opposite ends of the penetrator pin, from the pin to the conductive collar.</p>
<p>It may be possible to form the insulating sleeve by moulding it inside the collar. It is, however, preferable to form the sleeve separately of the collar.</p>
<p>Advantageously the collar is split e.g. in an axial plane. This enables it to be located in the annular recess of the insulating sleeve after the sleeve has been made. The collar may, for example, be in the form of two substantially symmetrical halves.</p>
<p>The collar may be secured to a radially outer support member, such as a penetrator support flange, by various means. It is preferably retained in a socket of support means by a retaining ring. The collar preferably has a radially outwardly projecting portion against which the retaining ring engages.</p>
<p>The collar can thus provide an earth shield between the conductive core of the connecting pin and any such radially outer support member.</p>
<p>According to another aspect of the present invention, there is provided an assembly comprising apparatus as described herein, and in which one end of the connecting pin is exposed to a first pressure and the opposite end of the connecting pin is exposed to a second pressure.</p>
<p>A preferred embodiment of the present invention will now be described by way of example and with reference to the accompanying drawings, in which: Figure 1, as mentioned above, shows a longitudinal cross-section of a known penetrator pin assembly; Figure 2 shows a longitudinal cross-section of an assembly in accordance with the present invention; and Figure 3 shows an end view on line Ill-Ill of Figure 2.</p>
<p>Referring to Figures 2 and 3, the penetrator pin 1 has a copper conductive core 2 surrounded by an insulating sleeve 3 made of epoxy resin. The penetrator pin extends across an interface between a gland assembly (not shown) and an item of underwater equipment (not shown). At the gland assembly end 31, the conductive core 2 is connected to a conductor 17 of an underwater cable. At the equipment end 30, the conductive core 2 is connected to the underwater equipment (the connection is not shown).</p>
<p>The penetrator pin is supported by a support flange 5. The flange is secured by bolts 6 to the gland assembly 4 and by bolts 7 to a mating flange 8 which forms part of the underwater equipment. A ring type gasket 29 is provided between the axially mating faces of the support flange 5 and the mating flange 8, and "S" type seals 32 are provided between the radially mating faces.</p>
<p>The support flange 5 supports a diaphragm support ring 18, made of a plastics material such as acetal, and is bolted thereto by bolts 27. The diaphragm support ring 18 supports one end of diaphragms 19 which protect the conductor 17 and its connection to the conductive core 2 of the penetrator pin.</p>
<p>A pair of 0-rings 28 is provided between the radially outer surface of the insulating sleeve 3 and the diaphragm support ring 18, and another pair of 0-rings 28 is provided between the axially engaging surfaces of the ring 18 and the support flange5.</p>
<p>In a central region, the insulating sleeve 3 of the penetrator pin I is formed with a reduced external diameter region forming an annular recess 20. This is coated with a conductive coating 21. The recess is for example "metallised". A metal collar 22 fits in the recess 20. The collar 22 is axially split into two equal halves, the split not being visible in the drawings. The collar 22 is lined with a conductive or semi-conductive resilient polymeric material 23. The recess 20 has a central cylindrical portion 24 extending between respective sloping portions 25 at the axially opposite ends of the recess. Generally, the profile of the recess is smooth, avoiding discontinuities which would tend to cause electrical stress concentration. Thus, the transition between the cylindrical portion 24 and the respective end portions 25 is curved or radiussed.</p>
<p>The penetrator support flangeS is formed with an axial socket 9 which receives the penetrator pin 1. The collar 22 is received in the axial socket 9 of the support flange 5 and is retained in position by a threaded retaining ring 13.</p>
<p>In use, if the penetrator pin 1 is subjected to axial loads as a result of differential pressures between the gland end 31 and the internal (equipment) end 30, these are resisted by the collar 22. The collar is received in the recess 22 of the sleeve and this assists in transferring axial loads without excessive mechanical stresses in the material of the insulating sleeve. The insulating sleeve is made of epoxy resin which is a very good electrical insulator but is not ideal for use as a mechanical element resisting the differential pressure loading on the penetrator pin.</p>
<p>For example, the use of an external, radially outwardly projecting flange 10 such as that shown in Figure 1 to resist axial thrust forces, with a risk of shearing, can be avoided. Moreover, the insulating sleeve is homogeneously moulded, without an internal earth shield which can lead to mechanical weakness.</p>
<p>In preferred embodiments of the invention, the insulating sleeve has no internal earth shield. There is no need to embed an earth shield in the material, e.g. epoxy resin, forming the insulating sleeve. In general, the material extending radially outwardly from the conductive core to the collar (or to any conductive coating on the insulating material or conductive or semi-conductive layer inside the collar) is homogeneous.</p>

Claims (1)

  1. <p>CLAIMS: 1. Apparatus for providing an electrical connection path into
    equipment in an underwater, wet or conductive environment, the apparatus comprising a connecting pin having a conductive core and an insulating sleeve around the conductive core, and a collar around the sleeve for axially retaining the connecting pin in the apparatus, the collar comprising conductive material to provide an earth shield radially outwardly of the conductive core.</p>
    <p>2. Apparatus as claimed in claim 1, comprising a conductive coating on the insulating sleeve.</p>
    <p>3. Apparatus as claimed in claim I or 2, comprising a resilient conductive or semi-conductive layer between the insulating sleeve and the collar.</p>
    <p>4. Apparatus as claimed in claim 1,2 or 3, wherein the insulating sleeve has a reduced external diameter over part of its length to form an annular recess, and the collar is at least partly received in the recess.</p>
    <p>5. Apparatus as claimed in any preceding claim, wherein the collar, viewed in longitudinal cross-section, has a radially inner profile having an axial end portion which slants, in a direction towards the axial end of the collar, from a radially inner position to a radially outer position.</p>
    <p>6. Apparatus as claimed in any preceding claim, wherein the collar, viewed in longitudinal cross-section, has a radially inner profile which is curved.</p>
    <p>7. Apparatus as claimed in any preceding claim, wherein the collar is split in an axial plane.</p>
    <p>8. Apparatus as claimed in any preceding claim, wherein the collar is received in a support member and is retained by a retaining ring.</p>
    <p>9. Apparatus as claimed in claim 8, wherein the collar has a radially outwardly projecting portion against which the retaining ring engages.</p>
    <p>10. Apparatus as claimed in any preceding claim, wherein the collar is made of metal.</p>
    <p>II. Apparatus as claimed in any preceding claim, in an assembly in which one end of the connecting pin is exposed to a first pressure and the opposite end of the connecting pin is exposed to a second pressure.</p>
    <p>12. Apparatus for providing an electrical connection path into equipment in an underwater, wet or conductive environment, substantially as hereinbefore described with reference to Figures 2 and 3 of the accompanying drawings.</p>
GB0614054A 2006-07-14 2006-07-14 Electrical connection apparatus Expired - Fee Related GB2440183B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0614054A GB2440183B (en) 2006-07-14 2006-07-14 Electrical connection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0614054A GB2440183B (en) 2006-07-14 2006-07-14 Electrical connection apparatus

Publications (3)

Publication Number Publication Date
GB0614054D0 GB0614054D0 (en) 2006-08-23
GB2440183A true GB2440183A (en) 2008-01-23
GB2440183B GB2440183B (en) 2011-03-16

Family

ID=36955692

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0614054A Expired - Fee Related GB2440183B (en) 2006-07-14 2006-07-14 Electrical connection apparatus

Country Status (1)

Country Link
GB (1) GB2440183B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2448985A (en) * 2007-04-30 2008-11-05 Tronic Ltd Connector having an insulated conductive pin and a protective member
US7794254B2 (en) 2007-04-30 2010-09-14 Tronic Limited Submersible electrical connector
US8303312B2 (en) 2008-12-18 2012-11-06 Veteo Gray Scandinavia AS High voltage subsea electrical penetrator
US11923648B2 (en) 2018-11-09 2024-03-05 Siemens Energy Global GmbH &Co. KG Electrical component of a subsea connector and method of manufacture therefore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103619A (en) * 1976-11-08 1978-08-01 Nasa Electroexplosive device
EP0745519A1 (en) * 1995-05-30 1996-12-04 Morton International, Inc. Inflator socket pin collar

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103619A (en) * 1976-11-08 1978-08-01 Nasa Electroexplosive device
EP0745519A1 (en) * 1995-05-30 1996-12-04 Morton International, Inc. Inflator socket pin collar

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2448985A (en) * 2007-04-30 2008-11-05 Tronic Ltd Connector having an insulated conductive pin and a protective member
US7794254B2 (en) 2007-04-30 2010-09-14 Tronic Limited Submersible electrical connector
US8079862B2 (en) 2007-04-30 2011-12-20 Tronic Limited Submersible electrical connector
US8202106B2 (en) 2007-04-30 2012-06-19 Tronic Limited Submersible electrical connector
GB2489128A (en) * 2007-04-30 2012-09-19 Tronic Ltd Connector for use in a wet or severe environment
GB2489129A (en) * 2007-04-30 2012-09-19 Tronic Ltd Connector for use in a wet or severe environment
GB2489130A (en) * 2007-04-30 2012-09-19 Tronic Ltd Connector for use in a wet or severe environment
GB2448985B (en) * 2007-04-30 2012-12-05 Tronic Ltd Electrical connector for use underwater or in a wet or severe environment
US8585423B2 (en) 2007-04-30 2013-11-19 Siemens Aktiengesellschaft Submersible electrical connector
US8303312B2 (en) 2008-12-18 2012-11-06 Veteo Gray Scandinavia AS High voltage subsea electrical penetrator
US11923648B2 (en) 2018-11-09 2024-03-05 Siemens Energy Global GmbH &Co. KG Electrical component of a subsea connector and method of manufacture therefore

Also Published As

Publication number Publication date
GB2440183B (en) 2011-03-16
GB0614054D0 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US7534147B2 (en) Electrical connection apparatus
US20200335899A1 (en) Shock and Vibration Resistant Bulkhead Connector with Pliable Contacts
US8816196B2 (en) Pressure balanced connector termination
US6361342B1 (en) Pothead with pressure energized lip seals
AU2014262425B2 (en) Multiple use termination system
US9853394B2 (en) Pressure-blocking feedthru with pressure-balanced cable terminations
US10424867B2 (en) Subsea termination gland, connector front end and connector assembly
EP3084905B1 (en) Connector part of a connector unit
GB2506635A (en) Downhole cable termination systems
US20130200577A1 (en) Interfacial Seal with a Groove
EP2865054B1 (en) Downhole cable termination apparatus and method thereof
GB2440183A (en) Shielding for pin in underwater electrical connector
US9780482B2 (en) Method of dry-mating a first connector part and a second connector part and connector assembly
US20200091652A1 (en) Systems and methods for sealing motor lead extensions
EP2898573B1 (en) Downhole cable termination systems
EP3376605A1 (en) Subsea connector
NO342996B1 (en) Electrical penetrator assembly

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20140130 AND 20140205

732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20140220 AND 20140226

PCNP Patent ceased through non-payment of renewal fee

Effective date: 20160714