GB2389284A - The bandwidth of an adaptive filter is controlled by a proportional and derivative (PD) controller - Google Patents

The bandwidth of an adaptive filter is controlled by a proportional and derivative (PD) controller Download PDF

Info

Publication number
GB2389284A
GB2389284A GB0212778A GB0212778A GB2389284A GB 2389284 A GB2389284 A GB 2389284A GB 0212778 A GB0212778 A GB 0212778A GB 0212778 A GB0212778 A GB 0212778A GB 2389284 A GB2389284 A GB 2389284A
Authority
GB
United Kingdom
Prior art keywords
filter
bandwidth
adaptive
constant
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0212778A
Other versions
GB0212778D0 (en
GB2389284B (en
Inventor
Mirsad Halimic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to GB0212778A priority Critical patent/GB2389284B/en
Publication of GB0212778D0 publication Critical patent/GB0212778D0/en
Priority to AU2003244763A priority patent/AU2003244763A1/en
Priority to US10/516,275 priority patent/US20050218973A1/en
Priority to CN03812481.5A priority patent/CN1656699A/en
Priority to PCT/GB2003/002388 priority patent/WO2003103170A2/en
Publication of GB2389284A publication Critical patent/GB2389284A/en
Application granted granted Critical
Publication of GB2389284B publication Critical patent/GB2389284B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • H04L25/0307Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure using blind adaptation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods

Abstract

An adaptive filter, such as a low pass filter, has a time constant, t , controlled by the equation t = 1/( a + bW ), where a is a constant, W is the difference between two successive values of a signal passing though the filter and b is the sum of a proportional controller gain Kp (a constant) and a derivative term (1-z<-1>) Kd, where the constant Kd is the derivative controller gain. Thus a PD controller is provided for modifying the bandwidth of an adaptive filter. In a preferred embodiment the adaptive filter is connected in series with an adaptive channel equaliser. At the beginning of the adaptive equalization process the filter adopts a large bandwidth to maximise the adaption speed, but then automatically reduces its bandwidth when the equaliser becomes close to a static value, in order to decrease the effect of noise. The additional derivative term enables faster adaption of the bandwidth to a sudden change.

Description

1 23892.84
( Bandwidth adaptation rule for adaptive noise filter for inverse filtering with Improved speed The present invention relates to the rule for changing the bandwidth of a noise filter Background
In digital communications, a considerable effort has been devoted to neutralise the effect of channels (i.e., the combination of transmit filters, media and receive filters) in transmission systems, so that the available channel bandwidth is utilised efficiently. The objective of channel neutralization is to design a system that accorrunodates the highest possible rate of data transmission, subject to a specified reliability, which is usually measured in terms of the error rate or average probability of symbol error.
An equaliser normally performs neutralization of any disturbances the channel may introduce by making the overall frequency response function T(z) to be flat. An equaliser cascaded to a channel is shown in Figure 1. A channel is cascaded with its inverse system. Ideally, inputs appear in the output without any distortion. Since in reality a channel is time varying, due to variations in a transmission medium, the received signal is nonstationary Therefore, an adaptive equaliser is utilised to provide control over the time response of a channel.
The characteristic function of channels (i.e., the combination of transmit filters, media and receive filters) is that of a low pass filter. Since an adaptive equaliser is an inverse system of a channel, it amplifies the frequency of noise outside the bandwidth of a channel. in order to reduce the effect of noise, a low pass filter is cascaded with the equaliser. However, the cascaded filter can introduce a negative impact on the speed of adaptation. Therefore, the bandwidth of the cascaded filter is chosen to be very wide at the beginning of the adaptation process. This way, the output reaching the static value will not be delayed. As the output of the adaptive filter is close to the static value, the bandwidth decreases to cancel the effect of noise.
In order to illustrate this philosophy, a first order low pass filter will be considered. H'7(z)= 1-e r (1) 1- z-'e where T is the sampling period and r is the filter time constant.
However, the consideration presented applies to the higher order low pass filters too. Therefore equation I becomes: T 7(Z) = I - e (2) :1- z-'e where n = 1,2,3,...
The time constant bounds the bandwidth of the filter. The lower the values of r result in a wider bandwidth and vice versa. The adaptive rule for noise filter can be defined as = 1 (3)
a + (see Shi, W.J., White, N.M. and Brignell, J.E (1993): Adaptive filters in load eel] response correction, Sensors and Actuators A, A 3738:280-285).
The constants a and,B depend on the level of noise and are chosen by trial and error method. A is a variable that is used to change the value of r and consequently the bandwidth of the filter. There are several ways of determining the 4 two of them are presented in Figure 2.
decreases in steady state condition and hence the time constant of the noise filter I increases. This turns out a narrowband noise filter that rejects the noise effectively, which is desirable for steady state condition. In the non steady state condition is large, so the time constant of the noise filter r is small. This means the output of the adaptive equaliser comes out quickly from the output of the noise filter.
Therefore, the adaptive rule can adjust the parameters of the adaptive equaliser.
( It is evident from figure 2 that is the difference of two successive values and acts as an input to the proportional controller. Furthermore, in the same equation,,B represents a proportional (P) controller gain (Kp) . In order to reduce the offset to an acceptable level, Kp has to be tuned to a satisfactory value. Increasing the proportional gain allows shaping of the sensitivity function and hence improves steady-state accuracy and low frequency disturbance rejection. However, by increasing the proportional gain the stability margin is reduced and resonant peaks are magnified.
Therefore, there may occur a situation where for stability reasons a proportional gain cannot be increased further and the offset will not be reduced to the acceptable level.
Consequently, a noise filter bandwidth will not be reduced to the value determined by a and required steady state accuracy will not be achieved.
Summary of the Invention
In order to enable faster adaptation of the bandwidth to sudden change, a derivative (D) control mode is proposed to be added to the existing proportional control mode.
Thus, the present invention provides a method for adapting the bandwidth of a filter, the method comprising determining the difference between two successive values of a signal passing through the filter and modifying the bandwidth on the basis of a plurality of control variables including a proportional control variable proportional to said difference between successive values and a differential control variable related to the differential of the difference between successive values.
Brief description of the drawings
An embodiment of the invention will now be described by way of example only and with reference to the accompanying drawings in which: Figure I is a channel cascaded with its inverse system as used in the prior art.
Ideally, inputs appear in the output without any distortion.
f f l Figure 2 is an Adaptive filter cascaded with an adaptive bandwidth noise filter as used in the prior art.
Description of the preferred embodiment of the Invention
In the preferred embodiment of the invention, the aforementioned differential control mode is used in an attempt to anticipate the difference of two successive values by observing the rate of change of the difference and anticipating the next state of the difference accordingly. This enables faster adaptation of a bandwidth to a sudden change in the value of the difference. However, the derivative gain enlarges the disturbance rejection bandwidth and amplifies high frequency change. Therefore, it is always used in combination with P components, where it provides a much "faster" function than a solely proportional law.
In the proposed adaptive rule for adjusting a bandwidth of noise filter, the product pA from the time constant equation 3 is substituted by the following function.
HA = LKP + (I - Z)Kd (4) It will be appreciated that the term Up represents the aforementioned proportional control variable and (I - z -') Kd represents the differential control variable. Thus, /A is the sum of these control variables Therefore, the time constant T can be defined as: |KP + (1 -)K,! 1A (5)
Because the two.gains Kp and Kit are adjustable' the proposed adaptive rule can be tuned to provide the desired system response.
( Method for determining Kp and Kd Rain values The gain values can be determined in two steps.
1 By determining response specifications, the gain values can be tuned by
intuitive experimentation. Using the observations stated in Table 1, the values could be engineered to produce a satisfactory response. The system stability and frequency response could be then analysed to verify the gain values, satisfying all possible input signals. Whilst this is the least scientific method of tuning, it is the most common method implemented and can often produce an adequate result. Table 1 Changing the gain values _ _ _
Gain Rise time Overshoot Settling time S-S error _ _. Kp Decreases Increases No change Decreases Kd Decreases Decreases Decreases No change 2. Using a simulation package, such as MATLAB, Kp and Kit can be exhaustively investigated to minimise a particular cost. The most popular cost functions are: a) The Integral of the Absolute value of the Difference (IAD).
I k= N-l N k=0 (6) IAD weights all differences equally independent of time and hence often results in an oscillatory response with a long settling time.
Although it provides an analytical method of optimising gain values, it may not be the most suitable criterion.
b) The Integral of Time multiplied by the Absolute value of the Difference (ITAD).
I =N-I
ITAD = N k(k) ITAD addresses this problem and weights the differences to put less emphasis upon the initial difference. However, it cannot be evaluated theoretically (it cannot be described in the frequency domain and so this function must be optimised using a numerical method.:

Claims (11)

( Claims
1. A method for adapting the bandwidth of a filter, the method comprising: determining, the difference between two successive values of a signal passing through the filter; and modifying the bandwidth on the basis of a plurality of control variables including a proportional control variable proportional to said difference between successive values and a differential control variable related to the differential of the difference between successive values.
2. A method as claimed in claim I in which the differential control variable is proportional to the differential of the difference between successive values.
3. A method as claimed in claim 2 in which the differential control variable can be expressed as (l -z ')K,6 where is the difference between two successive values and K' is a constant.
4. A method as claimed in any preceding claim in which the control variables are used to determine the time constant and the time constant has an inverse relationship with the sum of the control variables.
5. A method as claimed in claim 4 in which the time constant has an inverse relationship with the bandwidth.
6. A method as claimed in claim 5 in which the time constant is defined by the equation a -f XA where r is the time constant, a is a constant and MA is the sum of the control variables.
i f
7. A method as claimed in any preceding claim, wherein the two successive values are two successive outputs of the filter.
8. A method as claimed in any of claims 1 to 6, wherein the two successive values are a successive input and output of the filter.
9. A method as claimed in any of claims I to 6, wherein the two successive values are two successive inputs of the filter.
10. A method as claimed in any preceding claim, wherein the filter is a low pass filter.
11. A method as claimed in claim 10, wherein the filter is an nth order low pass filter and the bandwidth of the filter is defined by the equation: T hn(z) = l-z 'e rJ where, Hn(z) is the bandwidth, T is the sampling period, is the time constant,; n is the order of the filter and n = 1,2,3,......
GB0212778A 2002-05-31 2002-05-31 Bandwidth adaptation rule for adaptive noise filter for inverse filtering with improved speed Expired - Fee Related GB2389284B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB0212778A GB2389284B (en) 2002-05-31 2002-05-31 Bandwidth adaptation rule for adaptive noise filter for inverse filtering with improved speed
AU2003244763A AU2003244763A1 (en) 2002-05-31 2003-05-30 Bandwidth adaptation rule for adaptive noise filter for inverse filtering with improved disturbance rejection bandwidth and speed
US10/516,275 US20050218973A1 (en) 2002-05-31 2003-05-30 Bandwidth adaptation rule for adaptive noise filter for inverse filtering with improved disturbance rejection bandwidth and speed
CN03812481.5A CN1656699A (en) 2002-05-31 2003-05-30 Bandwidth adaptation rule for adaptive noise filter for inverse filtering with improved disturbance rejection bandwidth and speed
PCT/GB2003/002388 WO2003103170A2 (en) 2002-05-31 2003-05-30 Bandwidth adaptation rule for adaptive noise filter for inverse filtering with improved disturbance rejection bandwidth and speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0212778A GB2389284B (en) 2002-05-31 2002-05-31 Bandwidth adaptation rule for adaptive noise filter for inverse filtering with improved speed

Publications (3)

Publication Number Publication Date
GB0212778D0 GB0212778D0 (en) 2002-07-10
GB2389284A true GB2389284A (en) 2003-12-03
GB2389284B GB2389284B (en) 2004-07-14

Family

ID=9937919

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0212778A Expired - Fee Related GB2389284B (en) 2002-05-31 2002-05-31 Bandwidth adaptation rule for adaptive noise filter for inverse filtering with improved speed

Country Status (1)

Country Link
GB (1) GB2389284B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377913A2 (en) * 1989-01-11 1990-07-18 The Boeing Company Adaptive digital filter which is responsive to the rate of change of an input signal
US5572558A (en) * 1994-11-17 1996-11-05 Cirrus Logic, Inc. PID loop filter for timing recovery in a sampled amplitude read channel
US5974434A (en) * 1997-10-07 1999-10-26 Ralph E. Rose Method and apparatus for automatically tuning the parameters of a feedback control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377913A2 (en) * 1989-01-11 1990-07-18 The Boeing Company Adaptive digital filter which is responsive to the rate of change of an input signal
US5572558A (en) * 1994-11-17 1996-11-05 Cirrus Logic, Inc. PID loop filter for timing recovery in a sampled amplitude read channel
US5974434A (en) * 1997-10-07 1999-10-26 Ralph E. Rose Method and apparatus for automatically tuning the parameters of a feedback control system

Also Published As

Publication number Publication date
GB0212778D0 (en) 2002-07-10
GB2389284B (en) 2004-07-14

Similar Documents

Publication Publication Date Title
CN100583856C (en) Equalizer bank with interference reduction
US6483872B2 (en) Method and apparatus for reducing convergence time
CN101388652A (en) Feedback limiter with adaptive control of time constants
US5999956A (en) Separation system for non-stationary sources
EP1806850A2 (en) Signal adjustment receiver circuitry
US7583809B2 (en) Sound signal processing device and sound signal processing method
WO2001010169A1 (en) Hearing aid with adaptive matching of microphones
WO2003103170A2 (en) Bandwidth adaptation rule for adaptive noise filter for inverse filtering with improved disturbance rejection bandwidth and speed
CN1820542A (en) Hearing aid with acoustic feedback suppression
JP2006222809A (en) Adaptive equalization circuit
US5475632A (en) Method of and apparatus for identifying unknown system using adaptive filter
US5408581A (en) Apparatus and method for speech signal processing
KR970017460A (en) Time Domain Filters for Communication Channels
JP3887028B2 (en) Signal source characterization system
Pauline et al. Variable-stage cascaded adaptive filter technique for signal de-noising application
GB2389283A (en) The bandwidth of an adaptive filter is controlled by a proportional and integral (PI) controller
GB2389284A (en) The bandwidth of an adaptive filter is controlled by a proportional and derivative (PD) controller
WO2004019512A1 (en) Adaptive equalizer
Wei et al. Variable tap-length LMS algorithm with adaptive step size
US5999954A (en) Low-power digital filtering utilizing adaptive approximate filtering
CN109994098B (en) Weighted noise active control method based on off-line reconstruction of secondary path
Halimic et al. Enhancements in a Method for Noise Filter Disturbance Rejection and Response Speed Improvement
US20210226825A1 (en) Signal processing devices and signal processing methods
WO2004079901A2 (en) Digital filter and listening device
CN112927671A (en) Frequency self-adaptive active sound absorption system

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20200531