GB2431096A - Regenerating filter system for a vacuum cleaner - Google Patents

Regenerating filter system for a vacuum cleaner Download PDF

Info

Publication number
GB2431096A
GB2431096A GB0620394A GB0620394A GB2431096A GB 2431096 A GB2431096 A GB 2431096A GB 0620394 A GB0620394 A GB 0620394A GB 0620394 A GB0620394 A GB 0620394A GB 2431096 A GB2431096 A GB 2431096A
Authority
GB
United Kingdom
Prior art keywords
filter
vacuum cleaner
dirt
collection chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0620394A
Other versions
GB0620394D0 (en
GB2431096B (en
Inventor
Vincent L Weber
Jackson W Wegelin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoover Co
Original Assignee
Hoover Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoover Co filed Critical Hoover Co
Publication of GB0620394D0 publication Critical patent/GB0620394D0/en
Publication of GB2431096A publication Critical patent/GB2431096A/en
Application granted granted Critical
Publication of GB2431096B publication Critical patent/GB2431096B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/28Suction cleaners with handles and nozzles fixed on the casings, e.g. wheeled suction cleaners with steering handle
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/20Means for cleaning filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • B01D46/04Cleaning filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • B01D46/71Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/74Regeneration of the filtering material or filter elements inside the filter by forces created by movement of the filter element
    • B01D46/76Regeneration of the filtering material or filter elements inside the filter by forces created by movement of the filter element involving vibrations

Abstract

A vacuum cleaner comprises a floor engaging foot (20, fig 1) having a nozzle (24, fig 1) defined in an underside thereof and an upper structure pivotally attached to the foot (20, fig 1). The vacuum cleaner further includes a suction source for drawing a dirt laden air stream from the foot of the cleaner, and a fine filter 81 for separating smaller particles from the air stream. A blowback system for applying reverse airflow (115, fig 10) to a portion of the filter 81 is provided so that dust can be removed from the filter 81 and the filter 81 kept clean. The vacuum cleaner further includes a mechanical agitator (79, fig 10) for applying mechanical energy to the portion of the filter 81 being subjected to reverse airflow, and a fine particle collection chamber 92 is provided for collecting the dislodged dirt. The combination of reverse airflow (115, fig 10) and mechanical energy causes the small particles on the filter 81 to be transported to the fine particle collection chamber 92. A motor is preferably provided to rotate the cylinder about its axis and the filter 81 is preferably arranged so that rotating the filter 81 applies atmospheric pressure to the filter 81.

Description

REGENERATING FILTER SYSTEM FOR A VACUUM CLEANER
Generally, this invention relates to vacuum cleaners. In particular, the invention relates to a filter system for a vacuum cleaner. More particularly the invention relates to a regenerating filter system for a vacuum cleaner configuration.
Vacuum cleaners are generally divided into two categories. In the United States, the most popular category of vacuum cleaners is upright vacuum cleaners. Generally, upright vacuum cleaners combine a nozzle mounted suction foot with a dirt separator attached to a pivoting handle.
Upright vacuum cleaners provide good carpet cleaning and ease of use.
Another type of vacuum cleaner, the canister cleaner, provides a separate * canister and cleaning nozzle. Canister vacuum cleaners typically provide better suction and stability at the cost of reduced cleaning power and inconvenience of maneuvering the separate canister and cleaning nozzle.
** * The increase in suction power makes canisters effective in powering cleaning tools, but less effective in removing dirt from carpet.
****** * Recently, the trend in upright vacuum cleaners is to incorporate on board tools to provide some of the functionality of a canister in an upright package. While these cleaners provide the increased above the floor cleaning features of functionality of the canister, they lack the stability of the criister pltforni. Alternately, there have been hybrid units which separate to form a canister cleaner and combine to form a upright cleaner. These machines are undesirable because they are have added complexity yet do not offer any advantage over a conventional upright or canister cleaner other than the ability to switch from one configuration to another and has the distinct disadvantage that the nozzle may not be stored in the same location when it is desired to return to canister mode.
What is needed therefore, is a vacuum cleaner that combines the advantages of upright style vacuum cleaners with the advantages of canister style vacuum cleaners which overcomes the above-mentioned drawbacks.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the present invention, there is provided a filter system for a vacuum cleaner. The vacuum cleaner includes a floor engaging foot having nozzle defined in an underside thereof and an upper structure pivotally attached to the foot. The vacuum cleaner further includes a suction source a for drawing a dirt laden air stream from the foot of the cleaner. The vacuum cleaner yet further includes a primary filter for separating small particles from the air stream and a blowback system for applying reverse airflow to a portion of the media. The vacuum cleaner further includes a mechanical agitator for applying mechanical energy the portion of the filter being subjected to reverse airflow and a fine particle : * collection chamber for receiving the reverse airflow from the blowback system.
The combination of reverse airflow and mechanical energy increases the **s.
likelihood that small particles on the filter will be transported to the fine.particle collection chamber.
In accordance with a second aspect of the present invention, there *:: is provided a vacuum cleaner having a floor engaging foot having nozzle * * defined in an underside thereof. The vacuum cleaner further includes an :::::: upper structure pivotally attached to the foot and a suction source a for drawing a dirt laden air stream from the foot of the cleaner. The vacuum cleaner yet further includes a primary filter for separating small particles from the air stream and a mechanical agitator for applying mechanical energy a portion of the filter. The vacuum cleaner still further includes a motor for rotating the one of the primary filter or agitator and a fine particle collection chamber for receiving the particles removed from the filter by the mechanical agitator. The mechanical energy increases the likelihood that smafi particles on the filter will be transported to the fine particle collection chamber
BRIEF DESCRIPTION OF DRAW INGS
Fig. 1 is a perspective view of a vacuum cleaner in an upright storage mode which incorporates the features of the present invention therein; Fig. 2 is a perspective view of the vacuum cleaner of claim 1 in an upright operating mode; Fig. 3 is a perspective of the vacuum cleaner of Fig. 1, but showing the vacuum cleaner in a canister mode; Fig. 4 is a rear perspective view of the cleaner shown in Fig 1; Fig. 5. is an partially exploded perspective view of the foot and link of the vacuum cleaner of Fig 1; Fig. 6. is a cut away perspective view of portions of the calf and thigh of the vacuum of Fig. 1, taken along the line 6-6; Fig. GA is a view similar to Fig. 6, but showing a linkage between the calf and control pad; Fig. 7 is a cut away perspective view of portions of the calf and * thigh of Fig. 1, taken along the line 7-7 Fig. 8 is a view similar to Fig. 7, but showing portions of the link, *.e* calf and thigh in the canister; * Fig. 9 is a perspective view of the dirt separation system showing both the dirt cup and filter cover removed from the calf; * Fig. lOis an enlarged cutawayview of the filter system and portion * of the dirt cup shown in Fig. 9; Fig. 11 is reverse partially cutaway perspective view of portions of the filter system of Fig. 9, taken along the line 11 -11; Fig. 12 is a perspective view of the thigh portion of the cleaner shown in Fig. 1, taken along the line 12-12 and showing the cover in an open position; Fig 13 is a partial schematic view of the electric control system of (he vacuum cleaner shown in Fig. 1, Fig. 14 is a left perspective view of the handle and wand assembly, and Fig. 15 is a front perspective view of the control pod and portion of the wand.
DETAILED DESCRIPTION
While the invention is susceptible to various modifications and alternative forms, a specific embodiment thereof has been shown by way of example in the drawings and will herein be described in detail, It should be understood, however, that there is no intent to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Referiing now to Figs. 1-4, there is shown an vacuum cleaner 10 which incorporates the features of the present invention therein. The vacuum cleaner 10 includes a vacuum cleaner base or foot 20 adapted to engage a carpeted floor surface. The base 20 includes a nozzle opening 24 formed in * ** an underside thereof for suctioning of dirt particles from a carpeted floor surface. In addition, an agitator (not shown) is positioned within the nozzle opening 24 to assist in removing dirt particles from the carpeted floor surface.
This new vacuum cleaner configuration is best represented by terms similar to the human leg. The foot 20 is pivotally connected to a ankle or link 30 (see Fig. 4). This link 30 is then connected to a calf 40. The calf 40 is then pivotally connected to the thigh 50. A control pad 60 is positioned :.:: near an upper portion of the thigh 50 A handle 70 extends from an upper *S..
portion of the thigh 50. A flexible hose 25, used for above the floor cleaning, is stored by wrapping around the joint between calf 40 and thigh 50. An upper portion of the hose 25 is positioned beneath the control pad 60 In use, the foot 20, call 40 and thigh 50 form a Z-shape when the unit is in both the upright mode and canister mode. A number of magnets are imnbedded in the link 30, calf 40, thigh 50, or control pad 60 and help hold the hose 25 in place.
The magnets secure the hose to unit by magnetic attraction to metallic wire used in the hose construction.
This cleaner can be configured in at least 3 modes of operation.
The first mode of operation is an upright storage mode, shown in Fig. 1. The second mode of operation is an upright operating mode, shown in Fig. 2. And the final mode of operation is an canister mode, shown in Fig. 3 These three modes of operation allow the cleaner to perform either as an upright cleaner or canister as the user desires. Fig 4 shows the a rear perspective view of the cleaner 10 that illustrates several features not viewable from the front perspective views. While the cleaner described herein is one embodiment of the present invention that could house any of dirt separation system, suction source, tool storage, control panel, Cpu, cord storage adjustable length wand and above the floor cleaning hose could be placed in any one of the foot 20, link 30, calf 40 or thigh 50. In addition, if this configuration could also be adapted to a wet carpet extractor wherein any of the cleaning fluid tank, detergent tank, or wet recovery tank, could be placed in one of the foot 20, link 30, calf 40 or thigh 50.
Referring now to Fig. 5, there is shown the foot 20 having a hood * *. 22 removed to view internal components. The foot includes the nozzle 24 *: which directs air to a duct 26 that leads to th dirt separations system, * described below. The foot 20 further includes an agitator drive motor 28 and a electric height adjustment 29. The agitator drive motor 28 is operable to supply rotary power to the agitator contained within the nozzle 24. The *000ss * agitator includes a number of bristles attached thereto and applies mechanical energy to a carpeted surface which aids in the removal of dirt.
The electric height adjustment 29 is operative to move the nozzle 24 up and *S*S down relative to the floor surface. A led emitter array 21 is operatively positioned to transmit light through the hood 22. A cpu 100, see Fig. 1, is rovided to supply control signals to control the speed of the agitator, height setting of the electric height adjustment, and power setting for the LED emitter array 21 The CPU 100 generates signals to control these elements in response to user input signals generated by the control pad 60.
The ankle or link 30 is also clearly shown in Fig 5. The link serves as a pivot which allows the unit to move between the two upright modes.
When the link is oriented vertically (as shown in Fig. 5) the unit positioned in the upright storage position (shown in Fig. 1). When the link 30 is pivoted rewards, the unit is placed in the upright operational position (shown in Fig. 2).
4Iso, the link 30 is vertically oriented when the unit is placed in the canister mode, (shown in Fig. 3) Referring now to Figs. 6-8, there is shown the mechanism that allows the unit to convert between upright and canister modes. The thigh 50 includes a locking pin 52 which is adapted to move in the general direction of arrows 110, 120 and is spring biased (not shown) in the direction of arrow The locking pin 52 includes an engagement portion 54 adapted to engage a slot 56 having an upright detent 58 and a canister detent 59 defined therein. To convert from the upright mode (shown in Figs. 1 and 6) the locking pin 52 is puUed out of the upright detent 58 in the general direction of arrow 110 which allows the thigh 50 to rotate relative to the calf 40 in the general direction of arrow 130. As the thigh 50 rotates in the general direction of arrow 130, the engagement portion 54 reaches the canister detent 59 and * *. the spring bias on the locking pin 52 secures the engagement portion 54 of the lockinq pin 52 in the canister detent 59 to lock the thigh 50 to the calf 40 in the canister position shown in Fig. 3. To convert from the canister mode (shown in Figs. 3 and 8) to the upright mode, the locking pin 52 is pulled out of the canister detent 59 which allows the thigh 50 to rotate relative to the calf in the general direction of arrow 131. As the thigh 50 rotates in the general * direction of arrow 131, the engagement portion 54 reaches the upright detent 58 and the spring bias on the locking pin 52 secures the engagement portion 54 of the locking pin in the upright detent 59 to lock the thigh 50 to the calf 40 in the upright position shown in Fig. 1. It should be noted that a carry handle 51 positioned in the thigh 50 is adapted to aid the user in lifting the thigh 50 which allows rotation of the thigh 50 relative to the calf 40.
Referring now the Figs. 7 and 8, there is shown the ankle release 32 which is adapted to move in the general direction of arrows 150, 151 and is spring biased (not shown) in the direction of arrow 150. The ankle release 32 includes a lower locking portion 34 adapted to engage an upright detent 38 (Fig. 7) or a canister detent 39 (Fig. 8) defined on the link 30. The upper portion of the ankle release 32 includes a cam follower 33 adapted to engage a cam slot 35 defined in the calf 50. The cam slot 35 includes a cam surface 36 and cam surface 37.
The cam surface 36 is adapted to allow the cam follower 33 to move in the general direction of arrow 151 as the thigh 50 is rotated relative to the calf 40 is rotated in the general direction of arrow 130. It should be appreciated that as the cam follower 33 of the ankle release 32 moves in the general direction of arrow 151, the lower locking portion 34 of the ankle release 32 is removed from the upright detent 38 of the link 30, thus allowing the calf 40 to rotate relative to the link 30 in the general direction of arrow 131.
When the locking portion 34 of the ankle lock 32 is proximate to the canister detent 39, the spring bias on the ankle lock 32 causes the locking portion 34 to engage the canister detent 39 to lock the calf 40 to the ankle 30 in the canister mode (Fig. 8).
The cam surface 37 is adapted to allow the cam follower 33 to * ** move in the general direction of arrow 151 as the thigh 50 is rotated relative to the calf 40 in the general direction of arrow 131. It should be appreciated that **.* S.... S as the cam follower 33 of the ankle reLease 32 moves in the general direction of arrow 151, the lower locking portion 34 of the ankle release 32 is removed from the canister detent 39 of the link 30, thus allowing the calf 40 to rotate * S relative to the link 30 in the general direction of arrow 130. When the locking * :* :.* portion 34 of the ankle lock 32 is proximate to the upright detent 38, the spring bias on the ankle lock 32 cause the locking portion 34 to engage the upright detent 38 to lock the calf 40 to the ankle 30 in the upright mode shown in Figs 1 arid 3.
To summarize the conversion from upright mode, shown in Fig. 7 to canister mode, shown in Fig. 8, the locking pin 52 is retracted to allow the thigh 50 to rotate relative to the calf 40 in the general direction of arrow 130.
Second, rotation of the thigh 50 relative the calf 40 releases the ankle lock 32 which allows the calf 40 to rotate relative to the link 30 in the general direction of arrow 131. Finally, as the conversion process is completed the locking pin 52 locks the thigh 50 to the calf 40 via the canister detent 59 and the ankle lock 32 Jocks the link 30 to the calf 40 via the canister detent 39 To summarize the conversion from canister mode, shown in Fig. 8, to the upright mode, shown in Fig. 7, the locking pin 52 is retracted to allow the thigh 50 to rotate relative to the calf 40 in the general direction of arrow 131. Second, rotation of the thigh 50 relative the calf 40 releases the ankle lock 32 which allows the calf 40 to rotate relative to the link 30 in the general d:rection of arrow 130. Finally, as the conversion process is completed the locking pin 52 locks the thigh 50 to the calf 40 via the upright detent 55 and the ankle lock 32 locks the link 30 to the calf 40 via the upright detent 38.
Again, the handle 51 is provided to allow the operator to assist conversion from canister mode to upright mode.
Referring now to Fig. 6A, there is shown an internal linkage 44 between the thigh 40 and the control pad 60. The linkage include a arm 45 secured to the control pad 60 and free to rotate about the thigh 50 in the general direction of arrows 130, 131 The linkage 44 further includes a ring 46 * ** secured to the calf 40 and free to rotate relative to the thigh 50 in the general direction of arrows 130, 131. The linkage 44 furtherincludes a rod 47 which * I links rotation of the arm 45 to the ring 46. In operation, when the cleaner is * : ** moved from the upright mode, shown in Fig. 6A, the calf 40 rotates downward in the general direction of arrow 131 which causes the ring 45 to rotate S * relative to the thigh 50 in the general direction of arrow 131 which pushes the rod 47 upward to which causes to arm 45, and hence the control pad 60 to * *** rotate relative to the thigh 50 in the general direction of arrow 131. Hence as *. I. the unit is converted from the upright storage position, shown in Fig. 1 to the canister position shown in Fig. 3, the control pad 60 and handle 70 are maintained in a vertical orientation, even though the angle of the thigh 50 has changed from substantially vertical (Fig.1), to partially horizontal (Fig. 3). This linkage allows the cleaner to be used as a conventional upright as shown in Fig. 1, and a canister with an easy to reach wand as shown in Fig. 3 It
B
should also be appreciate that by changing the length of the rod 44 the angle of the control pad could be changed moderately rather than maintained in the vertical position.
Referring now to Figs. 9 -11 there is shown the dirt separation system 80 of the cleaner 10. The dirt separation system 80 includes a regenerative filter 81 and a removable dirt cup 90. As shown in Fig 8, both a filter cover 43 of the calf 40 and dirt cup 90 are removed for clarity of description. In operation, these components are sealed to around the filter 81 to receive the dirt laden air stream from the nozzle 24 and direct clean air to the suction source 18. The suction source includes a removable final filter 19 for filtering particles generated by the suction source. The dirt cup 90 includes an inlet 93, a first stage collection chamber 91, and a second stage collection chamber 92. The upper portion of the first stage separation chamber 91 is sealed by lid 94 including a course filter or screen element 95 adapted to separate large particles in the airstream. The first stage separation chamber 91 of the dirt cup 90 is sealed from the second stage separation chamber 92 by a divider wall 96 that prevents particles in the first stage separation chamber 91 from migrating to the second stage separation * ,* chamber 92 The lid 94 is pivotally attached to the top of the dirt cup 90 (see Fig. 9) such that particles in the first stage separation chamber 91 maybe be emptied along with the contents of the second stage separation chamber 92 *. : by inverting the dirt cup 90. A carry handle / latch 97 is provided to secure * and unsecure the dirt cup 90 to the calf 40 via a pair of locking Jugs 42. Also, I.....
* the handle / latch 97 aids in manipulating the dirt cup 90.
* * A second embodiment of the invention could have the entire filter 81, cover 43 and dirt coup removable as a single unit. In this alternate configuration, the screen element 95 would be fixed between the first stage collection chamber 91 and the filter 81. tn order to empty the both the first stage collection chamber 91 and second stage collection camber 92, the floor of the dirt cup could be replaced with a movable member. Such a movable member would allow both chambers 91, 92 to be emptied without inverting the dirt cup. A latch would hold the member on the dirt cup to prevent leakage during operation. While such a unit has advantages in emptying dirt, it has some disadvantages associated with repeatedly sealing Ihe filter 81 to the cleaner 10 However, it is well within the anticipated scope of this invention to allow the filter to be removed as a unit with the chambers 91, 92 The dirt laden air is drawn from either the nozzle 24 of the or wand 72 of the handle 70 to the dirt separatiion system 80 via conduits by airflow created by the suction source 18. As air enters the dirt separation system 80 via an inlet 82, the air is directed into the first stage separation chamber 91 via the inlet 93 of the dirt cup 90. The air is expanded and passed through the screen element 95 to separate large particles from the air stream. The air from the inlet 93 is directed substantially parallel to the screen element 95 in order to prevent large particles from matting on the screen element 95 and blocking airflow out of the first stage collection chamber 91.
The tiller 811$ divided into several sealed chambers 85 by divider walls 86 as shown in Fig. 10. Each sealed chamber has a exit port 84 (see Fig. 11) defined in the base thereof. The filter element 81 is rotated about an axle 87 (see Fig. 11) in the general direction of arrow 130 by a filter motor 99 (shown schematically in Fig. 11). The filter motor 99 can be selectively controlied via input signals generated from the CPU 100. Referring now to Fig. 11, it can be seen that most of the exit ports 84 of the sealed chambers are placed into fluid communication with an outlet duct 88 via one of the * pair of oblong holes 89. However, the exit port 84 of one segment 85' is placed on to contact with a bleed hole 83 which admits a controlled flow of 5e** . S * * atmospheric air into the sealed section 85. This flow of atmospheric air * * causes a reverse airflow 115 (see Fig. 10) which blows fine particles from the exterior of the filter 81 into the secondary collection chamber 92. It should be appreciated that the while the secondary collection chamber 92 could be sealed from the rest of the dirt collection system 80, this is not necessary as the pressure and airflow from the reverse airflow 115 is adequate to keep the particles contained in the secondary collection chamber 92.
The material of the filter element 81 includes a first inner layer formed of a melt-blown polypropylene, a second middle layer formed of a spunbond polyester and an outer third layer formed of an expanded polytetrafluoro-ethylene (ePTFE) membrane. The ePTFE outer layer provides non-stick properties to the thter element 81 and allows any dirt or dust accumulated on the filter element 81 to be easily displaced therefrom.
Although the filter element 8lis shown and described as having three layers, it is understood that the filter material may include any number of layers or be formed of any number of materials such as a micro-glass or a melt-blown polyester without affecting the concept of the invention. As the filter rotates, each pleat adjacent to the reverse flow chamber 85' comes into contact with a mechanical agitator 79. the mechanical agitator serves two purposes, first, spreading each pleat improves air flow and dust shedding from an exterior of the filter 81. Second, the flicking action as each pleat is spread, agitates imbedded dirt and aids in the reverse air flow 115 in removing small particles from the exterior surface of the filter 81. Also, other types of mechanical agitation, such as vibration and brushing the exterior surface of the filter 81 alternatives contemplated within the scope of this invention.
Thus, in operation, air that has passed through the coarse filter 95 in the lid E4 of the dirt cup 90 flows into the chamber surrounding the filter * (i.e. between the filter 81 and the cover 43). As the airstream passes through the filter 81, small particles (i.e. particles small enough to pass through the e *... screen 95 hut too large to pass through the filter 81) are collected on the outer surface of the filter 81. This filtered air then continues on to the suction source 18. However, as the filter 81 is rotated by the motor 99, each sealed * * chamber 85 will pass through the position shown as 85 and the smali * * particles will be cleaned from the surface of the filter 81. The filter 81 is cleaned by a combination of one or more of the following effects: the reverse airflow 115 which blows the particles down into the secondary collection chamber 92, spreading of the pleats by the agitator 79 which aides the airflow, the flicking action of the agitator 79 which releases particles from the filter 81, and gravity which helps the downward movement of the particles toward the secondary collection chamber after they have been freed from the surface of the of the filter 81. Thus, is should be appreciated that as this cleaner is operated, a section of the cleaner adjacent to the chamber 85' is not used to filter particles, but instead is subject too a process which cleans the filter. As each segment 85 of the filler 81 goes sequentially through this process, it is brought to a improved performance state close to that of a new filter. Thus, the performance of the filter 81 regenerates with use, and the sustained performance is maintained over a longer period of time without the operator replacing or cleaning filter components. Because operation of the cleaner 10 is controlled by the CPU 100, it is possible to operate the cleaner to improve the regenerative properties of the filter system.
Referring now to Fig. 12, there is shown the calf 50. The calf 50 includes a base 152 and a cover 154 hingedly connected to the base 152 by a hinge 155. The door 154 includes an opening 153 defined in a rear portion thereof. The base 152 includes a pair of cord hooks 156 about which the cord 157 may be wrapped. The cord 157 supplies electric power to the suction sourcel 8, carpet height adjustment 28, agitator motor 29, LED array 21 and filter motor 99. The cover 154 includes a number of recesses 158 defined therein. These recesses 158 are adapted to receive a number of cleaning tools such as a crevice tool 1 59A, upholstery tool 1 59B, turbine tool 1 59C or other tools (not shown). Other tools could include tools such as a hard floor ::. nozzles or combination tools which combine the features of one or more of S...
the above tools. It should also be apreciated that alternate configurations of . : the cleaner 10 could have tool storage on the base 152 or on the outer * surface of the cover 154 such that the tools could be accessed without opening the cover 154.
* * To place the cover 154 in the open position, shown in Fig. 12, the lid 154 is unlatched from the base 152 and rotated in the general direction of arrow 160. To return the cover 154 to a storage position, the cover 154 is rotated in the general direction of arrow 161 and latched to the base 152. It should be appreciated that when placed in the storage position, the interior of the thigh 50 can be accessed via the opening 153. As shown in Fig. 4, the cord 157 can be unwound and fed through the opening 153 such that the cleaner 10 may be operated with the any excess cord length not viewable from the exterior of the cleaner 10. The use of the cover 154 in conjuction with the opening 153 allows the cleaner to maintain a clean profile while the cord is stored (Figs. 1-3) or unwound to use the product (Fig. 4).
Referring now to Fig. 13, there is shown a partial schematic view of the control system of the cleaner 10. A control panel 61 is placed on the control pad 60. The control panel 61 includes a number of selector switches 62 to control various aspects of the cleaner. Switch 62 A is an on / off selector switch which controls the overall power supplied to the cleaner.
Switches 62B, 62C, and 62D respectively select a high, medium or low setting for the carpet height adjustment 29. Switch 62E selects a hard surface mode which i) places the agitator at a low setting, ii) powers the agitator motor 28 at a slow speed, and ill) supplies full power to the suction motor 18. Switch 62F selects a gentle or quiet mode whereby both the agitator motor 28 and the suction source 18 are run at less than maximum speed to reduce noise output from the cleaner. Inputs from each of the switches 62A-F are fed into a serial controller 64 which stores the state of each of the switches 62 A-F. The serial controller 64 then sends a single combined control signal to the CPU 100 located in the thigh 50. The serial controller s a conventional UART (universal asynchronous receiver transmitter) which send binary data to the CPU 100 The use of the serial controller 64 allows a pair of conductor to transmit a large amount of data over a single set of control wires 80. The : advantage of this isclearly apparent when the control wires 80 must pass * ** through a pivot joint such as the joint between the control pad 60 and the thigh 50. Moreover, the CPU 100 could easily be located in the foot 20. Such * placement of the CPU 100 would necessitate that control signals be passed through joints between the control pad 60 and thigh 50, the thigh 50 and the calf 40, the calf 40 and the link 30, and finally from the link 30 to the foot 20.
The use of serial communication via a single set of control wires 80 would greatly reduce the complexity of the wiring through these four joints.
The CPU 100 is operative to receive serial control data from the serial controller 64. A program in the CPU 100 can then determine the state of all the control switches from the serial data. After processing the serial data, the CPU 100 generates control signals to control the filter motor 99, and suction source 18 located in the calf 40. in addition, the CPU 100 generates control signals to control the agitator motor 28, carpet height adjustment 29, and LED emitter array 21 in the foot 20 of the cleaner 10. Moreover, the CPU can generate a control signal for a warning light 65 on the control panel 61 which warns the operator of potential problems, such as overheating.
One of the novel features of the cleaner 10 is the regenerative filter system 80 which moves part of the filter media through a cleaning cycle during use of the cleaner. Utilizing the control system of the present invention, it is possible to operate the unit 10 in a manner that either enhances or slows down the regenerative cleaning process. The CPU 100 could operate the regenerative filter motor 99 in conjunction with the suction motor 18 in such a way to improve the state of the filter 81. This may include a filter cleaning cycle whereby the suction and filter are operated for a period of time only to clean the filter 81. It may be desirable to have additional feedback sensor to monitor system pressure, airflow, temperature or other performance factor to maintain performance that is always as good a new filter. All prior art vacuum cleaners, including cyclonic units, rely on filter * replacement and not filter cleaning to restore filter performance.
Referring now to Figs. 14 and 15, there is shown the handle 70 removed from the cleaner 10. The handle 70 includes a wand portion 72 having an internal tube 72' which slidably attached to the interior of the wand * *: 72. A wand lock 75 releases the two portions 72 and 72' such that the length of the wand may be increased by pulling the portion 72' in the general * direction of arrow 170, or the length of the wand may be decreased by :::::: telescoping the portion 72' into the wand 72 in the general direction of arrow 171. The wand 72 includes an end 74 adapted to attach to the tools 159A, 159B or 159C The handle further includes a loop grip 71 having a soft gripping surface which is angled at approximately 45 degrees from the axis of the wand 72. Also, angled at about 45 degrees is an internal suction conduit 76 which hooks into a swivel joint 77 connected to the flexible hose 25. The swivel joint 77 allows the handle 70 to rotate relative to the flexible hose 25 in the general direction of arrow 180, 181. The combination of the internal passage 76 and swivel joint 77 allows to the flexible hose 25 to hang parallel to the wand 72 and aids in storing the hose in both the upright position shown in Fig. I and the canister position shown in Fig. 2, When the wand 72 is used for above the floor cleaning, this swivel action helps prevent the hose 25 from becoming twisted as the operator moves the wand about the room to be cleaned.
The wand 72 further includes a locking lug 73. The locking lug 73 is adapted to be engaged by a slide latch 69, shown in Fig 15. Securing the locking lug 73 to the slide latch 69 securely fastens the handle 70 to the control pod 60 and thus the remainder of the cleaner 10. To secure the handle 70 to the cleaner 10, the slide latch 69 is positioned in the open position shown in Fig. 15. The end 74 of the wand 72 is slid into an opening 68 defined in the top of the control pod 60 until the locking lug 73 of handle 70 engages a set of locking lugs (not shown) on the slide latch 69. The slide latch 69 is then moved from the open position, shown in Fig. 15, to a latched position shown in Fig. 1, thereby securing the handle 70 to remainder of the unit. It should be noted that in the latched position the opening 68 seals the end 74 such that all suction is directed to the nozzle 24 in the foot 20.
Therefore a valve is not needed to select between above the floor cleaning *.I.
and carpet cleaning.
It should be appreciated that when the handle 70 is secured to the S. * cleaner 10, as shown in Figs. 1 and 3, the wand lock 75 can be released and the wand 72 can be extended in the direction of arrow 170 or retracted in the * direction of arrow 171. Extending the wand 72 in the general direction of s arrow 170 allows the height of the handle 70 to be adjusted for users who S...
prefer a longer and higher handle, and retracting the wand 72 in the general direction of arrow 171 allows the handle 70 to be adjusted for users who prefer a shorter and lower handle 70. In addition, it should be appreciated that in the above the floor cleaning, the changing the length of the wand 72 can provide greater reach similar to that availible in canister cleaners.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only the preferred embodiment has been shown and described. * *1 * * * *** S * S S... *S S * S S * *S
*SS 55* * S
S S * S P * SP S... * P S...

Claims (1)

  1. Claims An upright vacuum cleaner comprising a floor engaging loot haviiig
    nozzle defined in an underside thereof.
    an upper structure pivotally attached to the loot.
    a suction Source for drawing a dirt laden air slreaiii Ii om the Ibot of' the cleaner.
    a primary filter for separating small particles from the air sticam, a blowback system for applying reverse airflow to a portion olthe media, a mechanical agitator for applying mechanical energy the portion of the filter being subjected to reverse airflow; and a fine particle collection chamber for receiving the reverse airflow from the blowback system, wherein the combination of' reverse airflow and mechanical energy increases the : ** I 5 likelihood that small pal-I ides on the filter vi If be transported to he line particle S...
    **** collection chamber * . *SSS ** 2. The vacuum cleaner ofclairn 1, wherein the filter is cylindrical and has an internal core defined by a number of' sealed sections * . 3. I'he vacuum cleaner of' claim 2, Iuitiher comprising *5S* a filter motor for rotating the cylinder filter about its axis.
    a pressure source proximate to the cot-c of the filter.
    wherein i-otating the filter applies atmospheric pressure from the pressure source to one ot the sealed section cause reverse airtlow from the pressure 4. the vacuum cleaner olclaim 3, wherein the pressure Source includes an opening to an outer portion of.' the vacuum cheaiier The vacuum cleaner of any preceding claim, wherein the fine particle collection chamber is positioned beneath the filter and gravity assists in transporting sinai! partic'es from the filter to the fine particle collection chamber 6 The vacuum cleaner of any preceding claim. further comprising a lai ge parlicle filter upstream of' the primary tilter, and a large particle collection chamber positioned proximate to the large particle tiller for collecting large particles separated f'rom the airstream by the large particle filter 7 l'he vacuum cleaner of claim 6, further comprising a removable dirt cup containing both the large particle separation chamber and the tine particle separation chamber, wherein dirt can be removed from both the fine particle separation chamber and the large particle separation chamber by inverting the dirt cup : .. IS S...
    8 l'he vacuum cleaner of claim 6, Further comprising a movable member covering the base olthe fine particle collection chamber aiid * the large particle collection chamber, wherein dirt can be removed tl'om both the fine particle Separatioil chaniber and * : *:.* 20 the large particle separation chamber by moving the member * *. 9. l'he vacuum cleaner ot'claim 6, further comprising a i'ernovable dirt separation assembly including the primary filter, the fine particle chamber and the large particle separation chamber.
    I 0 An upright vacuum cleaner comprising a floor engaging loot having nozzle defined in an underside thereof, an upper structure pivotally attached to the foot, a suction source for drawing a dirt laden airsirearn from the foot of the cleaner, a primary filter for separating small particles from the airstream; a mechanical agitator for applying mechanical energy to a portion of the filter; a motor for rotating one of the primary filter or agitator. and a fine particle collection chamber for receiving the particles removed from the filter by the mechanical agitator; wherein the mechanical energy increases the likelihood that small particles oii the filter will be transported to the fine particle collection chamber I [he vacuum cleaner of claim 0, wherein the mcchaiiical aiitator iiicl odes a flicker which flicks pleats of the filter.
    JO 12. The vacuurri cleaner of claim lO or claim II wherein the mechanical agitator includes a brush which brushes a surface of' the filtet.
    13 The vacuum cleaner of any of' claims 10 to 12 wheieiii the mechanical agitator md odes a vibrating member to loosen dirt from the filter * I * . . - **..
    14 l'he vacuum cleaner of any of claims 10 to 13 wherein the fine particle collection chamber is positioned beneath the filter and gravity assists in transporting small particles from the filter to the fine particle collection chamber
    S
    S..... * .
    * 20 IS. The vacuum cleaner of any of claims 10 to 14 further comprising e**s a large particle filter upstream the pri mary lilter and S...
    a large particle collection chamber positioned proNimate to the large particle ii Iter for collecting large particles separated from the airstream by the large particle filter 16 [he vacuum cleaner of claim IS, further comprising a removable dirt cup containing both the large particle separation chamber and the line particle separation chamber, wherein dirt can he removed from both the tine particle scpai atioii chamber and the large particle separation chamber by inverting the dirt cup I 7 The vacuwn cleaner of' claim I 6, further comprising a movable member covei ing the base oithe tine particle collection chamber nd the large particle collection chamber, wherein dirt can be removed from both the fine particle separation chamber and the large particle separation chamber by moving the member I S The vacuum cleaner of any of claims I 0 to I 7 tUrther comprising a removable di it separation assembly including the primat y tiller, the ti ii particle chamber and the large particle separation chamber.
    I 9 [he vacuum cleaner of any of claims 10 to I 8, wherein the motor is an air driven turbine 20. A vacuum cleaner substantially as described herci nubovc with reference to Figures I to 15 of the accompanying drawiiigs * ** * * S S... * S... * 4S * Ii
    S
    * S**SS * S
    S * S I * *S I... * I S...
GB0620394A 2005-10-13 2006-10-13 Regenerating filter system for a vacuum cleaner Expired - Fee Related GB2431096B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24924905A 2005-10-13 2005-10-13

Publications (3)

Publication Number Publication Date
GB0620394D0 GB0620394D0 (en) 2006-11-22
GB2431096A true GB2431096A (en) 2007-04-18
GB2431096B GB2431096B (en) 2011-03-09

Family

ID=37491508

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0620394A Expired - Fee Related GB2431096B (en) 2005-10-13 2006-10-13 Regenerating filter system for a vacuum cleaner

Country Status (2)

Country Link
CA (1) CA2565337A1 (en)
GB (1) GB2431096B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20081411A1 (en) * 2008-07-30 2010-01-31 C M V Di Villa Alberto Maria DEVICE FOR CLEANING A FILTERING CARTRIDGE IN ASPIRATORS AND SIMILARS.
DE102011015575A1 (en) * 2011-03-30 2012-10-04 Festool Gmbh Suction device, has filter for filtering particles from suction flow, dedusting sensor for generating dedusting-sensor signal based on function of dedusting device, and control device for controlling motor based on dedusting-sensor signal
US10143345B2 (en) 2016-01-22 2018-12-04 Dyson Technology Limited Vacuum cleaning apparatus
US10299648B2 (en) 2016-01-22 2019-05-28 Dyson Technology Limited Vacuum cleaner
US10390670B2 (en) 2016-01-22 2019-08-27 Dyson Technology Limited Separating apparatus and vacuum cleaner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2674376A1 (en) * 2009-03-13 2010-09-13 G.B.D. Corp. Surface cleaning apparatus with different cleaning configurations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038025A1 (en) * 2000-11-13 2002-05-16 Matsushita Electric Corporation Of America Cyclonic vacuum cleaner with filter and filter sweeper
US20050120510A1 (en) * 2003-12-08 2005-06-09 Weber Vincent L. Floor care appliance with filter cleaning system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038025A1 (en) * 2000-11-13 2002-05-16 Matsushita Electric Corporation Of America Cyclonic vacuum cleaner with filter and filter sweeper
US20050120510A1 (en) * 2003-12-08 2005-06-09 Weber Vincent L. Floor care appliance with filter cleaning system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20081411A1 (en) * 2008-07-30 2010-01-31 C M V Di Villa Alberto Maria DEVICE FOR CLEANING A FILTERING CARTRIDGE IN ASPIRATORS AND SIMILARS.
DE102011015575A1 (en) * 2011-03-30 2012-10-04 Festool Gmbh Suction device, has filter for filtering particles from suction flow, dedusting sensor for generating dedusting-sensor signal based on function of dedusting device, and control device for controlling motor based on dedusting-sensor signal
DE102011015575B4 (en) 2011-03-30 2023-05-17 Festool Gmbh Suction device with a cleaning sensor
US10143345B2 (en) 2016-01-22 2018-12-04 Dyson Technology Limited Vacuum cleaning apparatus
US10299648B2 (en) 2016-01-22 2019-05-28 Dyson Technology Limited Vacuum cleaner
US10390670B2 (en) 2016-01-22 2019-08-27 Dyson Technology Limited Separating apparatus and vacuum cleaner

Also Published As

Publication number Publication date
GB0620394D0 (en) 2006-11-22
CA2565337A1 (en) 2007-04-13
GB2431096B (en) 2011-03-09

Similar Documents

Publication Publication Date Title
US7945988B2 (en) Method and apparatus for controlling a vacuum cleaner
US6317920B1 (en) Vacuum cleaner with above-floor cleaning tool
CN100360070C (en) Upright vacuum cleaner incorporating telescopic handle and wand assembly with electrified hose
US7124467B2 (en) Edge cleaning system for vacuum cleaner
EP2201881B1 (en) Hand held vacuum cleaner
US7343643B2 (en) Selective bag or bagless cleaning system
CA2445242C (en) Vacuum cleaner equipped with dirt cup and separate filter drawer
GB2431096A (en) Regenerating filter system for a vacuum cleaner
GB2388309A (en) Suction nozzle with plural agitator chambers
GB2421898A (en) Vacuum cleaner with interchageable dirt collecting systems
US7260867B2 (en) Bagless dust box for vacuum cleaner
CA2479475C (en) Bagless vacuum cleaner and dirt collection assembly
US6918155B2 (en) Dual agitator drive system with worm gear
US7343641B2 (en) Dirt collection assembly with volcanic airflow
US20060070206A1 (en) Floor cleaning apparatus with wireless control interface
US6517640B2 (en) Vacuum cleaner apparatus and return system for use with the same
CA2445569C (en) Bagless vacuum cleaner
CA2563141A1 (en) Folding vacuum cleaner configuration
US7272871B1 (en) Dirt vessel equipped with cleaning plunger
US7357823B1 (en) Disposable filter within a removable chamber
US20050060835A1 (en) Bagless vacuum cleaner and dust container assembly
CA2461238C (en) Selective bag or bagless cleaning system
JPH03272723A (en) Vacuum cleaner
US20080184521A1 (en) Canister vacuum cleaner equipped with air cushion caster wheel assembly

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20110303 AND 20110309

PCNP Patent ceased through non-payment of renewal fee

Effective date: 20111013