GB2416519A - Energy efficient heater stack using dlc island - Google Patents

Energy efficient heater stack using dlc island Download PDF

Info

Publication number
GB2416519A
GB2416519A GB0517182A GB0517182A GB2416519A GB 2416519 A GB2416519 A GB 2416519A GB 0517182 A GB0517182 A GB 0517182A GB 0517182 A GB0517182 A GB 0517182A GB 2416519 A GB2416519 A GB 2416519A
Authority
GB
United Kingdom
Prior art keywords
ink
diamond
heating element
island
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0517182A
Other versions
GB2416519B (en
GB0517182D0 (en
Inventor
Robert Wilson Cornell
George Keith Parish
James Harold Powers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lexmark International Inc
Original Assignee
Lexmark International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/165,534 external-priority patent/US6637866B1/en
Application filed by Lexmark International Inc filed Critical Lexmark International Inc
Publication of GB0517182D0 publication Critical patent/GB0517182D0/en
Publication of GB2416519A publication Critical patent/GB2416519A/en
Application granted granted Critical
Publication of GB2416519B publication Critical patent/GB2416519B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1606Coating the nozzle area or the ink chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/05Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers produced by the application of heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14088Structure of heating means
    • B41J2/14112Resistive element
    • B41J2/14129Layer structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/03Specific materials used

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

The present invention is directed toward an improved heater chip for an ink jet printer. The heater chip has a diamond-like-carbon (12) coating that functions as the cavitation and passivation layers of the heating elements (10) on the heater chip. To improve the efficiency of the heater chip, the diamond-like-carbon coating is surrounded by a material that has a lower thermal conductivity than diamond. This surrounding layer limits thermal diffusion from the heating elements into the heater chip. A smoothing layer of tantalum is deposited over the diamond-like-carbon layer to insure that vaporization of the ink occurs at the ink's superheat limit The diamond-like-carbon layer is preferably less than 8700 Angstroms in thickness such that less than 1 microjoule of energy is required to expel of ink droplet having a mass between 2-4 nanograms.

Description

ENERGY EFFICIENT HEATER STACK [TS[- DLC ISL -D
FIELD OF THE INVENTION
The Dresent invention is generally directed to an improved pr inthead for an silk let printer i/lore paw cul-rv' the invention is directed toNard the use of :liarond-like-carbon (DL) +c i-mprose the energy efficiency of an ink jet printllead and lo protect the relatively delicate thin film resistors of the printhead from corrosive inks and cavitation damage
BACKGROUND OF THE INVENTION
A thermal ink jet printer forms an image on a printing s urface by ejecting lo small droplets of ink from an alTay of nozzles on an ink jet printhead as the printhead traverses the print medium. The ink droplets are formed when ink in contact with a thin film resistive heating element is nucleated due to the heat produced when a pulse of electrical curTent flows through the heating element.
The vaporization of a small portion of the ink creates a rapid pressure increase that expels a drop of ink from a nozzle positioned over the resistive heating element.
Typically, there is one resistive heating element conesponding to each nozzle of the array The resistive heating elements are activated under the control of a microprocessor in the printer electronics of the ink jet printer.
Electrical pulses applied to the heating elements must be sufficient to vaporize the ink. Any energy produced by the resistive heating element of an ink jet printer that is not absorbed by the ink ends up being absorbed by the heater chip. Hence, the total energy applied to the heating element includes the energy absorbed by the chip This excess energy may result in an undesirable and potentially damaging overheating of the printhead if it is not properly dissipated.
Furthermore, because it is desirable to produce an image as quickly as possible, there is a continual push in the ink jet printer industry to increase the number of drops expelled per unit of time Unfortunately, as the number of nozzle fires in any given amount of time increases, the heat that must be dissipated by the printhead heater chip increases If the printhead heater chip becomes too hot, the delicate semiconductor structures in the chip may be damaged Therefore, it - , - is desirable to transfer heat terror the resistive element to the ink as efficiently as possible Ca''Titatior. is another phenomena that Play adversely affect the performance of an ink jet print head C:aYtation Occurs when, after an ink droplet has been expelled, the ink!:ub!'le forcefi!ly ccliapses b ack down Ace the resistive heating element. This impact can result in a large amount of stress being placed on the surface of the resistive heating element. In fact, this cavitation is so strong that it may actually crack or pit the surface of the resistive heating element and cause it to malfunction. In addition to the cavitation problem, many of the inks used by i O ink jet pinte's are corrosive. Typically, corrosion resistant passivation layers are used to isolate the heating elements used to eject the droplets of ink from the ink.
Unfortunately, these passivation layers reduce the efficiency with which heat is transferred fiom the heating element to the ink. In addition, the application of a passivation layer increases the number of manufacturing steps required to produce a heating element. Furthermore, the passivation layer may not bond properly to the underlying structures and break loose from the heating element. Thus, poor art heating elements suffer fiom both passivation and cavitation associated problems that tend to damage the resistive heating elements over time.
Therefore, a need exists for an ink jet printhead that has durable resistive heating elements that more efficiently transfer energy from the heating element to the ink during a printing operation.
SUMMARY OF THE INVENTION
The foregoing and other needs are met by a printhead for an ink jetprinter having a heating element on a semiconductor chip The heating element expels droplets of ink from a nozzle on a nozzle plate that is attached to the chip by vaporizing a volume of ink in contact with a surface of the chip. The heating element includes a resistive heating element that increases in temperature and rapoizes the volume of ink when a voltage is applied to the resistive heating element A diamond-like- carbon (DLC) island is positioned over the resistive heating element The DLC island is substantially surrounded by a material, such as alumin'-n, that has a lower thermal conduct. than the DLC island.
The above described embodiment improves upon the pier art in a number of !'eSpOCt5 I, by replaci. Kiln He cavil anion ar.n passivatior1 ia,'ers of poor all ink jet nettling eiemer.ts.viih a single layer of DLC, the inienton takes advantage of the exceptionally hard and inert nature of DLC and requires less steps to manufacture. In addition, by surrounding the DLC with a material that has a lower thermal conductivity than DLC, the present invention lowers the energy consumption of the heating element by reducing heat dissipation to the area surrounding the chip and, thus, minimizes the problems associated with over heating of the chip Furthermore, in the prefened embodiment, a smoothing layer of tantalum insures that nucleation of the ink occurs at the superheat limit In another aspect, the invention provides an apparatus for expelling droplets of ink onto a printing surface The apparatus includes a semiconductor substrate having a first insulating layer deposited over the substrate. A thin resistive heating layer is then deposited over the first insulating layer. A metal conductor layer is deposited over the thin resistive heating layer and a portion of the metal conductor is removed to expose a portion of the thin resistive heating layer. A DLC island is deposited over the exposed portion of the thin resistive heating layer such that the outside perimeter of the DLC island partially overlaps the metal conductor layer. Finally, a second insulating layer is deposited over the metal conductor layer and a portion of the second insulating layer is removed such that all of the metal conductor layer and the outside perimeter of the DLC island are covered by the second insulating layer. This second insulating layer is preferably conshucied fiom an intelmetallic dielectric material (my). Such IMD materials include but are not limited to silicon nitride, silicon oxide, spun on glass and combinations thereof A particularly preferred IMD is silicon oxide/spun on glass/silicon oxide The DLC island of the above discussed embodiment provides the previously discussed advantages of having a DLC passivaiion and cavitation protection layer In addition, the second insulating layer protects the metal conductors fiom the corrosive effects of the ink and prevents current from leaking fiom the conducting layer into the Ink Thus, the invention substantially improves upon He prior art ink ejecting devices In yet another aspect, Me invention provides a heater for expelling ink Tom a nozzle of am nak jet printer. The heater includes a DLC iskand deposited thereon. The DLC. island is substantially suTQur!ded with a rmater.al that has 2 lo,ver thermal conductivity felon file i,LC island A surface portion of ule DLC island that comes into ccr, tact cavity the ink is doped XyWrite!:or.or to provide a resistive heating portion Metal contact portions apply a predetermined voltage to the doped surface portion of the DLC island such that a volume of ink in contact with the surface portion is vaporized.
Constructing the resistive heating portion of a heater out of a doped portion of the DLC island decreases the number of manufacturing steps required to construct heater for an ink jet printer. In addition, the use of DLC provides the cavitation and passivation advantages of DLC previously discussed. Similarly, the surrounding of the DLC island with a material that has a lower thermal conductivity than DLC decreases the energy required to eject a droplet of ink by reducing the amount of heat dissipating laterally from the perimeter of the heater. Therefore, a number of advantages over the prior art are provided by the present invention In a further aspect, the present invention provides a prir thead for an ink jet printer wherein said printhead expels droplets of ink from a nozzle in a nozzle plate attached to a heater chip containing heating elements by nucleating a volume of ink that is in contact with a surface of said heating element, said printhead comprising. a resistive heating element wherein said resistive heating element rises in temperature in response to a voltage; a diamond-like-carbon coating positioned on said resistive heating element; and a smoothing layer deposited on said diamond-like-carbon coating such that a said surface of said heating element that is in contact with said ink has a surface roughness less than 75 angstroms.
BRIEF DESCRIPTION OF Tom; DRAWINGS
Further advantages of the invention will become apparent by reference to the detailed description of preferred embodiments when considered in conjunction with the drawings, which are not to scale, wherein like reference characters designate like or 3Q similar elements throughout the several drawings as follows
- -
Fig. is a cross-sectional view, not to scale, of a portion of a printhead heater chip containing a heating element cor,stucted in accordance with a pretested embodiment ofthe presentin/erticn; Fig. 7 is a cross-sectional view, not to scale, OT a p onion of a pin.i!leaa neater s chip containing a heating e!er,ert constructed in accordance With another embodirr.er.t OT the present invention; Fig. 3 is a cross-sectional view, not to scale, of a portion of a printhead heater chip including a heating element constructed in accordance with yet-another embodiment of the present invention.
Fig. 4(a) is a graphical representation of the heat flow in a heating element having a continuous DLC overcoat over the surface of the plinthead heater chip; Fig. 4(b) is a graphical representation of the heat flow in a heating element of a pinthead heater chip that has a DLC island on the heating element, the DLC island being surrounded by a material with a lower thermal conductivity than DLC; Fig. 5(a) is a graph of the heater energy in,ujoules required to expel a droplet of ink versus DLC overcoat thickness in 1lmeters for an embodiment of the present invention.
Fig. 5(b) is a graph of normalizedjetting performance versus heater energy for an embodiment of the present invention, Fig. 6(a) is a graph of the droplet velocity versus the nozzle exit diameter for an embodiment of the present invention, and Fig. 6(b) is a graph of the droplet mass versus the nozzle exit diameter for an embodiment of the present invention
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the figures, preferred embodiments of a heater chip containing heating elements of the present invention al e shown Each of the heater chips is made using conventional semi-conductor manufacturing processes such as chemical vapor deposition (CVD), sputtering, spinning, physical vapor 3G deposition (PAD), etching and the like. Referring now to Fig 1, the heating element 1 is constructed upon a substrate 2 Preferably, the substrate 2 is a silicon substrate conamorily used in the n,:ufacture of ink jet printer limiter chips An
- -
insulating layer 4 is then deposited over the surface of the substrate 2 using a CVD or PVD process or thermal oxidation. This insulating layer 4 is preferably cor,s+ructed of a material sulk as silicon,;itr..>e (SiNN; silicon dioxide (S,O) or bolos! COPSE) andfor phosphorous doped Mass lush) that provides both electrical and thellmai insulaLio3:1 bet-eel; 'e substrate 2 Ad the cTerl1Tng structure Qt the heating element l as described in more detail below The insulating layer also preferably has a thickness ranging from about 8,000 to about 30,000 Angstroms (A) The insulating layer 4 improves the functioning of the heating element 1 by minimizing the amount of energy absorbed by the substrate 2 when the heating l O element l is activated. Any energy absorbed by the heating element 1 must be dissipated, otherwise, the heating element 1 may be damaged by high temperatures during long periods of operation. Therefore, it is desirable to have as high a percentage of energy as possible transferred from the heating element 1 to the ink.
A resistive layer of material 6 is deposited on top of the insulating layer 4. Preferably, the resistive material 6 includes tantalum-aluminum (Ta-Al) .
However, a variety of other materials such TaN, HfB2, ZrB2 etc could be used to construct this resistive layer. The resistive layer of material 6 is used to provide a thin film firing resistor 10. The resistive layer of material 6 preferably has a thickness ranging from about 800 A to about 1600A. The thin film fifing resistor l O is created by depositing a conductive metal layer 8 on top of the resistive layer 6. The conductive metal layer 8 preferably has a thickness ranging from about 4000 A to about 15,000 A A portion of the conductive metal layer 8 is etched off of resistive layer 6 in the desired location of the heater resistor to provide a thin 2 film firing resistor 10 Current is carried to the thin film resistor 10 by the low resistance metal layer 8 attached to resistive layer 6. However, in the region where the meta] layer 8 has been etched away, the current primarily flows through the relativ ely higher resistance layer 6, thereby heating up the res istive layer 6 to provide thin filmiesistor 10.
A DLC island 12 is then formed over the thin film resistor iG The DLC island 12 can be formed by depositing a DLC layer on the thin film resistor 10 and conductive metal later The DLC layer is then etched aNNav to form the island]2 substantially only over the thin film resistor 10. Alternatively, the DLC island 12 could be conhollally deposited on the thin film resistor 10 in its final island form. The DLC island 12 is derived fiord a 'i,-'=ond-li're inateiial because diamond is both electicDIly insulative and thermally conductive (Jsuaily, materials that have a high thermal conduciiviy ale electrically conduct ve as i. ell Holes ever, diamond is unique in that it is an excellent electrical insulator and has the highest thermal conductivity of any known material. DLC typically has a the1mal conductivity in the range of 1000-2000 watts per metes kelvin The DLC island 12 preferably has a thickness ranging fiom about 3000 A to 12,000 A The DLC island 12 is preferably surrounded by a thermal insulation layer 14 constructed out of a material that has a lower thermal conductivity than the DLC.
Preferably, the thermal conductivity of this thermal insulation layer 14 is between 1 and w/m-K However, it will be readily appreciated by those skilled in the art that any material having a thermal conductivity significantly less than the DLC may be used to minimize the heat transfer from the DLC to the surrounding materials adjacent the thin film resistor 10. The insulation layer 14 preferably has a thickness ranging from about 5,000 A to 20,000 A The primary purpose of layer 14 is three fold. First of all, layer 14 provides dielectric isolation between conductive layers 8 and 16. Secondly, it provides chemical protection to keep the ink fiom attacking the conductor 6. Lastly, layer 14 is a thermal insulator that prevents lateral thermal diffusion at the edge of DLC island 12.
Conductor 16 is protected from attack by the ink by layer 17. Layer 17 may be any corrosion resistant material such as silicon nitride, silicon dioxide, spun on glass, or a laminated polymer. It is possible to expel an irk drop having a mass of between 2 and 4 nanograms (ng) with aheatng element such as shown in Fig. 1 while consuming less than l microjoule (mj) of energy per fire as long as the thickness of the DLC island does not exceed 8700 Angsh-oms (A) However, if the DLC layer 12 extended everywhere instead of just layer 14, lateral diffusion would decrease the efficiency of element 1, as shown in Fig 4(a) The heating element 1 of Fig 1 is completed by the deposition of a metal layer 16 over the thermal insulation layer 14 The metal layer 16 is electrically connected to conductive layer 8 to provide electrical pulses from a printer controller to the thin film
- -
resisor l O. Dine metal layer 16 preferably has a thickness ranging from about 4,QOO A to 15,GOO A. The conlrigurariol:l of fig. l' re.;re^Ted to in the an as the heater sack, is an n preens over ale prior all in a nunioei of.npo..ant r e spects For example, tile LLC island i2 protects die Din film-,esistor 10 rcl1l me ccrosive effects of she nk used the ink jet printer DLC films are inert with respect to both acid and alkali solutions.
Thus, they provide ideal corrosive protection for the thin film resistor 10 In addition, the surface of a DLC film is extremely hard. When a volume of ink is nucleated to produce a bubble of vapor; the bubble lasts for a very short amount of time and then the ink forcefully collapses onto the heating element's surface. This is known in the art as cavitation. This cavitation can cause damage such as pitting or cracking of the surface upon which it occurs. Diamond's exceptional hardness minimizes damage due to cavitation and, thus, increases the reliability and lifespan of the heating element.
An alternative embodiment of the present invention is shown in Fig. 2 In Fig, 2, IS the heating element is once more provided on a silicon substrate 18 An electrically and thermally insulating layer 20 as described above with reference to Fig. 1 is deposited on the silicon substrate 18. This insulating layer 20 is preferably constructed of silicon dioxide (SiO:). However, it will be readily appreciated by those skilled in the art that a variety of materials could be used for the insulating layer 20. A metal layer 22, preferably constructed of aluminum (Al), is deposited over the insulating layer 20 The function of Me metal layer 22 is to provide a low resistance path for current to flow to the heating element. The metal layer 22 preferably has a thickness ranging from about 4000 A to about l S,OOO A A portion of the metal layer 22 is etched away to provide a location for a partially doped DLC island that is deposited on insulating layer 20 such that it partially overlaps the metal layer 22.
The DLC island 21 is then deposited in the etched away area of the metal layer 22 The DL( island 2 l consists of an upper portion 26 and a lower portion 24 which is preferably doped with boron to provide a conductive path having a sheet r esistance between 25 and 100 ohms per square meter However, it will be readily appreciated that the particular material used to dope the lower portion 24 of the DLC island 21 and the resistance of the doped portion 24 can be selected depending upon the desired reperking parameters of the DLC island 2 used as a heate) r esistor The exposed
- -
portions of Me metal layer 0 are then preferably covered With a lays of silicon nitride (Si), silicon-dioxide (sio2)7 5pU^D on glass (SOG) or other intemetallic Selectric materiel (Il\rfD) that functions to electrically arm physically insulate the metal layer 2 from. ,lie Ok The i.v L idler 2 prolerai)iv has a ticimess ranging fiord about AGOG A to abcu+ 2C,OQO A The configuration of the heating element shown in Fig. 2 utilizes the doped portion 24 of the DLC island 21 as the firing resistor of the heating element. To function as a fifing resistor, the portion 24 is doped such that it has a relatively higher resistance than the metal layer 22. Thus, when current is forced to flow through the higher resistance doped portion 24, a relatively large amount of power is dissipated and the surface of the doped portion 24 rapidly heats up The rapid heating up of the doped portion 24 nucleates a volume of ink that is in contact with the surface of the DLC island 21 Thus, the doped portion 24 of the DLC island 21 functions as a firing resistor for the heating element of Fig. 2 Portion 24 may be doped, for example, by feeding boron gas into the deposition chamber during the initial formation process for the DLC island 21 to provide doped portion 24, then te minating the introduction of boron gas during the final DLC island 21 formation process to provide undoped portion 26. In the alternative, the doped portion 24 may be made 'oy implanting boron in a first DLC island layer portion 24 and then depositing a second DLC island portion 26 on top of the doped portion 24. The overall thickness of the DLC island 21 preferably ranges from about 3000 A to 12,000 A. The thickness ofthe lower doped portion 24 preferably ranges from about 500 A to 1000 A. The DLC island 21 construction of Fig. 2 is beneficial due to the above discussed cavitation and corrosion benefits obtained by having the ink nucleating surface constructed out of a DLC material. The construction of Fig. 2 is further beneficial in that the DLC island 21 is surrounded by a metal layer 22 that has a lower thermal conductivity than the DLC island 21. Thus, the heat produced by the doped portion 24 is efficiently transferred to the ink without a large amount of energy loss to the structure of the heating element While the metal layer 29 is preferably constructed of aluminum, 3G aluminum copper; aluminum silicon, or copper that has a thermal conductivity in the range 200 "/m-Kelvin, it is readily appreciated Mat any material having a thermal conductivity less thar, DLC mateia] and an electrical conductivity Beater than DLC
-
- 1U - will provide beneficial heat transfer and culTent flow results whe'A^. used to suTcund the DLC island 21.
The use of tale doped fiction 94 of the! C island 21 as the fnir^g resistor of the sleuthing elemler.t s.mplines tile ccushucrion of the healing eiemen. Thus, the healing e!eren.t of Bag 2 requires less mar Fracturing steps than the heating element of Fig 1 to produce Reducing the number of steps required to produce the heating element of an ink jet plinthead reduces the cost of manufacturing the printhead cartridge and decreases the likelihood of a manufacturing defect. Thus, the structure of Fig. 2 is a substantial improvement upon the poor art.
Yet another embodiment of the present invention is graphically represented in Fig 3. The heating element of Fig. 3 differs from the heating element of Fig. 2 in that it has a smoothing layer of material 32 deposited on top of the upper portion 26 of the DLC island 30 The function of this thin coating 32 is to reduce the surface roughness of the DLC island 30 to less than 75 A. In the preferred embodiment, the smoothing layer 32 is constructed of tantalum due to its ability to be smoothly deposited and its resistance to the cavitation and corrosion effects discussed above However, it is readily appreciated by the present inventors that a variety of materials, such as titanium (Ti), tungsten (W) , titanium-tungsten (TiW), platinum, or any other refractory like material, could be used to construct this smoothing layer 32.
The purpose of the smoothing layer 32 is to insure that vaporization of the ink occurs at the superheat limit of the ink. The superheat limit of a li quid is the temperature above which the liquid can no longer exist as a liquid at atmospheric pressure. While the superheat limit of any particular ink will depend upon the composition of the ink, the superheat limit for an ordinary inkjet printer ink is in the vicinity of 322-332 Celsius (C).
Ordinary nucleate boiling of the ink typically occurs at temperatures much lower than the superheat limit. However; it is recognized by the present inventors that nucleate boiling of a liquid initiates at surface defects on the surface of the heating element Thus, to insure that vaporization occurs at the superheat limit, the surface of the heating element that is in contact with file ink should be as smooth as possible A surface roughness less than 75 A is generally sufficient to insure that vaporization occurs at or near the superheat limit. While it is possible to deposit a DLC film with a surface roughness of less that 75 Al there may be situations where the embodiment of Fig 3 is more ink and cavitation resistant than the ernbodirnent of Fig 2 Therein the surface of DLC island 21 is in direct contact with the ink. The smoothing layer can also be applied to the embodiment of Fig. 1 rle er.lbodirr.ens of rigs 1 3 ail u aniline a D' C island heat is Unrounded by a material having a lower the.mal conducive than!J_C This is because LIT C material has such a high thennal conductivity that a large amount of thermal energy will be diffused into the region outside resistor 10 if the DLC material is deposited over the print head in a continuous layer. This dissipation effect can be seen by examining the temperature plots of Figs. 4(a) and 4(b) Fig 4(a) is a graphical representation of the temperature of a lO heating element during firing that has a continuous DLC coating on top of the filing resistor. Conversely, Fig 4(b) is a graphical representation of the temperature of a heating element during filing that has a DLC island, such as depicted in Figs. 1, 2 or 3, on top of the firing resistor. The graphs of Figs. 4(a) and 4(b) represent a cross section of the respective heating elements. A 50 degrees Celsius (C) temperature rise is represented by each of the temperature contour lines 40.
Refening now to Fig. 4(a), the temperature contour lines 40 for a heating element having a DLC overcoat are shown. The highest temperature area 42 of the heating element is in the thin film region 44 under the ink filled bubble chamber 46 The temperature in the thin film region 44 located under the ink filled bubble chamber 46 drops offrapidly toward the supporting silicon substrate 48. This indicates that relatively little thermal energy is passing fiom the thin film region 44 to the silicon substrate 48.
This is a result of the relatively good thermal insulation properties of the SiCVBPSG layer that was discussed earlier in regards to layer 4 of Fig. 1. The ideal situation would involve 100 /o of die heat 'oeing transferred fiom the thin film seniors 44 to ink filled bubble chamber 46 The temperature contour lines 50 clearly indicate that a relatively large amount of thermal energy is being transferred from the thin film region 44 to the ink filled bubble chamber 46. Thus, a large amount of energy is available at the surface of the DLC overcoat for superheating the ink in the ink filled bubble ch amber 46.
Fig 4(a) also clearly shows that the thin film region 44 that includes the protective DLC overcoat is canning a large amount of thermal energy away fiom the ink filled bubble chamber 46 to a region Blat is located under the ink battier 52 This is primarily represented by file temperattne contour lines 54 end 56 This large amongst of
-
lateral hear diffusion is a result of the DL C having diamond-like theimlal conductivity Diamond's therma! conductiit., is the highest of any known material.
Thus, the thin films 44 which include the DL(: Overcoat act to t-lnsfer hea away fio.m lie illK ''llied OubDle chowder "o so Me region Of tile thin fi ms 4 that is located under the ink bamm -7 This excess intern heat trsfl Cons thermal energy away from bubble chamber 46. Thus, more energy needs to be added for each droplet ejection cycle which causes the operating temperature of the print head to rise. If the temperature rise is large enough, the heating element may be damaged by this excess heat over time Additionally, operating the print head at excessively high temperatures leads to poor droplet ejection characteristics, such as nozzle plate flooding, air Revolution and droplet mass variation Fig 4(b) shows the temperature contour lines 40 for a heating element that utilizes a DLC island placed substantially only over the heating resistor The highest temperature area 58 is located directly below the ink filled bubble chamber 60.
Furthermore, the close spacing of the temperature contour I ines 40 at the thin film surface 62 clearly indicates that a large amount of heat is being transferred to the ink in the bubble chamber 60. The benefits of a thin film stack 64 that includes a DLC island can be seen from examiningthe thin film region 66 under the ink bamer 68. Unlike the temperature contours 54 and 56 of Fig. 4(a), the first contour line 70 of Fig. 4(b) barely extends to the border of the ink battler region 68. Thus, the amount of thennal energy being laterally diffused through the thin films 64 is greatly reduced by surrounding the DLC that is used to overcoat the firing resistors with a material that has a significantly lower thermal conductivity than DLC. As previously discussed, the reduced thermal diffusion resulting fiorm die use of DLC islands is an improvement in that it increases the operating efficiency of the heating elements and minimizes the temperature rise of the heating elements under operating conditions A heating element that uses a DLC island to overcoat the filing resistor of the heating element of an ink jet printer requires less energy to fire than a prior art heating element The precise amount of energy required to eject a droplet of ink depends upon a number of factors For example, the energy required to fire an in k droplet depends on the heater mea, the heater stack thickness, the heater stack materials and properties and the stiller heat limit of Me ink The heater area and nozzle size depend upon Me mass of the 1 - ink droplet to be ejected One particular factor that affects tile arrount of energy required to eject a drop of ink with a heating element coast ucted in accordance With the present invention is the thickness of the DLC island. While t'A,e actual numbers will devoid upon The pc-u-ic'a device, a represeTratve plays of required Bleater input energy values 7z for a range of Dim. island thicknesses 74 for a piiculm heating element is set formal in Fig. 5(a). The heating element from which the data of Fig. S(a) is derived is a prefened embodiment of the pres ent invention that has a DLC island overcoating a thin film resistor with an area of approximately 306 Ems. The 306 Urns heating element of Fig 5(a) is designed to eject an ink droplet having a mass of 2-4 ng With these limitations, six data points 76, 78, 80, 82, 84 and 86 are plotted in Fig S(a) from which a theoretical line 88 of results is derived. As can be seen from Fig. S(a), the lower the DLC overcoat thickness 74, the lower the amount of heater energy 72 required to eject the ink droplet.
For example, data point 78 indicates that slightly more than 0.4 j of energy are required to eject a droplet of ink when the overcoat thickness is approximately 0.2 rim Howevel; data point 86 indicates that 1.0,uj of energy is required when the overcoat thickness is approximately 0.87 fim. Since it is desirable to have the energy consumed per fire be as low as possible, Fig. S(a) indicates that the DLC Overcoat should be made as thin as possible. The present inventors have discovered that the best overall mix of commercial results are achieved when the DLC overcoat is less than approximately 8700 A in thickness and the energy consumed per fire is less than 1.0,uj.
Fig. S(b) shows the jetting performance as a function of normalized ejection velocity 71 versus heater energy 73 for a heater that is 525 1lm2 in area with 3000 A of DLC in the style typified by Fig 1. The graph shows a curve 75 that is fit to a number of data points 77, 79, 81, 83, 85, 87 and 89. The first data point 77 indicates that the heater energy of approximately 0.3 1lj is not sufficient to eject a droplet fi om the heater.
Data point 79 indicates that a minimum of approximately 0.5 j is required to eject a droplet of ink from the heater. Once more than 0.5 JO of energy is applied to the heater, die velocity of the ejected droplet rises rapidly as can be seen from examining data points 81, 83 and 85. As can be determined from examining data points 85, 87 and 89 on Fig S(b), applying more than 0 8 j of energy to the heater does not significantly increase the velocity of the ejected droplet. Thus, stable droplet ejection can be achieved with just 0 8 j of energy; when using a heater having an area of 523 And and a DLC t.hiclcrless of approximately 30CO A. The ejected droplet at this stable level has a mass of alpaca 7 tG 1O narlograrl,s find velocity greater than EGO inclles/second (10 m'sj T he exit diameter of Belle nozzle refill also affect tile elcci Kirk ihicb the J1Pt of n.c is expelled A ieiati-Yrely liiglll velocity ink drowsier is prefelTed in blat i: helps overcome the formulation of viscous plugs in the nozzles due to evaporation of the water in the ink. More particularly, it has been determined that a droplet velocity of at least SOO inches per second (10 m/s) substantially overcomes the formation of viscous plugs and produces a good quality image Furthermore, for grain free printing, it is particularly preferred to have a droplet mass between 2-4 ng. Because a larger number of more closely packed heating elements are typically required to produce a higher resolution image, the energy consumption of the heating elements must be limited to prevent the heater chip from being damaged by an excessive rise in temperature during operation. An energy consumption of approximately 1,uj per fire is large enough to expel a 2-4 ng ink ] 5 droplet from the above discussed DLC heating elements yet small enough to prevent an unacceptable temperature rise in the heating element. As discussed below, these pretested operating parameters can be used to determine a preferred nozzle exit diameter.
Fig. 6(a) is a graph of droplet velocity versus nozzle exit diameter for a given heating element having a given set of operating parameters. In particular, the graph of Fig 6(a) was determined for a DLC heater having an area of 306,um2 that is designed to consume approximately 1,uj or less of energy per fire. The line 94 represents the droplet velocity 90 for a given range of nozzle exit diameters 92. As can be seen by examining the line 94, the droplet velocity 90 decreases as the nozzle exit diameter increases 92.
This relationship holds true until the nozzle exit diameter 92 is so large that no droplet of ink is expelled at all By examining Fig. 6(a), it can be determined that, for the particular heating element construction represented in Fig 6(a), the desired ink drop velocity of 500 inches per second (1Q rn/s) is achieved Veneer the nozzle exit diameter is less than approximately 15 m.
Fig. 6(b) Is a graph of the mass of an ink droplet 96 expelled versus the exit diameter of the nozzle 98 used to expel the drop of ink for the heating element of Fig 6(a) Fig 6(b) clearly indicates that, for the given heating element having the given set - lj - of operating parameters, the droplet mass 96 increases when the nozzle exit diameter 98 increases. This proportional relationship is maintained until e droplet mass is increased to a point 100 w here the particula 1. ea,+ing elenrelit is e.Ype'ling the largest possible ink Dopier for its given operating para-Rters. K nowino that c Is desirable to have a d. roplPt mass Preteen 2 and /' rig and a droplet velocity greater tliarl 'TIC inches per second (10 rn/s), the appropriate nozzle exit diameter can be determined by examining the graphs of Figs. 6(a) and (b). Referring first to Fig 6(b), a nozzle diameter of between 10-12 m results in a droplet mass of between 2-4 ng. Furthermore, referring now to Fig. 6(a), a nozzle exit diameter less than 15,um will result in a droplet velocity greater than 500 lO inches per second (10 m/s) Thus, a preferred DLC heating element having an area of 306 Ems will consume approximately 1,uj or less of energy to expel a 2-4 ng ink droplet of ink with a velocity greater than 500 inches per second (10 mls) if the nozzle exit diameter is between 10-12 um. A similar process can be used to determine the nozzle exit diameter for any particular heating element.
It is contemplated, and will be apparent to close skilled in the art from the preceding description and the accompanying drawings that modifications and/or changes may be made in the embodiments of the invention Accordingly, it is expressly intended that the foregoing description and the accompanying drawings are illustrative of preferred embodiments only, not limiting thereto, and that the true scope of the present invention be determined by reference to the appended claims.

Claims (1)

  1. - 1v
    1 p--rl.-ad fQ; Al iliK jet fainter wherein said pinhead expels ïropiets or ink from a nozzle in a nozzle plate attached to a heater chip containing heating elements by nucleating a BY olume of ink that is in contact with a surface of said heating element, said pintiLead comprising a resistive heating element wherein said resistive heating element rises in temperature in response to a voltage; a diamond-like-carbon coating positioned on said resistive heating element, and a smoothing layer deposited on said diamond-like-carbon coating such that said surface of said heating element that is in contact with said ink has a surface roughness less than 75 angstroms.
    2 The printhead of claim 1 wherein said smoothing layer comprises tantalum.
    3 The printhead of claim 1 or 2 wherein said resistive heating element comprises a doped portion of said diamond-like-carbon coating 4. The printhead of claim 1, 2 or 3 wherein said coped portion is doped with boron.
    5. A plinthead for an ink jet printer, the printhead having a heating element on a semiconductor chip for expelling droplets of ink from a nozzle of a nozzle plate attached to the chip by vaporizing a volume of ink in contact with a surface of said heating element, said chip comprising: a resistive heating element wherein said resis-civ-e healing element increases in temperature and vaporizes said volume of ink when a voltage is applied to said resistive heating element; and - 1 / a diamondlike-carl:on island positioned ever said resistive heating element herein said diamond-like-carbon island is substantially surrounded lay a material hailing a loss er thermal conductisi than said iamcnd-!ike-crbon island 6 Ike pint head of claim 5 herein said aimond-like-cubon isiad is less than 8700 angstroms inthickness.
    7 The printhead of claim 5 or 6 wherein a surface of said diamond -likecarbon island that comes into contact with said ink has a surface roughness less than 75 angstroms.
    8 The plinthead of claim 5, 6 or 7 wherein said resistive heating element is formed on a silicon substrate containing a silicon dioxide (SIO2) insulating layer between the substrate and resistive heating element.
    9 The plinthead of any of claims S to 8 wherein said diamond-like-carbon island is coated with a smoothing layer such that a surface of said smoothing layer in contact with ink has a surface roughness of less than 75 angstroms.
    10 The plinthead of claim 9 wherein said smoothing layer is comprised of tantalum.
    l l The printhead of any of claims 5 to 10 wherein a surface of said diamond- like-carlon island that is in contact with said ink has a surface roughness such that vaporization of said ink occurs at a superheat limit of said ink.
    12. The pinthead of any of claims 5 to 11 wherein said nozzle has an exit diameter between 10-12mm 13 The printhead of any of claims 5 to 12 wherein said printhead is configured to eject a droplet of ink through said nozzle such that said droplet of ink has a elocity greater than approximately 500 inches per second.
    14 The printhead of any of claims 5 to 13 wherein said resistive heating element IS dimensioned to have an area of approximately 306 Urns.
    - id - 1: The printhead of any of claims to l] wherein said prinead is constructed such that less than I L!j of energy is required to vaporize said volume of _l 16 The printed cf. any of claims 5 to! 'vhereir said material suTounuin said uiamond-like-caibon islarld is aluminum.
    17. The printhead of any of claims S to 16 wherein said resistive heating element comprises a doped portion of said diamond-like-carbon island.
    18. The printhead of claim 17 wherein said diamond-like-carbon layer is doped with boron 19. An apparatus for expelling droplets of ink onto a printing surface, said apparatus comprising a semiconductor substrate; a first insulating layer deposited, over said semiconductor substrate, a thin resistive heating layer deposited over said first insulating layer; IS a metal conductor layer deposited over said thin resistive heating layer wherein a portion of said metal conductor is removed to expose a portion of said thin resistive heating layer; a diamond-like-carbon island deposited over said exposed portion of said thin resistive heating layer such that an outside perimeter of said diamond-like carbon island partially overlaps said metal conductor layer; and a second insulating layer deposited over said metal conductor layer wherein a portion of said second insulating layer is removed such that all of said metal conductor layer and said outside perimeter of said diamond-like-carbon island are covered by said second insulating layer The apparatus of claim 19 wherein said diamond- like-carbon islandis less than 8700 angstroms in thickness.
    21. The::pparatus of ciairr 19 or 20 further compiisi a smoothing layer of tantalum deposited over said diamor,d-like-carbon island wherein said smoothing layer has a solace roughness less Milan 75 angstroms.
    22 The ppalatus of claim BY, 20 or21,herelnsasecorainc'aunbla,eris conlpiised of art interl--letallic dielectric material.
    23. A heater for expelling ink from a nozzle of an ink jet printer, said heater comprising: a diamond-like-carbon island deposited on a substrate wherein said diamond- like-carbon island is substantially surrounded with a material having a lower thermal conductivity than said diamond-like-carbon island and wherein a portion of said diamond-like-carbon island is doped to provide a resistive heating portion; and metal contact portions for applying a predetermined voltage to said resistive heating portion of said diamond- like-carbon island such that a volume of ink in contact with said diamond- like-carbon island is vaporized.
    24 The heater of claim 23 wherein said nozzle and said resistive heating portion are configured to expel a drop of ink having a mass in the range of 2 -4 nanograms.
    The heater of claim 23 or 24 wherein said diamond-like-carbon island has a thickness such that less than 1 microjoule is required to expel a drop of ink having a mass in the range of 2-4 nanograms.
    2G 26 The heater of claim 23, 24 or 25 wherein a surface of said diamond like carbon island that is in contact with said ink has a surface roughness of less than 75 Angstroms.
GB0517182A 2002-06-07 2003-06-04 Energy efficient heater stack using dlc island Expired - Fee Related GB2416519B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/165,534 US6637866B1 (en) 2002-06-07 2002-06-07 Energy efficient heater stack using DLC island
GB0500077A GB2405378B (en) 2002-06-07 2003-06-04 Energy efficient heater stack using dlc island

Publications (3)

Publication Number Publication Date
GB0517182D0 GB0517182D0 (en) 2005-09-28
GB2416519A true GB2416519A (en) 2006-02-01
GB2416519B GB2416519B (en) 2006-06-21

Family

ID=35613716

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0517182A Expired - Fee Related GB2416519B (en) 2002-06-07 2003-06-04 Energy efficient heater stack using dlc island

Country Status (1)

Country Link
GB (1) GB2416519B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990939A (en) * 1988-09-01 1991-02-05 Ricoh Company, Ltd. Bubble jet printer head with improved operational speed
US5348909A (en) * 1993-03-26 1994-09-20 Lexmark International, Inc. Manufacture of printhead with diamond resistors
EP0906828A2 (en) * 1997-08-28 1999-04-07 Hewlett-Packard Company Improved ink-jet printhead and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990939A (en) * 1988-09-01 1991-02-05 Ricoh Company, Ltd. Bubble jet printer head with improved operational speed
US5348909A (en) * 1993-03-26 1994-09-20 Lexmark International, Inc. Manufacture of printhead with diamond resistors
EP0906828A2 (en) * 1997-08-28 1999-04-07 Hewlett-Packard Company Improved ink-jet printhead and method for producing the same

Also Published As

Publication number Publication date
GB2416519B (en) 2006-06-21
GB0517182D0 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
US8366952B2 (en) Low ejection energy micro-fluid ejection heads
US4951063A (en) Heating elements for thermal ink jet devices
US5206659A (en) Thermal ink-jet printhead method for generating homogeneous nucleation
US6637866B1 (en) Energy efficient heater stack using DLC island
US7891764B2 (en) Printhead assembly with sandwiched power supply arrangement
US9914297B2 (en) Fluid ejection device
KR100911323B1 (en) Heating structure and inkjet printhead having the heating structure
JP2004017652A (en) Inkjet print head and its manufacturing process
US7390078B2 (en) Reduction of heat loss in micro-fluid ejection devices
US6676246B1 (en) Heater construction for minimum pulse time
KR100440109B1 (en) Printhead having a passivation layer with reduced thickness
GB2416519A (en) Energy efficient heater stack using dlc island
KR20070037897A (en) Thermally driven type inkjet printhead
JP4137257B2 (en) Thermal ink jet print head and manufacturing method thereof
KR100519755B1 (en) Inkjet printhead
US6039436A (en) Thermal ink-jet printhead with lateral thermal insulation for the heating elements
US20060284934A1 (en) Thermal inkjet printhead apparatus to regulate pressure exerted by bubbles in an ink chamber and method thereof
KR100723414B1 (en) Thermally driven type inkjet printhead
JP2008296572A (en) Inkjet printhead and method for manufacturing the same
US7172269B2 (en) Resistor shapes for heating devices on an integrated circuit
US7118200B2 (en) Inkjet printer head
KR100438834B1 (en) Ink jet print head
JPH09174842A (en) Ink jet head
JP2003165228A (en) Method for correcting resistance value of thermal ink jet head

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20080604