GB2401283A - Communication system and method for end-user QoS performance monitoring - Google Patents

Communication system and method for end-user QoS performance monitoring Download PDF

Info

Publication number
GB2401283A
GB2401283A GB0309929A GB0309929A GB2401283A GB 2401283 A GB2401283 A GB 2401283A GB 0309929 A GB0309929 A GB 0309929A GB 0309929 A GB0309929 A GB 0309929A GB 2401283 A GB2401283 A GB 2401283A
Authority
GB
United Kingdom
Prior art keywords
wireless communication
application
network element
communication system
communication unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0309929A
Other versions
GB2401283B (en
Inventor
Sanjay Nayak
Declan Mcnamara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to GB0309929A priority Critical patent/GB2401283B/en
Publication of GB2401283A publication Critical patent/GB2401283A/en
Application granted granted Critical
Publication of GB2401283B publication Critical patent/GB2401283B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation

Abstract

A wireless communication system (100) comprises at least one mobile wireless communication unit (105) having a transmitter and an application monitoring agent (108) operably coupled to the transmitter and configured to collect (350) and transmit (375) application-based statistics relating to one or more applications employed by the at least one mobile wireless communication unit (105). A network element (145) comprises a receiver, for receiving the transmission of application based statistics from the at least one mobile wireless communication unit (105) and a signal processor configured to determine a quality of service being provided to the mobile wireless communication unit based on the statistics. A method for end-user QoS performance monitoring in a wireless communication system (100) and a management station therefor are also provided.

Description

COMMUNICATION SYSTEM, METHOD AND APPARATUS
Field of the Invention
This invention relates to a communication system, method and apparatus. In particular, it relates to monitoring a quality of service (QoS) in a communication system. The invention is applicable to, but not limited to, monitoring quality of service as perceived by an end-user 1 0 of a wireless communication system such as a General Packet Radio System (GPRS) or a Universal Mobile Telecommunication System (UMTS).
Background of the Invention 1 5
Wireless communication systems, for example cellular telephony or private mobile radio communication systems, typically provide for radio telecommunication links to be arranged between a plurality of base transceiver stations 2 0 (BTSs) and a plurality of subscriber units, often termed mobile stations (MSs).
In a wireless communication system, each BTS has associated with it a particular geographical coverage 2 5 area. Transmitter power levels and receiver sensitivity performance define the coverage area where the BTS can maintain acceptable communications with MSs. Typically, coverage areas are configured as overlapping areas to facilitate continuous communication as MSs move between 3 0 the areas. The coverage areas are generally termed cells, which may be combined to produce an extensive coverage area of the communication system, for example to provide countrywide coverage.
Wireless communication systems are distinguished over fixed communication systems, such as the public switched telephone network (PSTN), principally in that mobile stations move between coverage areas served by different BTS (and/or different service providers) and, in doing so, encounter varying radio propagation environments.
Therefore, in a wireless communication system, MSs are more prone to unreliable communication links and 1 0 therefore a variable quality of service.
A fixed network interconnects all BTSs to all other network elements. This fixed network comprises communication lines, switches, interfaces to other 1 5 communication networks and various controllers required for operating the network. A call from a MS is routed through the fixed network to the destination node or communication unit identified by an address embedded within the data message of the call. 2 0
Traditional traffic in mobile cellular communication systems has been circuit-switched speech where a permanent link is set up between the communicating parties. Recently, wireless communication units have 2 5 been required to also transmit/receive a substantial amount of data. Furthermore, the requirements for mobile communication units are now to transmit substantial amounts of data at irregular intervals and not necessarily continuously. Consequently, it is 3 0 inefficient to have a continuous link set-up between users. Thus, a significant increase in packet based data traffic has been observed, where the transmitting remote terminal seeks to transmit data in discrete data sub- blocks, termed data packets.
An established harmonised cellular radio communication system providing predominantly speech communication is the Global System for Mobile Communications (GSM). An enhancement to this cellular technology has been developed, termed the General Packet Radio System (GPRS).
GPRS provides packet switched technology on GSM's 1 0 circuit-switched cellular platform.
It is intended that packet data communication provided by GPRS will enable cellular radio communication networks such as GSM to provide enhanced levels of interfacing and 1 5 compatibility with other types of communications systems and networks, including fixed communications systems such as the Internet. Further details on packet data systems can be found in 'Understanding data communications: from fundamentals to networking, 2nd ed.', John Wiley 2 0 publishers, author Gilbert Held, 1997, ISBN 0-471-96820 X. With the ever-increasing use, and competition in the provision, of packet-data applications and services on 2 5 new mobile communication technologies (i.e. GPRS and UMTS) network operators are focusing on monitoring the Quality of Service (QoS) received by their respective subscribers. The network operators recognise a need to continuously provide their subscribers a premium level of 3 0 service, otherwise the subscribers are very likely to take their business to other network operators.
The traditional procedures used for monitoring and measurement tasks on mobile communications networks tend to be focussed on the overall network quality, i.e. they are based on per network element (NE) statistics.
Current network monitoring procedures include: (i) 'Test Transactions' from a MS: Here, a test MS is configured to transmit a specific 1 0 communication, say at a particular location, and the performance of that communication is measured. In this regard, a MS with special diagnostic software is driven in a vehicle around a coverage area. The signal strength of different cells in the surrounding area is measured 1 5 and displayed by the MS and its diagnostic software.
This method is typically used to identify areas of poor coverage and quality of service, so that the Network Operator can improve the quality of service in that particular geographical area. Similarly, a MS may be 2 0 configured to make a call and trace its call via the network infrastructure. Such a test transaction technique is used to verify how the call is handed over between cells.
2 5 (ii) Test Transactions from a test program: Typically, in the field of Internet Protocol (IP) based communication, a number of network monitoring software products exist. These products execute test transactions 3 0 in order to measure, store and generate reports about the network and service performance. For example, a particular software program, located within the Network Operations Centre (NOC), may be configured to measure the quality of a file transfer across a communication link.
This is often performed using a test file transfer query message to a remote file transfer protocol (FTP) server, or a test database query to a remote structured query language (SQL) database server.
The above two monitoring procedures are invariably used over a limited coverage area. Furthermore, they are typically performed from static locations. In addition, 1 0 these measurements are rarely employed in real user environment, such as in-building coverage. Therefore, such procedures do not reflect the actual QoS that the user is obtaining from the network.
1 5 Further monitoring procedures are as follow.
(iii) Statistics measurement and reporting by NEs on a per-Packet Data Protocol (PDP) context (application) basis: 2 0 In a GPRS network, the MS sets up a session called a Packet Data Protocol (PDP) Context with a Serving GPRS Support Node (SGSN) and a Gateway GPRS Service Node (GGSN). These Nodes are capable of monitoring the 2 5 performance of individual PDP Contexts. However, the measurements are limited in scope to the performance local to the network element. In addition, the measurements are based on the performance of the GPRS packets rather than the end-user data. Hence, they 3 0 cannot provide any indication about the performance of the application from the application's end-user perspective.
(iv) Monitoring agents exist on 'fixed' network devices and end-user terminals: In fixed communication/computer networks, it is known for special monitoring devices with monitoring agent software to be installed in the network. In IP-based communications, the operation and parameters of such monitoring agents are standardized, as specified in Remote MONitoring at: 1 0 RMON - htCp://www.ietf.org/rfc/rfcl757.txt, and RMON-2 htEp://www. ietf.org/rfc/rfc2021.txt.
It is also possible for such monitoring software to exist on end-user host machines, such as desktop computers.
1 5 These machines monitor the performance of their interfaces with the fixed network and the fixed network monitoring software collects that data from the agents by polling them. Notably, these standards have been developed for fixed network operation and are unsuitable 2 0 for mobile scenarios.
The inventors of the present invention have both recognised and appreciated that none of the above technologies provides an end-user performance measurement 2 5 as the monitoring function assesses only the reachability and/or path availability of a system. The per-PDP context statistics measurement by NEs such as a SGSN and a GGSN, although useful, still fails to provide end-to- end data throughput or a delay perspective. This is due 3 0 to the fact that there are other routers, switches and WAN clouds in the path from MS to the end-server providing an application service. Also, the measurements taken are local to the NE as described in procedure (iii) above, which do not accurately reflect the end-to-end application performance.
A further known disadvantage is that the user data that passes through a SGSN and a GGSN is embedded in the message, i.e. it is embedded in accordance with the GPRS Tunnelling Protocol (GTP) standard. Hence, the real user-traffic is never observed by these NEs.
1 0 Thus, there exists a need in the field of the present invention to provide a communication system and a method for monitoring a QoS performance wherein the aforementioned disadvantages may be alleviated.
1 5 Statement of Invention
In accordance with a first aspect of the present invention, there is provided a communication system, as claimed in Claim 1. 2 0
In accordance with a second aspect of the present invention, there is provided a wireless communication unit, as claimed in Claim 14.
2 5 In accordance with a third aspect of the present invention, there is provided a Network Element, as claimed in Claim 19.
In accordance with a fourth aspect of the present 3 0 invention, there is provided a method of monitoring an application quality of service of an end-user in a wireless communication system, as claimed in Claim 24.
In accordance with a fifth aspect of the present invention, there is provided a communication unit, as claimed in Claim 25.
In accordance with a sixth aspect of the present invention, there is provided a storage medium, as claimed in Claim 26.
In summary, the invention alleviate the problems
1 0 associated with prior art arrangements and mechanisms.
In accordance with an embodiment of the invention, a mobile wireless communication unit comprises an application monitoring agent configured to collect and transmit application-based statistics relating to one or 1 5 more applications employed by the unit. A network element, for example a management station, comprises a receiver, for receiving the application based statistics from the mobile wireless communication unit and a signal processo 2 0 In this manner, a communication system is able to measure and track a parameter/performance of an end-user application, for example relating to throughput, delay, packet-loss, etc. In this regard, it is possible to obtain an assessment of a 'user-perceived' QoS for a 2 5 given application. It is also envisaged that the management station may, for example in response to a measurement, signal to the application on the mobile wireless communication unit to control/configure parameters such as transfer rate. Advantageously, this 3 0 feature could be used in the case where network resources are available but the management station has decided to allocate them to a higher priority mobile station. In this manner, the control can be implemented at the application level (on the mobile wireless communication unit), which is more preferable than allowing the infrastructure to enforce the quality of service.
The inventors of the present invention have recognized that, although the focus on a per-NE basis is still important in the collection of Network Operational statistics, the provision of additional monitoring of quality of service (QoS) of 'applications on a per 1 0 subscriber basis' is beneficial in a variety of scenarios. For example, once per-subscriber monitoring is introduced, as facilitated by the present invention, it will enable the Network Operator to offer more detailed Service Level Agreements (SLAB) to their end 1 5 users. Hence, per-subscriber monitoring offers an opportunity for Network Operators to offer a market differentiating level of service over their competition.
In particular, the inventive concepts described herein 2 0 provide a mechanism to monitor a performance of an end- user application running over a UMTS/GPRS network.
However, it is within the contemplation of the invention that the preferred monitoring mechanism can be applied to any wireless communication system or technology. 2 5
It is known that in a UMTS/GPRS network, both the Radio Access Network (RAN) elements (BSS, RNC, Node-B etc.) and the core network elements (SGSN, GGSN, etc.) collect statistics and report them to an Operations and 3 0 Maintenance Centre (OMC). However, these statistics are aggregated at the network element level and do not measure the performance of an application, for example, WEB access, from an end-user's perspective. 1 0 '
Advantageously, the present invetion described herein provides an opportunity to measure, for example, a number of performance parameters, such as throughput, delay and packet-loss of the end-user application running over a UMTS/GPRS network using PDP Context messages. In this manner, it is possible for the Network Operator to obtain a measurement of the user-perceived QoS from this data.
It also enables this data to be reported from end-user 1 0 QoS Monitoring Software, and enables capabilities such as Service Level Agreement (SLA) monitoring and reporting.
It is also envisaged that the management station may, for example in response to a measurement, signal to the 1 5 application on the mobile wireless communication unit to control/configure parameters such as transfer rate.
Advantageously, this feature could be used in the case where network resources are available but the management station has decided to allocate them to a higher priority 2 0 mobile. In this manner, the control can be implemented at the application level (on the mobile wireless communication unit), which is more preferable than allowing the infrastructure to enforce the quality of service. 2 5
The inventive concepts of the present invention also solve the problem where there is no network coverage at the user's location. For this situation, the user's unsuccessful attempts to connect to the communication 3 0 system will also be measured and logged in the MS. Under existing measurement techniques this data is never collected. However, in accordance with the preferred embodiment of the present invention, this logged data 1 1 would be forwarded from the MS to a pre-defined QoS Monitoring Access Point Name (APN) when the connection is restored. In this manner, a more accurate measurement of a user's perceived QoS is obtained.
It is also envisaged that in certain communication systems where the geographical location of the MSs can be detected, the measurements collected can be combined with location information to identify coverage black-spots. 1 0
Exemplary embodiments of the present invention will now be described, with reference to the accompanying drawings, in which:
1 5 Brief Description of the Drawings
FIG. 1 shows a block diagram of a cellular radio communications system adapted to support the various inventive concepts of a preferred embodiment of the 2 0 present invention; FIG. 2 shows a block diagram of a wireless communication unit adapted in accordance with the preferred embodiment of the present invention; and 2 5 FIG. 3 illustrates a message sequence chart of a mechanism to monitor a quality of service (QoS) of applications on a per-subscriber basis, in accordance with the preferred embodiment of the present invention. 3 0 1 2
Detailed description of embodiments of the invention Referring first to FIG. 1, a simplified block diagram of a cellular telephone communication system 100 is shown, in outline. The cellular telephone communication system supports a General Packet Radio System (GPRS) or UMTS airinterface, as standardized by the European Telecommunications Standards Institute (ETSI), in accordance with a preferred embodiment of the invention. 1 0
Generally, the air-interface protocols are administered from base transceiver sites, within the network architecture, which are geographically spaced apart - one base transceiver site supporting a cell (or, for example, 1 5 sectors of a cell). It is envisaged that data users supported by co- located base transceiver sites supporting, say, both pico- and micro- cellular communications may also benefit from the inventive concepts described herein. 2 0
In particular, FIG. 1 illustrates the communication devices that are involved in a GPRS (or UMTS) PDP context set-up, in order to provide a communication between a subscriber unit and a server in the Internet. The 2 5 subscriber unit, hereinafter referred to as mobile station (MS) 105, communicates over the selected air- interface with a plurality of base transceiver stations (BTS). All NEs are connected to one or more Operations and Management Centres (OMCs) (not shown) that 3 0 administers general control of the cellular telephone communication system 100, as will be understood by those skilled in the art. One MS 105 is shown for clarity purposes only. 1 3
The GPRS network comprises a number of service GPRS support nodes (SGSNs) 115 to facilitate communication from the MSs 105 to Internet protocol packet data networks 140. The SGSNs 115 (with only one being shown for clarity purposes only) are operably coupled to external packet data networks 140 via GPRS gateway support nodes (GGSNs) 135.
1 0 The SGSNs 115 and GGSNs 135 are operably coupled to a home location register (HLR) function 130, which contains address information for the respective communication units in the communication system. The HLR 130, together with visitor location register information if the 1 5 communication unit is a communication unit that roams into different cells, enables calls to these units to be routed to the correct cell. The SGSNs 115 and GGSNs 135 are also operably coupled to a domain name server (DNS) function 125. The DNS function 125 is effectively the 2 0 distributed namespace used within IP networks to resolve computer and service names to TCP/IP addresses. In this configuration, the DNS 125 allows an SGSN 115 to decide which GGSN 135 may be used to access a particular APN.
Thus, whenever a new GGSN 135 is added to the network, an 2 5 entry must be added to the DNS.
In known systems, an Access Point Name (APN) is the name of the access point in the packet data network that the user wants to connect to, for example, "aol.com". In 3 0 current systems, the subscriber to APN mapping is configured in the HLR. An APN management system is tightly integrated with the DNS 125. When a user attaches to the network and initiates a PDP Context, the 1 4 SGSN 115 must choose, based on the APN in the POP Context, which GGSN 135 to connect to. In GPRS, a DNS is used only as a lookup mechanism. The actual APN Profile data resides in the GGSN 135 itself.
The GPRS system uses DNS 125 as the GGSN location service. Access Point Names are defined within the DNS servers as Service Resource Records (SRV RRs). The SRV RR is a DNS record used to map the name of a service 1 0 to the address of a server offering that service. Each GGSN 135 may support multiple APN services, and therefore may appear in multiple SRV RRs.
When the SGSNs 115 need to locate a GGSN 135 that 1 5 supports a particular APN service, the DNS server is queried to provide the address of a suitable GGSN 135.
Furthermore, when a MS 105 makes a connection request, it sends a PDP Context request message to a SGSN 115 2 0 identified by the APN. Other address information is retrieved from the HLR 160. The SGSN 115 uses the DNS to resolve the connection request to the IP address of the GGSN 135 that is designated as the gateway to this APN. 2 5
In accordance with the preferred embodiment of the present invention, a much wider use of a QoS Monitoring APN 147 is employed, described for example in the context of a UMTS/GPRS Core Network. 3 0
In particular, the MS 105 has been adapted to contain an embedded application-monitoring agent 108, as described further below with respect to FIG. 2. Notably, the 1 5 inventive concepts described herein incorporate the novel feature of an agent 108 on the end-user MS to collect application-based statistics that relate to the particular MS 105.
Furthermore, the HLR 130 has been adapted to include a Quality of Service (QoS) Monitoring APN 132 for all subscriber units. The APN 132 is used to collect subscribers' management information in every network.
1 0 The preferred embodiment of the present invention uses a QoS Monitoring APN 147, so that the collection of information is effectively performed the same way in every network. Thus, the MS QoS performance statistics are obtainable irrespective of where the MS is located, 1 5 for example, even when the MS has roamed into 'visited' networks. In this manner, it is envisaged that there is co-operation between networks to share the QoS data collected.
2 0 In addition, the GGSN 135 has been configured to include a Management APN function 137. In this regard, the GGSN provides connectivity to the end-user QoS Monitoring Software APN 147.
2 5 Moreover, the DNS 125 has been adapted to include a management APN 127 to perform GGSN mapping. In this regard, the DNS 125 configuration is updated to include a mapping from the QoS Monitoring APN 127 to the GGSN 135 that provides connectivity to the end-user QoS Monitoring 3 0 Software APN 147.
As previously mentioned, a function of the preferred embodiment of the present invention is the provision of 1 6 end-user QoS Monitoring Software. The end-user QoS Monitoring Software is configured to receive the MS's application performance data.
It is envisaged that the end-user QoS Monitoring Software will also include an ability for a NE to initiate retrieval of application performance data from MSs, by invoking a Network Initiated PDP Context Activation procedure using the QoS Monitoring APN 147. Preferably, 1 0 the end-user QoS Monitoring Software would normally do such a pro- active collection of data on a periodic basis.
Furthermore, it is envisaged that the NE will then be able to report the content of such data to other elements in the infrastructure, as well as interface with other 1 5 management software, for example Service Level Agreement (SLA) Management software.
In a yet further enhanced embodiment of the present invention, it is envisaged that the collection of 2 0 application performance data may be performed on a per- protocol per-APN basis. In this regard, the per-protocol collection implies data for different types of application protocols such as HTTP, FTP, WAP, Streaming Audio/Video, etc. In contrast, the per-APN collection is 2 5 configured to monitor the usage and performance of the different APNs accessed by the end-user.
It is within the contemplation of the invention that the end-user QoS Monitoring Software function may be deployed 3 0 in a variety of ways, including one or more of the following: 1 7 (i) As a single standalone computer, for example within a management station 145 as shown in FIG. 1; (ii) Distributed across multiple computers; (iii) Residing on one or more computers which form an Operations and Maintenance Centre (OMC); (iv) Residing on one or more computers of a variant of an OMC, e.g. OMC-R (Radio), OMC-G (GPRS), OMC S (Switch), OMC-IP (Internet Protocol); and/or 1 0 (v) Residing on one or more computers with any other network management application.
The aforementioned APN procedures are supported in the existing UMTS/GPRS standards, as known to those skilled 1 5 in the art. As such, they are incorporated herein by reference and will not be described in further detail.
More generally, the adaptation of the HLR function 130, DNS 125, GGSN 135 and/or Management Station 145, 2 0 programmed according to the preferred embodiment of the present invention, may be implemented in the respective communication unit in any suitable manner. For example, new apparatus may be added to a conventional communication unit, or alternatively existing parts of a 2 5 conventional communication unit may be adapted, for example by reprogramming one or more processors therein.
As such the required adaptation may be implemented in the form of processor-implementable instructions stored on a storage medium, such as a floppy disk, hard disk, PROM, 3 0 RAM or any combination of these or other storage multimedia. 1 8
Referring now to FIG. 2, a functional block diagram of a mobile communication unit 105 of FIG. 1 is illustrated, where the mobile communication unit 105 is adapted to support the inventive concepts of the present invention.
As is well known in the art, the MS 105 contains an antenna 202 preferably coupled to a duplex filter or antenna switch 204 that provides isolation between receive and transmit chains within the MS 105. The 1 0 receiver chain includes receiver front-end circuitry 206 (effectively providing reception, filtering and intermediate or baseband frequency conversion). The front-end circuitry 206 scans signal transmissions from its associated Node B/BTS. The front-end circuit 206 is 1 5 serially coupled to a signal processing function (processor, generally realised by a DSP) 208. The final receiver circuits are a baseband back-end circuit 209 operably coupled to a display unit 210.
2 0 In accordance with the preferred embodiment of the present invention, the receiver chain, and in particular the signal processing function 208, is configured to receive and respond to an end-user QoS Monitoring Software request from a NE. The request is preferably 2 5 sent using a Network Initiated PDP Context Activation procedure from a QoS Monitoring APN 147.
For completeness, a controller 214 is preferably operably coupled to the front-end circuitry 206 so that the 3 0 receiver is able to calculate receive bit-error-rate (BER) or frame-error-rate (FER) or similar link-quality measurement data from recovered information via a received signal strength indication (RSSI) function 212. 1 9
The RSSI function 212 is operably coupled to the front- end circuit 206. A memory device 216 stores a wide array of MS-specific data, such as decoding/encoding functions, timing details, neighbour and serving cell information relating to timing, channels, power control and the like.
Such features are well known in the art.
However, in addition to the above, the memory unit 216 has now been adapted to store a list of application 1 0 performance data, which may be collected on a per- protocol per-APN basis.
A timer 218 is operably coupled to the controller 214 to control the timing of operations, namely the transmission 1 5 or reception of time-dependent signals, within the MS 105.
For completeness, in broad terms and as known in the art, the transmit chain of the communication unit essentially includes an input device 220, such as a microphone, coupled in series through a processor 208, 2 0 transmitter/modulation circuitry 222 and a power amplifier 224. The processor 208, transmitter/modulation circuitry 222 and the power amplifier 224 are operationally responsive to the controller, with an output from the power amplifier coupled to the duplex filter or antenna 2 5 switch 204, as known in the art.
In known communication systems, the MS 105 is constantly monitoring and making measurements on the strength of signals received from other cells. These measurements 3 0 are primarily used for call management purposes. The measurements are also used to enable the network to initiate handovers between cells, etc. In accordance with the preferred embodiment of the present invention, 2 o the functionality of the signal processing function208, controller 214 and memory device 216 have been enhanced in the present invention to include an application- monitoring agent. This uplink transmission of application performance data is preferably performed on a per-protocol per-APN basis.
Notably, the application-monitoring agent 108 is cognisant of the different applications running on the 1 0 MS, for example a file transfer protocol (FTP), hyper- text transfer protocol (HTTP), wireless access protocol (WAP), etc. The data generated by the application- monitoring agent 108 is sent to a NE, such as a management station employing a QoS Monitoring APN 147.
1 5 Advantageously, the application-monitoring agent 108 is configured to monitor the performance of each of these application protocols on a perAPN basis. In this regard, the agent generates statistics based on, say, a sampling period "T". For each sampling period, the agent 2 0 stores "Nn number of samples. For example, in the scenario where T = 30 minutes and N = 48, the MS agent generates statistics for 24 hours.
In accordance with the preferred embodiment of the 2 5 present invention, the application-monitoring agent 108 employed within the signal processing function, together with the corresponding transmitter/receiver functions, generates one or more of the following statistics, preferably on a per-application-protocol per-APN basis: 3 0 (i) Throughput: that is the application monitoring agent 108 measures data delivery, in packets or bits per second, of the user application data transfer. 2 1
(ii) Delay: that is the application-monitoring agent 108 measures network latency for transmission of a single data packet across the network. Of note, is that one-way delay is defined in IETF RFC 2679, described at: http://www.ietf.org/rfc/rfc2679.txt In keeping with that definition, full network delay in GPRS is defined as the sum, in either downlink or uplink direction, of the component network delays.
(iii) Delay Variation (i.e. distribution 1 0 statistic): that is the application-monitoring agent 108 measures a difference in delay between consecutive packets; this is also known as ' jitter'.
(iv) Number of successful service connection attempts.
1 5 (v) Number of failed service connection attempts.
Preferably, the application-monitoring agent 108 within the signal processor function 208 stores all measured results and/or generated (i.e. calculated) statistics in 2 0 memory element 216. The storage buffers in memory element 216 that store the statistics are cleared after the statistics are sent to the QoS Monitoring APN 147.
It is envisaged that either of the following events may 2 5 be used to trigger the MS's application-monitoring agent 108 to activate a new PDP context and send all generated statistics to the QoS Monitoring APN 147: (i) After N samples have been collected and no other PDP Context is active; or 3 0 (ii) Whenever the MS executes a UMTS/GPRS Attach message, assuming that there are statistics in the storage buffer to be sent. 2 2
It is within the contemplation of the invention that the above list of events is only a sample of a large number of triggers that could be used to employ the inventive concepts herein described, as would be appreciated by a person skilled in the art.
It is also within the contemplation of the present invention that such a trigger may be self-initiated by the MS 105. In this manner, the MS 105 invokes a self 1 0 trigger to transmit statistics to the management APN (network element) 145, for example based on a timer upon switch-on of the MS 105.
The signal processor function 208 in the transmit chain 1 5 may be implemented as distinct from the processor in the receive chain. Alternatively, a single processor 208 may be used to implement processing of both transmit and receive signals, as shown in FIG. 2.
2 0 Of course, the various components within the MS 105 can be realised in discrete or integrated component form, with an ultimate structure therefore being merely an arbitrary selection.
2 5 More generally, the adaptation of MS 105 associated with the preferred embodiment of the present invention may be implemented in a respective MS in any suitable manner.
For example, new apparatus may be added to a conventional MS 105, or alternatively existing parts of a conventional 3 0 communication unit may be adapted, for example by reprogramming one or more processors therein. As such the required adaptation may be implemented in the form of processor-implementable instructions stored on a storage 2 3 medium, such as a floppy disk, hard disk, PROM, RAM or any combination of these or other storage multimedia.
Referring now to FIG. 3, a message sequence chart 300 illustrates a mechanism to monitor and report a quality of service (QoS) of applications on a per-subscriber basis, in accordance with the preferred embodiment of the present invention. The message sequence chart illustrates the reporting of application performance 1 0 statistics from the MS 105 to the end-user QoS Monitoring Software, using the QoS Monitoring APN 147, for example located in a management station 145. The intermediate communication devices in the preferred embodiment of the present invention include an application server 305, a 1 5 BSS 310, a SGSN 115, a HLR function 130, a DNS 125 and a GGSN 135.
The message sequence chart starts with the MS 105 collecting application performance data and generating 2 0 statistics based on such data, as shown in step 350. The MS 105 interacts with an Application Server 305 over one or more data sessions using one or more PDP Contexts, in step 355 and 360. This process continues until the MS receives a trigger, for example a trigger as detailed 2 5 above, in step 365. The trigger, as described above, pauses the data collection operation of the MS 105.
Upon receiving a trigger, the MS 105 activates a new PDP Context to forward the generated statistical information 3 0 to the QoS Monitoring APN 147 in the management station 145, in step 370. In this regard, the PDP context message is passed between MS 105, BSS 310, SGSN 115, HLR function 130, DNS 125 and GGSN 135 in the manner shown. 2 4
Following the PDP Context set-up, the MS 105 sends the generated application performance data/statistics to the end-user QoS Monitoring Software on this PDP context, as shown in step 375. Preferably, this specific transfer of data utilises a reliable transport protocol, such as the well-known transport control protocol operating on top of an Internet protocol (TCP/IP).
1 0 Once the statistical data has been passed to the end-user QoS Monitoring Software function in the management station 145, the MS deactivates the PDP Context to the QoS Monitoring APN 147, as shown in step 380.
Advantageously, the inventive concepts of the present 1 5 invention utilise the known mechanism for activating PDP context messages and sending data on these to communication devices in the communication infrastructure. Notably, the inventive concepts of the present invention provide for the MS 105 to transmit new 2 0 data on these messages, i.e. application performance data/statistics, to a new function, i.e. an end-user QoS Monitoring Software in one or more QoS Monitoring APNs 147.
2 5 In this manner, the MS collects and generates application performance data/statistics and transfers the data/statistics to the end-user QoS Monitoring Software function in the QoS Monitoring APN 147, wherever in the communication system infrastructure it resides. 3 0
Although the invention has been described with reference to monitoring a performance of one or more applications as experienced by a wireless enduser in a wireless 2 5 communication system such as a GPRS or UMTS system, it is within the contemplation of the invention that the inventive concepts herein described are equally applicable to any wireless communication system supporting, where remote wireless communication units are running applications.
It will be understood that the communication system and method for monitoring an end-user QoS performance for one 1 0 or more particular data session(s), as described above, tends to provide (at least) one or more of the following advantages: (i) Provision for a communication system to 1 5 measure and track a parameter/performance of an end-user application, for example relating to throughput, delay, packet-loss, etc. In this regard, it is possible to obtain an assessment of a 'user-perceived' QoS for a given application. 2 0
(ii) Provision for a communication system to route end-user QoS application data to a management APN.
This data can then be used to improve other system functions such as monitoring and reporting SLAB. 2 5
(iii) Provision for monitoring and logging of geographical areas where there is a loss of network coverage.
3 0 (iv) In using a QoS Monitoring APN 147, the collection of information is effectively performed the same way in a number, and preferably each, network.
Thus, the MS QoS performance statistics are obtainable 2 6 irrespective of where the MS is located, for example, even when the MS has roamed into 'visited' networks.
Whilst specific, and preferred, implementations of the present invention are described above, it is clear that one skilled in the art could readily apply variations and modification of such inventive concepts.
Thus, a wireless communication system, and a method for 1 0 monitoring and reporting end-user QoS information relating to applications being run by the end-user have been provided wherein the aforementioned disadvantages
associated with prior art arrangements have been
substantially alleviated. 1 5 - 27

Claims (29)

  1. Claims 1. A wireless communication system (100) comprising a communication
    network supporting wireless communication between a plurality of mobile wireless communication terminal (105) and one or more wireless serving communication terminals (110), the wireless communication system being characterized by: at least one mobile wireless communication unit 1 0 (105) comprising: a transmitter; and an application monitoring agent (108) operably coupled to said transmitter and configured to collect (350) and transmit (375) application-based 1 5 statistics relating to one or more applications employed by said at least one mobile wireless communication unit (105); and a network element (145) comprising: a receiver, for receiving said transmission 2 0 of application based statistics from said at least one mobile wireless communication unit (105); and a signal processor (147) configured to determine a quality of service being provided to said mobile wireless communication unit based on said 2 5 statistics.
  2. 2. A communication system (100) according to Claim 1, wherein the network element (145) comprises a signal processor having a quality of service monitoring function 3 0 and a Management address function, for example a management access point name (APN). - 28
  3. 3. A communication system (100) according to Claim 2, wherein the network element (145) includes a transmitter operably coupled to said signal processor and configured to transmit a trigger (365), such as a Network Initiated packet data protocol Context Activation message that incorporates a quality of service monitoring address, to said at least one wireless communication unit (105) to request a transmission of said application based statistics relating to an APN from said at least one 1 0 mobile wireless communication terminal (105).
  4. 4. A communication system (100) according to any one preceding claim, wherein said network element (145) transmits a request for application based statistics on a 1 5 substantially periodic basis.
  5. 5. A communication system (100) according to any one preceding claim, wherein said network element (145) is operable to receive application based statistics on a 2 0 per-protocol, per-address, for example per-APN, basis.
  6. 6. A communication system (100) according to any one preceding claim, wherein said communication system supports universal mobile telecommunication system 2 5 services and/or general packet radio system services, such that said network element (145) monitors a performance of an end-user application running over a 3 0
  7. 7. The communication system (100) according to any preceding claim 6, wherein said at least one mobile wireless communication terminal (105) is operable to invoke a self-trigger to transmit statistics to the - 29 network element (145), for example based on a timer upon switch-on of the at least one mobile wireless communication unit (105).
  8. 8. A communication system (100) according to any one preceding claim, wherein the application based statistics comprises data relating to one or more of the following: data throughput, transmission delay, packet- loss performance, as monitored by said wireless communication 1 0 unit (105).
  9. 9. A communication system (100) according to any one preceding claim, wherein the application based statistics are in operation collected for a particular user data 1 5 session.
  10. 10. The communication system (100) according to any one preceding claim, the communication system comprising a plurality of communication media for transferring data 2 0 between at least one mobile wireless communication unit (105) and said network element (145), the communication system further characterized by at least one communication medium of said plurality of communication media, for example a reliable and acknowledged transport 2 5 protocol, such as transport control protocol/Internet Protocol, being selected by both said at least one mobile wireless communication unit (105) and said network element (145) to transfer (375) application monitoring data. 3 0
  11. 11. A communication system (100) according to any one of preceding claims 2 to 10, wherein the quality of - 30 service monitoring function is deployed in one or more of the following ways: (i) As a single standalone computer, for example within a management station (145); (ii) Distributed across multiple computers; (iii) Residing on one or more computers, which form an Operations and Maintenance Centre (OMC); (iv) Residing on one or more computers of a variant of an OMC, e.g. OMC-R (Radio), OMC-G (GPRS), OMC 1 0 U (UMTS), OMC-S (Switch), OMC-IP (Internet Protocol); and/or (v) Residing on one or more computers with any other network management application.
    1 5
  12. 12. A communication system (100) according to any one preceding claim, wherein the application-monitoring agent (108) is operable to generate statistics relating to one or more of the following: (i) Throughput; 2 0 (ii) Delay; (iii) Delay Variation (Jitter); (iv) A number of successful service connection attempts; and/or (v) A number of failed service connection 2 5 attempts.
  13. 13. A communication system (100) according to any one of preceding Claims 2 to 12, the communication system including at least one wireless communication terminal 3 0 (105) operable to transmit application based statistics in response to a trigger, for example when said trigger is either of the following: - 31 (i) After N samples have been collected and no other packet data protocol Context is active; and/or (ii) Whenever said wireless communication unit (105) executes a UMTS/GPRS Attach message.
  14. 14. A wireless communication terminal (105) comprising: a transmitter (210), for transmitting data; a receiver (205, 209), for receiving data; and 1 0 a signal processor (208), for processing received signals and processing data for transmission) wherein the signal processor comprises an application monitoring agent (108) configured to collect application performance data in respect of applications being 1 5 utilised by said wireless communication unit.
  15. 15. A wireless communication terminal (105) according to Claim 14, which is operable to transmit application information to a network element (145) in response to 2 0 receiving a trigger from said network element (145) or an internal trigger from the wireless communication unit (105) .
  16. 16. A wireless communication terminal (105) according 2 5 to Claim 15, which is operable, in response to said trigger, to generate (350) application statistics representing a quality of service of said application at said wireless communication unit (105) based on such data. 3 0
  17. 17. A wireless communication terminal (105) according to Claim 15 or Claim 16, which is configured to operate in a universal mobile telecommunication system and/or a - 32 general packet radio system, such that said wireless communication terminal is operable to activate a new packet data protocol Context message to forward (370) the generated application statistical information to the network element (145).
  18. 18. A wireless communication terminal (105) according to Claim 17, wherein the application-monitoring agent (108) is configured to monitor one or more of the 1 0 following applications running on the wireless communication unit (105): a file transfer protocol (FTP), hyper-text transfer protocol (HTTP) , wireless access protocol (WAP), for example on a per-access point name basis. 1 5
  19. 19. A network element (145), for example a Management station, for use in a wireless communication system (100), the network element (145) comprising: a receiver, for receiving data sent from remote 2 0 wireless communication terminals; and a signal processor, operably coupled to said receiver, for processing received signals; the network element (145) wherein: said receiver is operable to receive a 2 5 transmission of application based statistics from at least one mobile wireless communication terminal (105); and said signal processor is operable to determine a quality of service being provided to said mobile wireless 3 0 communication terminal based on said statistics.
  20. 20. A network element (145) according to Claim 19, wherein the signal processor comprises a QoS Monitoring - 33 access point name (APN) operable to receive application statistical information sent from said at least one mobile wireless communication terminal (105) indicating a quality of service of that application experienced by said at least one mobile wireless communication terminal (105).
  21. 21. A network element (145) according to Claim 20, including a transmitter operably coupled to said signal 1 0 processor and configured to transmit a trigger (365) to said at least one wireless communication unit (105) to request a transmission of said application based statistics relating to said APN from said at least one mobile wireless communication unit (105). 1 5
  22. 22. A network element (145) according to Claim 21, wherein said network element (145) is operable to invoke a Network Initiated packet data protocol Context Activation message that incorporates a quality of service 2 0 monitoring address.
  23. 23. A network element (145) according to any one of preceding Claims 19 to 22, wherein said network element (145), for example in response to a measurement, signals 2 5 to an application on at least one mobile wireless communication unit (105) to control and/or configure operational parameters of said mobile wireless communication unit (105) such as transfer rate.
    3 0
  24. 24. A method of monitoring an application quality of service of an end-user in a wireless communication system (300), the method including the steps of: - 34 collecting (350), at a mobile wireless communication terminal (105), application-based statistics relating to one or more applications employed by the mobile wireless communication terminal (105); transmitting (375) said application-based statistics to a network element (145); comprising: receiving said transmission of application based statistics from said mobile wireless communication unit (105); and 1 0 determining a quality of service being provided to said mobile wireless communication unit based on said statistics.
  25. 25. A wireless communications terminal adapted for 1 5 use in the method according to claim 24.
  26. 26. A storage medium storing processor-implementable instructions for use in the wireless communication terminal according to any one of Claims 14 to 18, or for 2 0 use in the network element of any one of Claims 19 to 23 or for controlling a processor employed to carry out the method of Claim 24.
  27. 27. A communication system according to claim 1 and 2 5 substantially as hereinbefore described with reference to, and/or as illustrated by, FIG. 1 of the accompanying drawings.
  28. 28. A communication terminal according to claim 14 3 0 and substantially as hereinbefore described with reference to, and/or as illustrated by, FIG. 2 of the accompanying drawings. -
  29. 29. A method of performing end-user quality of service monitoring in a wireless communication system substantially as hereinbefore described with reference to, and/or as illustrated by, FIG. 3 of the accompanying drawings.
GB0309929A 2003-04-30 2003-04-30 Communication system, method and apparatus Expired - Lifetime GB2401283B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0309929A GB2401283B (en) 2003-04-30 2003-04-30 Communication system, method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0309929A GB2401283B (en) 2003-04-30 2003-04-30 Communication system, method and apparatus

Publications (2)

Publication Number Publication Date
GB2401283A true GB2401283A (en) 2004-11-03
GB2401283B GB2401283B (en) 2005-06-08

Family

ID=33155773

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0309929A Expired - Lifetime GB2401283B (en) 2003-04-30 2003-04-30 Communication system, method and apparatus

Country Status (1)

Country Link
GB (1) GB2401283B (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2426151A (en) * 2005-05-12 2006-11-15 Motorola Inc Optimizing Network Performance for Communication Services.
GB2426152A (en) * 2005-05-12 2006-11-15 Motorola Inc Radio Access Network Optimization using a Diagnostic Link
WO2006125860A1 (en) * 2005-05-24 2006-11-30 Teliasonera Ab Provision of a service to several separately managed networks
EP1765026A2 (en) * 2005-09-19 2007-03-21 Agilent Technologies, Inc. Allocation of a performance indicator among cells in a cellular communication system
GB2435984A (en) * 2006-03-06 2007-09-12 Motorola Inc Service characteristic evaluation in a cellular communication system
WO2008105689A1 (en) * 2007-02-27 2008-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Initiating tracing of wireless terminal activities
WO2008105687A1 (en) * 2007-02-27 2008-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Ordering tracing of wireless terminal activities
EP2090085A2 (en) * 2006-11-16 2009-08-19 Vocera Communications, Inc. Application specific, network performance measurement system and method for applications
EP2123075A1 (en) * 2007-03-20 2009-11-25 Telefonaktiebolaget LM Ericsson (PUBL) Method of distributing application related information in cellular system
CN102148723A (en) * 2011-01-31 2011-08-10 中兴通讯股份有限公司 Method and terminal for detecting multicast service quality
US8125897B2 (en) * 2006-08-22 2012-02-28 Embarq Holdings Company Lp System and method for monitoring and optimizing network performance with user datagram protocol network performance information packets
US8472326B2 (en) 2006-08-22 2013-06-25 Centurylink Intellectual Property Llc System and method for monitoring interlayer devices and optimizing network performance
US8488495B2 (en) 2006-08-22 2013-07-16 Centurylink Intellectual Property Llc System and method for routing communications between packet networks based on real time pricing
US8509082B2 (en) 2006-08-22 2013-08-13 Centurylink Intellectual Property Llc System and method for load balancing network resources using a connection admission control engine
US8520603B2 (en) 2006-08-22 2013-08-27 Centurylink Intellectual Property Llc System and method for monitoring and optimizing network performance to a wireless device
US8570872B2 (en) 2006-06-30 2013-10-29 Centurylink Intellectual Property Llc System and method for selecting network ingress and egress
US8619596B2 (en) 2006-08-22 2013-12-31 Centurylink Intellectual Property Llc System and method for using centralized network performance tables to manage network communications
US8619820B2 (en) 2006-08-22 2013-12-31 Centurylink Intellectual Property Llc System and method for enabling communications over a number of packet networks
US8670313B2 (en) 2006-08-22 2014-03-11 Centurylink Intellectual Property Llc System and method for adjusting the window size of a TCP packet through network elements
US8743700B2 (en) 2006-08-22 2014-06-03 Centurylink Intellectual Property Llc System and method for provisioning resources of a packet network based on collected network performance information
US8743703B2 (en) * 2006-08-22 2014-06-03 Centurylink Intellectual Property Llc System and method for tracking application resource usage
US8750158B2 (en) 2006-08-22 2014-06-10 Centurylink Intellectual Property Llc System and method for differentiated billing
US8811160B2 (en) 2006-08-22 2014-08-19 Centurylink Intellectual Property Llc System and method for routing data on a packet network
US8879391B2 (en) 2008-04-09 2014-11-04 Centurylink Intellectual Property Llc System and method for using network derivations to determine path states
US8972569B1 (en) 2011-08-23 2015-03-03 John J. D'Esposito Remote and real-time network and HTTP monitoring with real-time predictive end user satisfaction indicator
US9042370B2 (en) 2006-08-22 2015-05-26 Centurylink Intellectual Property Llc System and method for establishing calls over a call path having best path metrics
US9054915B2 (en) 2006-06-30 2015-06-09 Centurylink Intellectual Property Llc System and method for adjusting CODEC speed in a transmission path during call set-up due to reduced transmission performance
US9094257B2 (en) 2006-06-30 2015-07-28 Centurylink Intellectual Property Llc System and method for selecting a content delivery network
US9094261B2 (en) 2006-08-22 2015-07-28 Centurylink Intellectual Property Llc System and method for establishing a call being received by a trunk on a packet network
US9112734B2 (en) 2006-08-22 2015-08-18 Centurylink Intellectual Property Llc System and method for generating a graphical user interface representative of network performance
US9225609B2 (en) 2006-08-22 2015-12-29 Centurylink Intellectual Property Llc System and method for remotely controlling network operators
US9241271B2 (en) 2006-08-22 2016-01-19 Centurylink Intellectual Property Llc System and method for restricting access to network performance information
US9253661B2 (en) 2006-08-22 2016-02-02 Centurylink Intellectual Property Llc System and method for modifying connectivity fault management packets
US9521150B2 (en) 2006-10-25 2016-12-13 Centurylink Intellectual Property Llc System and method for automatically regulating messages between networks
US9602265B2 (en) 2006-08-22 2017-03-21 Centurylink Intellectual Property Llc System and method for handling communications requests
US9621361B2 (en) 2006-08-22 2017-04-11 Centurylink Intellectual Property Llc Pin-hole firewall for communicating data packets on a packet network
US9661514B2 (en) 2006-08-22 2017-05-23 Centurylink Intellectual Property Llc System and method for adjusting communication parameters
US9832090B2 (en) 2006-08-22 2017-11-28 Centurylink Intellectual Property Llc System, method for compiling network performancing information for communications with customer premise equipment

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7948909B2 (en) 2006-06-30 2011-05-24 Embarq Holdings Company, Llc System and method for resetting counters counting network performance information at network communications devices on a packet network
US8000318B2 (en) 2006-06-30 2011-08-16 Embarq Holdings Company, Llc System and method for call routing based on transmission performance of a packet network
US8194643B2 (en) 2006-10-19 2012-06-05 Embarq Holdings Company, Llc System and method for monitoring the connection of an end-user to a remote network
US8717911B2 (en) 2006-06-30 2014-05-06 Centurylink Intellectual Property Llc System and method for collecting network performance information
US7940735B2 (en) 2006-08-22 2011-05-10 Embarq Holdings Company, Llc System and method for selecting an access point
US8098579B2 (en) 2006-08-22 2012-01-17 Embarq Holdings Company, LP System and method for adjusting the window size of a TCP packet through remote network elements
US8194555B2 (en) 2006-08-22 2012-06-05 Embarq Holdings Company, Llc System and method for using distributed network performance information tables to manage network communications
US8144586B2 (en) 2006-08-22 2012-03-27 Embarq Holdings Company, Llc System and method for controlling network bandwidth with a connection admission control engine
US9479341B2 (en) 2006-08-22 2016-10-25 Centurylink Intellectual Property Llc System and method for initiating diagnostics on a packet network node
US8549405B2 (en) 2006-08-22 2013-10-01 Centurylink Intellectual Property Llc System and method for displaying a graphical representation of a network to identify nodes and node segments on the network that are not operating normally
US8223654B2 (en) 2006-08-22 2012-07-17 Embarq Holdings Company, Llc Application-specific integrated circuit for monitoring and optimizing interlayer network performance
US8040811B2 (en) 2006-08-22 2011-10-18 Embarq Holdings Company, Llc System and method for collecting and managing network performance information
US8107366B2 (en) 2006-08-22 2012-01-31 Embarq Holdings Company, LP System and method for using centralized network performance tables to manage network communications
US8111692B2 (en) 2007-05-31 2012-02-07 Embarq Holdings Company Llc System and method for modifying network traffic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2262014A (en) * 1991-11-27 1993-06-02 Televerket A method and arrangement for performance monitoring in a telecommunications network
US6317606B1 (en) * 1998-08-14 2001-11-13 Lg Information & Communication, Ltd. Method for processing statistics data in mobile station in mobile communication system
US6347217B1 (en) * 1997-05-22 2002-02-12 Telefonaktiebolaget Lm Ericsson (Publ) Link quality reporting using frame erasure rates
US20020155831A1 (en) * 2001-02-27 2002-10-24 Kevin Fodor System and methods for comparing data quality for multiple wireless communication networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2262014A (en) * 1991-11-27 1993-06-02 Televerket A method and arrangement for performance monitoring in a telecommunications network
US6347217B1 (en) * 1997-05-22 2002-02-12 Telefonaktiebolaget Lm Ericsson (Publ) Link quality reporting using frame erasure rates
US6317606B1 (en) * 1998-08-14 2001-11-13 Lg Information & Communication, Ltd. Method for processing statistics data in mobile station in mobile communication system
US20020155831A1 (en) * 2001-02-27 2002-10-24 Kevin Fodor System and methods for comparing data quality for multiple wireless communication networks

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2426152B (en) * 2005-05-12 2009-10-14 Motorola Inc Radio access network optimization using a diagnostic link
GB2426152A (en) * 2005-05-12 2006-11-15 Motorola Inc Radio Access Network Optimization using a Diagnostic Link
GB2426151B (en) * 2005-05-12 2007-09-05 Motorola Inc Optimizing network performance for communication servcies
GB2426151A (en) * 2005-05-12 2006-11-15 Motorola Inc Optimizing Network Performance for Communication Services.
US7823155B2 (en) 2005-05-12 2010-10-26 Motorola-Mobility, Inc. Optimizing network performance for a use application on a mobile communication device by averaging a level of performance of the use application for a plurality of mobile communication devices
WO2006125860A1 (en) * 2005-05-24 2006-11-30 Teliasonera Ab Provision of a service to several separately managed networks
US8095685B2 (en) 2005-05-24 2012-01-10 Teliasonera Ab Provision of a service to several separately managed networks
EP1765026A2 (en) * 2005-09-19 2007-03-21 Agilent Technologies, Inc. Allocation of a performance indicator among cells in a cellular communication system
EP1765026A3 (en) * 2005-09-19 2008-05-28 Agilent Technologies, Inc. Allocation of a performance indicator among cells in a cellular communication system
GB2435984A (en) * 2006-03-06 2007-09-12 Motorola Inc Service characteristic evaluation in a cellular communication system
GB2435984B (en) * 2006-03-06 2008-05-14 Motorola Inc Service characteristic evaluation in a cellular communication system
US9838440B2 (en) 2006-06-30 2017-12-05 Centurylink Intellectual Property Llc Managing voice over internet protocol (VoIP) communications
US9749399B2 (en) 2006-06-30 2017-08-29 Centurylink Intellectual Property Llc System and method for selecting a content delivery network
US10230788B2 (en) 2006-06-30 2019-03-12 Centurylink Intellectual Property Llc System and method for selecting a content delivery network
US9549004B2 (en) 2006-06-30 2017-01-17 Centurylink Intellectual Property Llc System and method for re-routing calls
US9154634B2 (en) 2006-06-30 2015-10-06 Centurylink Intellectual Property Llc System and method for managing network communications
US10560494B2 (en) 2006-06-30 2020-02-11 Centurylink Intellectual Property Llc Managing voice over internet protocol (VoIP) communications
US9118583B2 (en) 2006-06-30 2015-08-25 Centurylink Intellectual Property Llc System and method for re-routing calls
US9094257B2 (en) 2006-06-30 2015-07-28 Centurylink Intellectual Property Llc System and method for selecting a content delivery network
US9054915B2 (en) 2006-06-30 2015-06-09 Centurylink Intellectual Property Llc System and method for adjusting CODEC speed in a transmission path during call set-up due to reduced transmission performance
US8570872B2 (en) 2006-06-30 2013-10-29 Centurylink Intellectual Property Llc System and method for selecting network ingress and egress
US8976665B2 (en) 2006-06-30 2015-03-10 Centurylink Intellectual Property Llc System and method for re-routing calls
US9014204B2 (en) 2006-08-22 2015-04-21 Centurylink Intellectual Property Llc System and method for managing network communications
US9712445B2 (en) 2006-08-22 2017-07-18 Centurylink Intellectual Property Llc System and method for routing data on a packet network
US8509082B2 (en) 2006-08-22 2013-08-13 Centurylink Intellectual Property Llc System and method for load balancing network resources using a connection admission control engine
US8619596B2 (en) 2006-08-22 2013-12-31 Centurylink Intellectual Property Llc System and method for using centralized network performance tables to manage network communications
US8619820B2 (en) 2006-08-22 2013-12-31 Centurylink Intellectual Property Llc System and method for enabling communications over a number of packet networks
US8670313B2 (en) 2006-08-22 2014-03-11 Centurylink Intellectual Property Llc System and method for adjusting the window size of a TCP packet through network elements
US8743700B2 (en) 2006-08-22 2014-06-03 Centurylink Intellectual Property Llc System and method for provisioning resources of a packet network based on collected network performance information
US8743703B2 (en) * 2006-08-22 2014-06-03 Centurylink Intellectual Property Llc System and method for tracking application resource usage
US8750158B2 (en) 2006-08-22 2014-06-10 Centurylink Intellectual Property Llc System and method for differentiated billing
US8811160B2 (en) 2006-08-22 2014-08-19 Centurylink Intellectual Property Llc System and method for routing data on a packet network
US10469385B2 (en) 2006-08-22 2019-11-05 Centurylink Intellectual Property Llc System and method for improving network performance using a connection admission control engine
US10298476B2 (en) 2006-08-22 2019-05-21 Centurylink Intellectual Property Llc System and method for tracking application resource usage
US10075351B2 (en) 2006-08-22 2018-09-11 Centurylink Intellectual Property Llc System and method for improving network performance
US9992348B2 (en) 2006-08-22 2018-06-05 Century Link Intellectual Property LLC System and method for establishing a call on a packet network
US8488495B2 (en) 2006-08-22 2013-07-16 Centurylink Intellectual Property Llc System and method for routing communications between packet networks based on real time pricing
US8472326B2 (en) 2006-08-22 2013-06-25 Centurylink Intellectual Property Llc System and method for monitoring interlayer devices and optimizing network performance
US9929923B2 (en) 2006-08-22 2018-03-27 Centurylink Intellectual Property Llc System and method for provisioning resources of a packet network based on collected network performance information
US9042370B2 (en) 2006-08-22 2015-05-26 Centurylink Intellectual Property Llc System and method for establishing calls over a call path having best path metrics
US9054986B2 (en) 2006-08-22 2015-06-09 Centurylink Intellectual Property Llc System and method for enabling communications over a number of packet networks
US9832090B2 (en) 2006-08-22 2017-11-28 Centurylink Intellectual Property Llc System, method for compiling network performancing information for communications with customer premise equipment
US8125897B2 (en) * 2006-08-22 2012-02-28 Embarq Holdings Company Lp System and method for monitoring and optimizing network performance with user datagram protocol network performance information packets
US9094261B2 (en) 2006-08-22 2015-07-28 Centurylink Intellectual Property Llc System and method for establishing a call being received by a trunk on a packet network
US9112734B2 (en) 2006-08-22 2015-08-18 Centurylink Intellectual Property Llc System and method for generating a graphical user interface representative of network performance
US9813320B2 (en) 2006-08-22 2017-11-07 Centurylink Intellectual Property Llc System and method for generating a graphical user interface representative of network performance
US9806972B2 (en) 2006-08-22 2017-10-31 Centurylink Intellectual Property Llc System and method for monitoring and altering performance of a packet network
US9225609B2 (en) 2006-08-22 2015-12-29 Centurylink Intellectual Property Llc System and method for remotely controlling network operators
US9225646B2 (en) 2006-08-22 2015-12-29 Centurylink Intellectual Property Llc System and method for improving network performance using a connection admission control engine
US9241271B2 (en) 2006-08-22 2016-01-19 Centurylink Intellectual Property Llc System and method for restricting access to network performance information
US9240906B2 (en) 2006-08-22 2016-01-19 Centurylink Intellectual Property Llc System and method for monitoring and altering performance of a packet network
US9241277B2 (en) 2006-08-22 2016-01-19 Centurylink Intellectual Property Llc System and method for monitoring and optimizing network performance to a wireless device
US9253661B2 (en) 2006-08-22 2016-02-02 Centurylink Intellectual Property Llc System and method for modifying connectivity fault management packets
US8520603B2 (en) 2006-08-22 2013-08-27 Centurylink Intellectual Property Llc System and method for monitoring and optimizing network performance to a wireless device
US9660917B2 (en) 2006-08-22 2017-05-23 Centurylink Intellectual Property Llc System and method for remotely controlling network operators
US9602265B2 (en) 2006-08-22 2017-03-21 Centurylink Intellectual Property Llc System and method for handling communications requests
US9621361B2 (en) 2006-08-22 2017-04-11 Centurylink Intellectual Property Llc Pin-hole firewall for communicating data packets on a packet network
US9661514B2 (en) 2006-08-22 2017-05-23 Centurylink Intellectual Property Llc System and method for adjusting communication parameters
US9521150B2 (en) 2006-10-25 2016-12-13 Centurylink Intellectual Property Llc System and method for automatically regulating messages between networks
EP2090085A4 (en) * 2006-11-16 2009-11-18 Vocera Communications Inc Application specific, network performance measurement system and method for applications
EP2090085A2 (en) * 2006-11-16 2009-08-19 Vocera Communications, Inc. Application specific, network performance measurement system and method for applications
US8972562B2 (en) 2007-02-27 2015-03-03 Telefonaktiebolaget Lm Ericsson (Publ) Ordering tracing of wireless terminal activities
WO2008105699A3 (en) * 2007-02-27 2008-12-24 Ericsson Telefon Ab L M Ordering tracing of wireless terminal activities
WO2008105687A1 (en) * 2007-02-27 2008-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Ordering tracing of wireless terminal activities
US10469602B2 (en) 2007-02-27 2019-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Ordering tracing of wireless terminal activities
WO2008105689A1 (en) * 2007-02-27 2008-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Initiating tracing of wireless terminal activities
EP2123075A1 (en) * 2007-03-20 2009-11-25 Telefonaktiebolaget LM Ericsson (PUBL) Method of distributing application related information in cellular system
EP2123075A4 (en) * 2007-03-20 2014-10-22 Ericsson Telefon Ab L M Method of distributing application related information in cellular system
US8879391B2 (en) 2008-04-09 2014-11-04 Centurylink Intellectual Property Llc System and method for using network derivations to determine path states
CN102148723A (en) * 2011-01-31 2011-08-10 中兴通讯股份有限公司 Method and terminal for detecting multicast service quality
WO2012103761A1 (en) * 2011-01-31 2012-08-09 中兴通讯股份有限公司 Method for detecting quality of multicast service and terminal
CN102148723B (en) * 2011-01-31 2015-05-20 中兴通讯股份有限公司 Method and terminal for detecting multicast service quality
US8972569B1 (en) 2011-08-23 2015-03-03 John J. D'Esposito Remote and real-time network and HTTP monitoring with real-time predictive end user satisfaction indicator

Also Published As

Publication number Publication date
GB2401283B (en) 2005-06-08

Similar Documents

Publication Publication Date Title
GB2401283A (en) Communication system and method for end-user QoS performance monitoring
US7596373B2 (en) Method and system for quality of service (QoS) monitoring for wireless devices
US20050163047A1 (en) Method and system for processing quality of service (QOS) performance levels for wireless devices
US7224968B2 (en) Network testing and monitoring systems
EP1806019B1 (en) Control of the characteristics of a service as a function of the available bit rate
US8755789B2 (en) Method and system for determining service metrics in a wireless network
Kreher UMTS performance measurement: a practical guide to KPIs for the UTRAN environment
US9830614B2 (en) Systems and methods for promoting use of wireless services exclusively
US9629172B2 (en) Dynamic content distribution in mobile telecommunications network
CN100531254C (en) Dff-line fault information report method, device and off-line fault reason positioning system
GB2429880A (en) Method for testing performance of a mobile telecommunications network
Bernaschi et al. Mobility management for VoIP on heterogeneous networks: evaluation of adaptive schemes
EP2781113B1 (en) Methods and arrangements for determining an integrity of an air interface
Catalan et al. TCP/IP analysis and optimization over a precommercial live UMTS network
Sánchez et al. Service Performance Verification and Benchmarking
Sarraf et al. Measuring QoS for GPRS mobile networks
Waadt et al. QoS Monitoring for Professional Short-Message-Services in Mobile Networks
Soldani QoE and QoS Monitoring and data analyses
Kwitt et al. Measuring perceptual VoIP speech quality over UMTS
CN116235528A (en) Quality of experience measurement for wireless access networks
Waadt et al. A reconfigurable QoS monitoring framework for professional short message services in GSM networks
Ahokangas et al. Quality-of-Service Measurements: For end-to-end testing
Helenius Long term evolutionin solunvaihdon suorituskyky

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20110120 AND 20110126

732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20170831 AND 20170906

PE20 Patent expired after termination of 20 years

Expiry date: 20230429