GB2439972A - Conductive structure for an electrode assembly of a lithium secondary battery - Google Patents

Conductive structure for an electrode assembly of a lithium secondary battery Download PDF

Info

Publication number
GB2439972A
GB2439972A GB0613622A GB0613622A GB2439972A GB 2439972 A GB2439972 A GB 2439972A GB 0613622 A GB0613622 A GB 0613622A GB 0613622 A GB0613622 A GB 0613622A GB 2439972 A GB2439972 A GB 2439972A
Authority
GB
United Kingdom
Prior art keywords
positive
negative
area
layer
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0613622A
Other versions
GB0613622D0 (en
GB2439972B (en
Inventor
Donald Pi Hsiang Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to GB0613622A priority Critical patent/GB2439972B/en
Publication of GB0613622D0 publication Critical patent/GB0613622D0/en
Publication of GB2439972A publication Critical patent/GB2439972A/en
Application granted granted Critical
Publication of GB2439972B publication Critical patent/GB2439972B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M2/263
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

An electrode assembly of a lithium secondary battery is specially designed such that the positive and negative layers are formed at a side thereof with a large uncoated negative lead area and a large uncoated positive lead area. In addition, the collecting area is located correspondingly to the negative lead area or the positive lead area. And then the clasping assemblies are fixed outside the positive lead area or the negative lead area. In this way, the two pressing pieces are firmly pressed against the positive lead area or the negative lead area. On the one hand, the respective layers of the positive lead area or the negative lead area are pressed closely against one another, and on the other hand, the innermost layer of the positive lead area or the negative lead area is allowed to be maintained in a tight electrical contact with the collecting area.

Description

<p>* CONDUCTIVE STRUCTURE FOR AN ELECTRODE ASSEMBLY OF A</p>
<p>LITHIUM SECONDARY BATTERY</p>
<p>BACKGROUND OF THE INVENTION</p>
<p>Field of the Invention</p>
<p>The present invention relates to a conductive structure for an electrode assembly of a lithium secondary battery, and more particularly to an electric power collecting and leading structure for an electrode assembly of a lithium secondary battery.</p>
<p>Description of the Prior Art</p>
<p>Referring to Figs. 1 and 2, a spirally coiled electrode assembly 10 of a conventional lithium secondary battery disclosed by US Pat. No. 5,849,431 comprises a web-like positive layer 11, a negative layer 12 and a separator layer 13 that are sequentially laminated to one another and are then wind about a core 14.</p>
<p>One side of the positive layer 11 and the negative layer 12 are cut into rectangular teeth that serve as rectangular leads 111 and 131. The rectangular leads 111 and 131 are gathered together and then welded to the outer periphery of the disc-like conductive terminal 15. By such arrangements, the electric power can be outputted out of the electrode assembly 10.</p>
<p>It is to be noted that the respective layers of the electrode assembly are arranged in a concentric manner, and the respective leads are located at different distances to the outer periphery of the conductive terminal. Before welding the respective leads to the conductive terminal, the respective leads must be trimmed and tidied up and then welded to the outer periphery of the conductive terminal.</p>
<p>* However, this conventional battery structure still has the following disadvantages: Firstly, when manufacturing the electrode assembly, it must be careful to avoid the complicated cutting and trimming operation, since the trimming operation will produce bits of waste. If the bits of waste are adhered to the surface of the positive and negative electrode layers, it will lead to an unrecoverable conduction disturbance of the electrode assembly. And in this conventional lithium secondary battery structure, the electrode assembly should be subjected to the teeth cutting operation, this will not only increase the manufacturing difficulties, reducing the acceptance ratio of the products, but will produce bits of waste.</p>
<p>Secondly, the leads of the respective layers of the electrode assembly are arranged in a concentric manner, and the leads must be equal in length, and the length of the lead that is located far away from the outer periphery of the conductive terminal is regarded as a reference value. Therefore, the excessively long leads must be subjected to a tiding up operation in which the excessively long leads are pressed together. However, this tidying up operation will not only increase the complexity of the manufacturing process, but will have the risk of breaking the leads.</p>
<p>Thirdly, the area of the outer periphery of the disc-like conductive terminal to be welded with the leads are very small, if there are too many leads, the battery manufacturing process will become more complicated and difficult.</p>
<p>Referring to Fig. 3, a conventional lithium secondary battery disclosed by US Pat. No. 6,447,946 is illustrated and comprises a plurality of leads lila and 131 a welded to the end periphery of the electrode assembly 1 Oa, and then the leads lila * and 131a are welded to a frame 161 disposed at a side of the battery terminal 16.</p>
<p>The electrode assemblies in the two abovementioned conventional lithium battery structures are all formed or welded with a plurality of leads, and then the leads serve as a medium to which the battery terminal or the conductive terminal, so as to guide the electric power of the electrode assembly out of the battery. It is to be noted that, for a high capacity battery, the number of leads must be relatively increased as compared to a battery of ordinary capacity. Otherwise, in the battery charge or discharge process, the increase of internal resistance will lead to a substantial decrease in the charge and discharge efficiency, or even worse, a failure of battery charge and discharge. However, as for the conventional structure, the number of the leads is difficult to effectively increase since it is limited by the welding and cutting technology.</p>
<p>It is understood from the above description that the battery with a comparatively great number of leads can effectively reduce the internal resistance and reactance of the battery while improving the capacity thereof. However, for such a great number of leads, the welding operation is not only laborsome, but the manufacturing process is complex.</p>
<p>Therefore, the present invention is emphasized on designing such a battery structure whose electrode assembly is in direct electrical contact with the battery terminal without the use of welding operation. On the other hand, via structural design, the electrode assembly is allowed to be in a large area of electrical contact with the battery terminal. In this way, the internal resistance of the battery is substantially reduced while the capacity is improved.</p>
<p>The present invention has arisen to mitigate and/or obviate the afore-described disadvantages.</p>
<p>SUMMARY OF THE INVENTION</p>
<p>The primary objective of the present invention is to provide a conductive structure for an electrode assembly of a lithium secondary battery. The positive and negative layers of the electrode assembly are formed at a side thereof with a large uncoated negative lead area and a large uncoated positive lead area. The lead terminal is formed at its mid portion with a large collecting area. A clasping assembly enables the positive and negative lead areas to keep in electrical contact with the collecting area, and makes the respective layers of the positive and negative lead areas press against one another closely. In this way, the electrode assembly is allowed to be in a large area of electrical contact with the battery terminal, so that the internal resistance can be effectively reduced, and meanwhile, the secondary battery has an excellent capability to charge and discharge large currents.</p>
<p>BRIEF DESCRIPTION OF THE DRAWINGS</p>
<p>Fig. 1 is a perspective view of showing a conventional electrode assembly disclosed in US Pat. No. 5,849,431; Fig. 2 is an illustrative view of showing the welding structure of the leads and the lead terminal of the conventional electrode assembly disclosed in US Pat. No. 5,849,431; Fig. 3 is a cross sectional view of a lithium battery disclosed in US Pat. No. 6,447,946; Fig. 4 is a perspective view of an electrode assembly in accordance with the present invention; Fig. 5 is a perspective view in accordance with the present invention of showing the clasping assembly and the electrode assembly before they are assembled together; Fig. 6 is a partially amplified view in accordance with the present invention of showing the clasping assembly and the electrode assembly after they are assembled together; Fig. 7 is a cross sectional view in accordance with the present invention of showing the interior of the battery case; Fig. 8 is a perspective view in accordance with another embodiment of the present invention of showing a single-pressing-piece clasping assembly and the electrode assembly; and Fig. 9 is a cross sectional view in accordance with the another embodiment of the present invention of showing the interior of the battery case.</p>
<p>DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS</p>
<p>The present invention will be more clear from the following description when viewed together with the accompanying drawings, which show, for purpose of illustrations only, the preferred embodiment in accordance with the present invention.</p>
<p>Referring to Figs. 4, 5, 6 and 7, a conductive structure for an electrode assembly of a lithium secondary battery in accordance with the present invention is shown and comprises a core disposed in a case, two lead terminals fixed at both ends of the core, an electrode assembly winding about the core, two clasping assemblies for enabling the ends of the electrode assembly to keep in electrical contact with the lead terminals, and two fixing nuts for fixing these internal components and the case.</p>
<p>The case 20 is formed in either end thereof with an opening 201 in which the components of the battery are to be received, and each of the openings 201 are sealed with a cap 21. A port 211 is formed in the cap 21 for passage of the components of the battery.</p>
<p>The core 30 is an insulating structure disposed in the case 20 and is formed at either end thereof with a connecting portion 31, and the connecting portion 31 can be an inserting groove 311.</p>
<p>The electrode assembly 40 includes a positive layer 41, a negative layer 42 and at least one separating layer 43. The surfaces of the positive and negative electrode layers 41, 42 are coated with positive electrode material 411 and negative electrode material 421, respectively. The separating layer 43 is located between the positive and negative electrode layers 41, 42. An uncoated area is formed at a side of the positive layer 41 for use as a positive lead area 412, and the negative layer 42 is formed at another side thereof opposite the positive layer 41 with an uncoated area for use as a negative lead area 422. The positive layer 41, the separating layer 43 and the negative layer 42 are superposed one upon another, and the positive and negative lead areas 412 and 422 protrude out of both sides of the assembly of positive layer 41, the separating layer 43 and the negative layer 42. After the electrode assembly 40 is formed by winding the positive layer 41, the separating layer 43 and the negative layer 42 about the core 30, both ends of the electrode assembly 40 will protrude out of the positive and negative lead areas 412 and 422.</p>
<p>* Each of the lead terminals 50 is a conductive structure having a connecting end 51 formed at an end thereof. The connecting end 51 can be an inserting rod structure 511 to be connected to the connecting portion 31 of the core 30. Another end of the respective lead terminals 50 is formed with an output end 52 that can be a threaded rod structure. Each of the lead terminals 50 is particularly formed with a flange 53 and a collecting area 54 that are located between the connecting end 51 and the output end 52. The collecting area 54 can be a cylindrical structure formed with a through hole 541 and is located correspondingly to the positive lead area 412 or the negative lead area 422. The flange 53 abuts against the cap 21 of the case 20.</p>
<p>The clasping assembly 60 includes a screw rod 61 and two pressing pieces 62, 62a. The pressing pieces 62, 6a each is formed with a through hole 621 and is disposed outside the positive lead area 412 or the negative lead area 422. The screw rod is inserted through the through hole 621 of one of the pressing pieces 62, the through hole 541 of the collecting area 54, the through hole 621 of another one of the pressing pieces 62, and then is fixed thereto by a nut 63, so that the two pressing pieces 62 and 62a are firmly pressed against the positive lead area 412 or the negative lead area 422, and the positive lead area 412 or the negative lead area 422 are maintained in a close electrical contact with the collecting area 54.</p>
<p>When the electrode assembly 40, the core 30, and the lead terminals 50 are assembled together by the clasping assemblies 60, and the output end 52 of the lead terminals 50 passes through the port 211 of the cap 21 until the flange 53 is pressed against the inner surface of the cap 21, the fixing nuts 70 will be screwed to the output end 52, enabling the respective components of the battery to be assembled in * the case 20 more stably.</p>
<p>The electrode assembly of the present invention has a large area that is in electrical contact with the lead terminals, so that the secondary battery has an excellent capability to charge and discharge large currents.</p>
<p>For a better understanding of the present invention, its operation and function, reference should be made to Figs. 4-6 again. In order to have an excellent capability to charge and discharge large currents, the electrode assembly 40 and the lead terminals 50 are specially designed such that the positive and negative layers 41, 42 are formed at a side thereof with a large uncoated negative lead area 412 and a large uncoated positive lead area 422. In addition, the collecting area 54 is located correspondingly to the negative lead area 412 or the positive lead area 422. And then the clasping assemblies 60 are fixed outside the positive lead area 412 or the negative lead area 422. In this way, the two pressing pieces 62 and 62a are firmly pressed against the positive lead area 412 or the negative lead area 422. On the one hand, the respective layers of the positive lead area 412 or the negative lead area 422 are pressed closely against one another, and on the other hand, the innermost layer of the positive lead area 412 or the negative lead area 422 is allowed to be maintained in a tight electrical contact with the collecting area 54.</p>
<p>As mentioned above, the reason why the internal resistance of the battery of the present invention can be reduced is explained as follows: Firstly, the positive and negative lead areas are integral with the electrode assembly. Electrically, the positive and negative lead areas are equivalent to numerous leads, which allow for smooth passage of large current, thus relatively</p>
<p>S</p>
<p>* reducing the internal resistance.</p>
<p>Secondly, the positive and negative lead areas are in electrical contact with the collecting area through a large area, which allow for smooth passage of large current, thus relatively reducing the internal resistance.</p>
<p>Thirdly, the clasping assembly makes the respective layers of the positive and negative lead areas press against one another closely, and the internal resistance can be effectively reduced once respective layers of the positive and negative lead areas are pressed against one another closely.</p>
<p>It is to be notated that the positive or negative lead area 412, 422 of the electrode assembly 40 is in direct electrical contact with the collecting area 54 of the lead terminals 50, without the use of conventional leads. Therefore, the manufacturing process of the battery is simplified without the need of welding the lead terminals 50 to the leads, thus substantially saving the manufacturing cost and the equipment cost.</p>
<p>When the structural design of the present invention is used in a high capacity battery, the large current generated during the charge and discharge of the electrode assembly can be transmitted through the large positive and negative lead areas and the large collecting area. Since the internal resistance decreases, the temperature of the electrode assembly is less likely to increase substantially during the charge and discharge process, thus making the service life of the secondary battery longer while making the operation of the battery more stable.</p>
<p>It is to be noted that in order to ensure the airtightness of the battery after the respective components of the battery are assembled in the case 20, particularly the airtightness between the case 20 and the lead terminals 50, a sealing washer 801 is arranged between the inner surface of the cap 21 and the flange 53, and another sealing washer 802 is provided between the fixing nut 70 and the outer surface of the cap 21. By tightening the fixing nut 70, the flange 53 and the port 211 of the cap 21 can be maintained in an airtight state.</p>
<p>Furthermore, as shown in Figs. 5, 6 and 7, one surface of the pressing pieces 62 of the clasping assembly 60 can be an arc-shaped concave surface for mating with the cylindrical collecting area 54 in a convex and concave manner. This surface can be a stepped structure having a high portion 622 and a lower portion 623, SO that after the lower portion 623 is pressed against the uncoated positive and negative lead areas 412 and 422, the coated area of the electrode assembly 40 will be flushed with the high portion 622. Otherwise, the pressing pieces 62 can't press closely against the surface of the electrode assembly since the coated and uncoated areas thereof are not in the same level.</p>
<p>If the technology of the present invention is used in a small capacity battery, since the electrode assembly 40 of a small capacity battery has a relatively small number of layers and the battery case is also relatively narrow, as shown in Figs. 8 and 9, the clasping assembly 60 can be changed to have a screw rod 61a and a single pressing piece 62b, namely, only one pressing piece 62b is disposed at a side of the outer surface of the positive and negative lead areas 412 and 422, and then the screw rod 61 a passes through the pressing piece 62b and is screwed into the threaded hole 542 in the collecting area 54. In this way, the pressing piece 62b is pressed against a single side of the positive and negative lead areas 412 and 422 while making the I0 single side of the positive and negative lead areas 412 and 422 have a close electrical contact with the collecting area 54.</p>
<p>While we have shown and described various embodiments in accordance with the present invention, it is clear to those skilled in the art that further embodiments may be made without departing from the scope of the present invention.</p>
<p>II</p>

Claims (1)

  1. <p>WHAT IS CLAIMED IS: 1. A conductive structure for an electrode assembly
    of a lithium secondary battery comprising: a core disposed in a case, two lead terminals fixed at both ends of the core, an electrode assembly winding about the core, a clasping assembly for enabling the electrode assembly to keep in electrical contact with the lead terminals, and two fixing nuts for fixing these components and the case; wherein the electrode assembly includes a positive layer, a negative layer and at least one separating layer, surfaces of the positive and negative electrode layers are coated with positive electrode material and negative electrode material, respectively, the separating layer is located between the positive and negative electrode layers, an uncoated area is formed at a side of the positive layer for use as a positive lead area, and the negative layer is formed at another side thereof opposite the positive layer with an uncoated area for use as a negative lead area, the positive layer, the separating layer and the negative layer are superposed one upon another, and the positive and negative lead areas protrude out of both sides of an assembly consisted of the positive layer, the separating layer and the negative layer, after the electrode assembly is formed by winding the positive layer, the separating layer and the negative layer about the core, both ends of the electrode assembly will protrude out of the positive and negative lead areas; each of the lead terminals is a conductive structure having a connecting end formed at an end thereof for connecting to the connecting portion of the core, another end of the respective lead terminals is formed with an output end, each of the lead terminals is particularly formed with a flange and a collecting area that are * located between the connecting end and the output end, the collecting area is located correspondingly to the positive lead area or the negative lead area, the flange abuts against a cap of the case; the clasping assembly includes at least one screw rod and two pressing pieces, the pressing pieces each is formed with a through hole and is disposed outside the positive lead area or the negative lead area, the screw rod is inserted through the through hole of one of the pressing pieces, a through hole in the collecting area, the through hole of another one of the pressing pieces, and then is fixed thereto by a nut, so that the two pressing pieces are firmly pressed against the positive lead area or the negative lead area, and the positive lead area or the negative lead area are maintained in a tight electrical contact with the collecting area.</p>
    <p>2. The conductive structure for an electrode assembly of a lithium secondary battery as claimed in claim 1, wherein one surface of the pressing pieces of the clasping assembly is an arc-shaped concave surface for mating with the collecting area in a convex and concave manner, and the collecting area is cylindrical-shaped.</p>
    <p>3. The conductive structure for an electrode assembly of a lithium secondary battery as claimed in claim 1, wherein one surface of the pressing pieces of the clasping assembly is a stepped structure having a high portion and a lower portion, so that after the lower portion is pressed against the uncoated positive and negative lead areas, the coated area of the electrode assembly will be flushed with the high portion.</p>
    <p>4. A conductive structure for an electrode assembly of a lithium secondary battery comprising: a core disposed in a case, two lead terminals fixed at both ends * of the core, an electrode assembly winding about the core, two clasping assemblies for enabling the electrode assembly to keep in electrical contact with the lead terminals, and two fixing nuts for fixing these components and the case; wherein the electrode assembly includes a positive layer, a negative layer and at least one separating layer, surfaces of the positive and negative electrode layers are coated with positive electrode material and negative electrode material, respectively, the separating layer is located between the positive and negative electrode layers, an uncoated area is formed at a side of the positive layer for use as a positive lead area, and the negative layer is formed at another side thereof opposite the positive layer with an uncoated area for use as a negative lead area, the positive layer, the separating layer and the negative layer are superposed one upon another, and the positive and negative lead areas protrude out of both sides of an assembly consisted of the positive layer, the separating layer and the negative layer, after the electrode assembly is formed by winding the positive layer, the separating layer and the negative layer about the core, both ends of the electrode assembly will protrude out of the positive and negative lead areas; each of the lead terminals is a conductive structure having a connecting end formed at an end thereof for connecting to the connecting portion of the core, another end of the respective lead terminals is formed with an output end, each of the lead terminals is particularly formed with a flange and a collecting area that are located between the connecting end and the output end, the collecting area is located correspondingly to the positive lead area or the negative lead area, the flange abuts against a cap of the case; each of the clasping assemblies includes at least one screw rod and one pressing piece, the pressing piece each is formed with a through hole and is disposed at a side of the outer surface of the positive lead area or the negative lead area, and then the screw rod passes through the pressing piece and is screwed into a threaded hole in the collecting area, in this way, the pressing piece is pressed against a single side of the positive lead area or the negative lead area while making the single side of the positive and negative lead areas have a close electrical contact with the collecting area.</p>
    <p>5. A conductive structure for an electrode assembly of a lithium secondary battery substantially as hereinbefore described with reference to and as shown in Figures 4 to 9 of the accompanying drawings.</p>
    <p>Amendments to the claims have been filed as follows: WHAT IS CLAIMED IS: 1. A conductive structure for an electrode assembly of a lithium secondary battery comprising: a core disposed in a case, two lead terminals fixed at both ends of the core, an electrode assembly winding about the core, two clasping assemblies for enabling the electrode assembly to be kept in electrical contact with the lead terminals, and two fixing nuts for fixing these components and the case; wherein the electrode assembly includes a positive layer, a negative layer and at least one separating layer, surfaces of the positive and negative electrode layers are coated with positive electrode material and negative electrode material respectively, the separating layer is located between the positive and negative electrode layers, an uncoated area is formed at a side of the positive layer for use as a positive lead area, and the negative layer is formed at another side thereof opposite the positive layer with an uncoated area for use as a negative lead area, the positive layer, the separating layer and the negative layer are superposed one upon another, and the positive and negative lead areas protrude out of both sides of an assembly consisting of the positive layer, the separating layer and the negative layer, and the arrangement being such that, after the electrode assembly is formed by winding the positive layer, the separating layer and the negative layer about the core, both ends of the electrode assembly will protrude out of the positive and negative lead areas; each of the lead terminals is a conductive structure having a connecting end formed at an end thereof for connecting to the connecting portion of the core, another end of each of the respective lead terminals is formed as an output end, each of the lead terminals is formed with a flange and a collecting area that are located between the connecting end and the output end, the collecting area is located correspondingly to the positive lead area or the negative lead area, and each flange abuts against a cap of the case; each clasping assembly includes at least one screw rod and two pressing pieces, each of the pressing pieces is formed with a through hole and is disposed outside the positive lead area or the negative lead area, the screw rod is inserted through the through hole of one of the pressing pieces, a through hole in the collecting area, the through hole of another one of the pressing pieces, and then is fixed thereto by a nut, so that the two pressing pieces are firmly pressed against the positive lead area or the negative lead area, and the positive lead area or the negative lead area is maintained in a tight electrical contact with the collecting area.</p>
    <p>2. The conductive structure for an electrode assembly of a lithium secondary battery as claimed in claim 1, wherein one surface of cacti of the pressing pieces of each clasping assembly is an arc-shaped concave surface for mating with the collecting area in a convex and concave manner, and the collecting area is cylindrical in shape.</p>
    <p>3. The conductive structure for an electrode assembly of a lithium secondary battery as claimed in claim 1, wherein one surface of each of the pressing pieces of each clasping assembly has a stepped structure having a higher portion and a lower portion, so that, after the lower portion has been pressed against the uncoated positive and negative lead areas, the coated area of the electrode assembly will be flush with the higher portion.</p>
    <p>4. A conductive structure for an electrode assembly of a lithium secondary battery comprising: a core disposed in a case, two lead terminals fixed at both ends of the core, an electrode assembly winding about the core, two clasping assemblies for enabling the electrode assembly to be kept in electrical contact with the lead terminals, and two fixing nuts for fixing these components and the case; wherein the electrode assembly includes a positive layer, a negative layer and at least one separating layer, surfaces of the positive and negative electrode layers are coated with positive electrode material and negative electrode material respectively, the separating layer is located between the positive and negative electrode layers, an uncoated area is formed at a side of the positive layer for use as a positive lead area, and the negative layer is formed at another side thereof opposite the positive layer with an uncoated area for use as a negative lead area, the positive layer, the separating layer and the negative layer are superposed one upon another, and the positive and negative lead areas protrude out of both sides of an assembly consisting of the positive layer, the separating layer and the negative layer, and the arrangement being such that, after the electrode assembly is formed by winding the positive layer, the separating layer and the negative layer about the core, both ends of the electrode assembly will protrude out of the positive and negative lead areas; each of the lead terminals is a conductive structure having a connecting end formed at an end thereof for connecting to the connecting portion of the core, another end of each of the respective lead terminals is formed as an output end, each of the lead terminals is formed with a flange and a collecting area that are located between the connecting end and the output end, the collecting area is located correspondingly to the positive lead area or the negative lead area, and each flange abuts against a cap of the case; each of the clasping assemblies includes at least one screw rod and one pressing piece, each of the pressing pieces is formed with a through hole and is disposed at a side of the outer surface of the positive lead area or the negative lead area, and then each screw rod passes through the respective pressing piece and is screwed into a threaded hole in the collecting area so that, in this way, each pressing piece is pressed against a single side of the positive lead area or the negative lead area while making the single side of the positive or negative lead area have a close electrical contact with the collecting area.</p>
    <p>5. A conductive structure for an electrode assembly of a lithium, secondary battery substantially as hereiribefore described with reference to and as shown in Figures 4 to 9 of the accompanying drawings.</p>
GB0613622A 2006-07-08 2006-07-08 Conductive structure for an electrode assembly of a lithium secondary battery Expired - Fee Related GB2439972B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0613622A GB2439972B (en) 2006-07-08 2006-07-08 Conductive structure for an electrode assembly of a lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0613622A GB2439972B (en) 2006-07-08 2006-07-08 Conductive structure for an electrode assembly of a lithium secondary battery

Publications (3)

Publication Number Publication Date
GB0613622D0 GB0613622D0 (en) 2006-08-16
GB2439972A true GB2439972A (en) 2008-01-16
GB2439972B GB2439972B (en) 2008-07-23

Family

ID=36926716

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0613622A Expired - Fee Related GB2439972B (en) 2006-07-08 2006-07-08 Conductive structure for an electrode assembly of a lithium secondary battery

Country Status (1)

Country Link
GB (1) GB2439972B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742267B (en) * 2019-01-10 2022-07-19 深圳市量能科技有限公司 Welding-free battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257002A (en) * 2000-03-10 2001-09-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US20050153200A1 (en) * 2004-01-14 2005-07-14 Varta Automotive Systems Gmbh Rechargeable battery and method for its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257002A (en) * 2000-03-10 2001-09-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US20050153200A1 (en) * 2004-01-14 2005-07-14 Varta Automotive Systems Gmbh Rechargeable battery and method for its production

Also Published As

Publication number Publication date
GB0613622D0 (en) 2006-08-16
GB2439972B (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US8758928B2 (en) Conductive structure for an electrode assembly of a lithium secondary battery
KR100599752B1 (en) Secondary battery and electrodes assembly using the same
US7273679B2 (en) Secondary battery
EP1596450B1 (en) Welded current collector plates in non-aqueous electrolyte secondary cells
EP1626456B1 (en) Safety device for sealed storage battery
US6379840B2 (en) Lithium secondary battery
US6534212B1 (en) High performance battery and current collector therefor
KR101695868B1 (en) Electrode block, layered battery, and assembly method for layered battery
CN102760855B (en) Secondarey battery
JP7296208B2 (en) Secondary battery and assembled battery
US20060051665A1 (en) Electrochemical cell presenting two current output terminals on a wall of its container
JPH1173984A (en) Cylindrical secondary battery
KR102659830B1 (en) Secondary battery And Fabricating Method Thereof
US20130136961A1 (en) Secondary battery
KR20150035205A (en) Secondary battery
JP2010118625A (en) Electrode connection device and electric storage apparatus provided with the same
EP3523837B1 (en) Accumulator
US20080076013A1 (en) Conductive Structure for an Electrode Assembly of a Lithium Secondary Battery
JPH0822818A (en) Alkaline storage battery
JP2008016411A (en) Pole winding conductive structure of lithium secondary battery
JP2003263977A (en) Secondary battery
US20080076018A1 (en) Core Structure for a Circular Lithium Secondary Battery
US20080076020A1 (en) Electrical Connection Structure for a Core Assembly of a Secondary Lithium Battery
JP2010170920A (en) Battery
JP2000243372A (en) Secondary battery

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20170105 AND 20170111

PCNP Patent ceased through non-payment of renewal fee

Effective date: 20230708