GB2347113A - Manufacturing a ceramic matrix composite - Google Patents

Manufacturing a ceramic matrix composite Download PDF

Info

Publication number
GB2347113A
GB2347113A GB9926460A GB9926460A GB2347113A GB 2347113 A GB2347113 A GB 2347113A GB 9926460 A GB9926460 A GB 9926460A GB 9926460 A GB9926460 A GB 9926460A GB 2347113 A GB2347113 A GB 2347113A
Authority
GB
United Kingdom
Prior art keywords
ceramic
fibres
matrix composite
ceramic matrix
laminates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9926460A
Other versions
GB2347113B (en
GB9926460D0 (en
Inventor
Edwin Granville Butler
Anthony Gordon Razzell
John Dominy
Paul Andrew Doleman
Ihsan Ali Hussein Al-Dawery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9827889.8A external-priority patent/GB9827889D0/en
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Priority to GB9926460A priority Critical patent/GB2347113B/en
Publication of GB9926460D0 publication Critical patent/GB9926460D0/en
Publication of GB2347113A publication Critical patent/GB2347113A/en
Application granted granted Critical
Publication of GB2347113B publication Critical patent/GB2347113B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/002Producing shaped prefabricated articles from the material assembled from preformed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0006Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/40Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
    • B28B7/44Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for treating with gases or degassing, e.g. for de-aerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/047Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/582Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives
    • C04B2237/584Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives the different additives being fibers or whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)

Abstract

A method of manufacturing a ceramic matrix composite comprises forming a slurry comprising a ceramic sol, filler particles and a suspension medium such as water, and forming laminates of fibres (12). The laminates of fibres (12) are impregnated with the slurry and are stacked (14) on a mould (10). The stack (14) of laminates of fibres (12) is covered by a porous membrane (16), a breather fabric (18) and a vacuum bag (20). The vacuum bag (20) is evacuated and is heated to a temperature of 60{C for 10 hours to produce a ceramic matrix composite. The ceramic matrix composite is then heated to a temperature of 1200{C at atmospheric pressure to sinter the ceramic matrix composite.

Description

A METHOD OF MANUFACTURING A CERAMIC MATRIX COMPOSITE The present invention relates to the manufacture of ceramic matrix composites which comprise reinforcing fibres in a ceramic matrix, particularly ceramic fibres in a ceramic matrix.
It is known to produce ceramic matrix composites by chemical vapour infiltration, by directed metal oxidation or by sol-gel processes.
The chemical vapour infiltration method comprises forming a fibre preform and then depositing a ceramic matrix on and between the fibres in the fibre preform. The ceramic matrix is deposited by decomposing a chemical compound in the vapour form and depositing the resulting ceramic onto the fibre preform. The chemical vapour infiltration method is a very expensive method and requires expensive apparatus, furthermore in some instances the chemical compounds which are to be decomposed are toxic. The chemical vapour infiltration method has to be performed at a relatively high temperature to decompose the chemical compound.
The directed metal oxidation method comprises forming a fibre preform and then growing a ceramic matrix on and between the fibres in the fibre preform. The ceramic matrix is grown by placing the fibre preform on the surface of a molten metal and oxidising the metal such that the metal oxide grows into the fibre preform. The directed metal oxidation method is also a very expensive method and requires expensive apparatus. Additionally there is always some unreacted metal which is difficult to remove. The directed metal oxidation method also has to be performed at a relatively high temperature to melt the metal.
The sol-gel method comprises either vacuum impregnation or filament winding. The filament winding method comprises passing each fibre through a container of the sol, winding the impregnated fibre on a mandrel of the desired shape, converting the sol to a gel and then heating to convert the gel to a ceramic matrix. The sol-gel method is cheaper than the chemical vapour infiltration method and the directed metal oxidation method and also is performed at a relatively low temperature. The sol-gel method has a low yield and has large shrinkage of the ceramic matrix resulting in cracking of the ceramic matrix. Also multiple infiltration and densification cycles are required.
The present invention seeks to provide a novel method of manufacturing a ceramic matrix composite.
Accordingly the present invention provides a method of manufacturing a ceramic matrix composite comprising the steps of: (a) forming a slurry comprising a ceramic sol, filler material and a suspension medium, (b) forming a plurality of laminates of fibres, (c) applying the slurry to each of the plurality of laminates of fibres, (d) stacking the plurality of laminates of fibres on a mould, (e) applying pressure to the stack of laminates of fibres to remove the suspension medium from the slurry to solidify the ceramic sol and thereby produce a ceramic matrix composite.
Preferably step (e) comprises covering the stack with a porous membrane, covering the porous membrane with a breather fabric, covering the breather fabric with a vacuum bag and evacuating the vacuum bag to remove the suspension medium from the slurry to solidify the ceramic sol and thereby produce a ceramic matrix composite.
Preferably the vacuum bag is evacuated to a pressure less than 3000Pa and held at that pressure for about 10 hours.
Preferably the method comprises heating the stack during or after evacuation of the vacuum bag to encourage the solidification of the ceramic sol. Preferably the stack is heated to a temperature in the range 60 C to 150 C.
Preferably the method comprises pressure less sintering after evacuation of the vacuum bag.
Preferably the ceramic sol comprises silica, alumina or mullite particles and the filler material comprises silica, alumina or mullite particles. The filler material particles may have a diameter greater than 1 micron and the ceramic sol particles may have a diameter of about 40 nanometres.
Preferably the fibres comprise silica, alumina, mullite or a mixture of any two.
Preferably the mould is hollow and has an inner surface, the method comprising stacking the laminates of fibres on the inner surface of the hollow mould.
The mould may comprise a styrofoam mould. The mould may define an aerofoil shape.
The fibres may comprise mullite or mullite and alumina, the ceramic sol comprises silica and the filler material comprises alumina.
The present invention will be more fully described by way of example with reference to the accompanying drawings, in which: Figure 1 shows an apparatus for use in manufacturing a ceramic matrix composite according to the present invention.
Figure 2 shows an apparatus for use in manufacturing a sandwich structure comprising a ceramic matrix composite manufactured according to the present invention.
Figure 3 shows a sandwich structure comprising a ceramic matrix composite manufactured according to the present invention.
Figure 4 shows a further apparatus for use in manufacturing a sandwich structure comprising a ceramic matrix composite manufactured according to the present invention.
A method of manufacturing a ceramic matrix composite, as shown in figure 1, comprises forming a slurry comprising a ceramic sol, filler material and a suspension medium. The ceramic sol comprises any suitable ceramic for example silica, alumina, mullite, aluminosilicate, silicon nitride, silicon carbide etc. The filler material comprises particles of any suitable ceramic for example silica, alumina, mullite, silicon nitride, silicon carbide and the filler material particles are relatively large compared to the ceramic sol.
The filler material particles have a diameter greater than 1 microns. The ceramic sol comprises particles having a diameter of the order of 40 nanometres. The suspension medium comprises for example water. The suspension medium has the characteristic of being removable from the slurry by the application of a vacuum or by the combination of application of a vacuum and heat.
A number of laminates, or plies, of reinforcing fibres are formed. The laminates of fibres may be two dimensional weaves of fibres etc. The fibres may be any suitable fibres for reinforcing a ceramic matrix for example silica, alumina, mullite, aluminosilicate, silicon carbide, silicon nitride or other ceramic fibres.
Each of the laminates of fibres is impregnated with the slurry and the slurry impregnated laminates of fibres 12 are stacked one on top of the other on a mould 10 to form a stack 14. The stack 14 is covered by a porous membrane 16, for example a wet filter paper or a perforated plastic sheet.
The porous membrane 16 is covered by a breather fabric or bleeder pack 18 and then the breather fabric 18 is covered by a vacuum bag 20.
In this example the mould 12 comprises a hollow styrofoam mould and the slurry impregnated laminates of fibres 12 are stacked one on top of the other on the interior surface of the mould 10. The vacuum bag 20 is sealed to an outer bag 22. However, if the slurry impregnated laminates of fibres 12 are stacked on the outer surface of the mould 10 the vacuum bag 20 is sealed to the outer surface of the mould 10.
The interior of the vacuum bag 20 is then connected to a vacuum pump 26 via a pipe 24. The interior of the vacuum bag 20 is then evacuated to a suitably low pressure to consolidate the ceramic matrix composite. The interior of the vacuum bag 20 is evacuated to a pressure less than about 30mbar (3000Pa). The application of the low pressure on the slurry impregnated laminates of fibres 12 causes the suspension medium to be removed from the ceramic sol and hence the ceramic sol solidifies causing the ceramic matrix to harden. The application of the low pressure causes the suspension medium to be drawn from the slurry impregnated laminates of fibres 12 through the porous membrane 16 into the breather fabric 18.
The slurry impregnated laminates of fibres 12 are either heated during or after evacuation of the vacuum bag 20, in an autoclave, to encourage the removal of suspension medium and hence the solidification of the ceramic sol. It may be possible to manufacture the ceramic matrix composite at room temperature without the application of heat, but it is preferred to provide heat during or after evacuation to reduce the manufacturing time. It is preferred to heat the slurry impregnated laminates of fibres 12 to a temperature in the range 60 to 150 C subject to temperature limitations of the mould.
The resulting ceramic matrix composite is then pressure less sintered by heating to a relatively high temperature at atmospheric pressure to complete the processing.
The advantages of the present invention are that the method of manufacturing ceramic matrix composites is relatively cheap in terms of processing costs and apparatus compared to the chemical vapour infiltration and directed metal oxidation methods. Additionally the method of the present invention enables ceramic matrix composites to be produced relatively quickly. The advantages compared to conventional sol-gel methods is a reduction in the number of reinfiltration cycles, and a rigid and durable green body is produced.
Example 1.
A slurry comprising a ceramic sol of silica, filler particles of alumina and water was formed. Laminates of 8 harness satin weave mullite fibres, sold under the trade name Nextel 550 by Minnesota Mining and Manufacturing Company, or laminates of 8 harness satin weave alumina and mullite fibres, sold under the trade name Nextel 720 by Minnesota Mining and Manufacturing Company were impregnated with the ceramic sol. The impregnated laminates of fibres 12 were stacked 14 on the mould 10 and covered by a porous membrane 16, a breather fabric 18 and a vacuum bag 20.
The vacuum bag 20 was evacuated to a pressure less than 30mbar (3000Pa) and was heated to a temperature of 60 C for 10 hours to produce an alumina/silica matrix composite. The alumina/silica matrix composite was then heated to a temperature of 1200 C at atmospheric pressure to sinter the alumina/silica matrix composite.
The hollow mould shown in figure 1 was used to produce an aerofoil shaped ceramic matrix composite article for example a blade or vane for a compressor or turbine of a gas turbine engine. The method may also be used to make other ceramic matrix composite articles using suitably shaped moulds.
It is also possible to manufacture a ceramic matrix composite by forming a slurry comprising a ceramic sol, filler material and a suspension medium. The ceramic sol comprises any suitable ceramic for example silica, alumina, mullite, aluminosilicate, silicon nitride, silicon carbide etc. The filler material comprises particles of any suitable ceramic for example silica, alumina, mullite, silicon nitride, silicon carbide and the filler material particles are relatively large compared to the ceramic sol. The filler material particles have a diameter greater than 1 microns.
The ceramic sol comprises particles having a diameter of the order of 40 nanometres. The suspension medium comprises for example water.
A number of laminates, or plies, of reinforcing fibres are formed. The laminates of fibres may be two dimensional weaves of fibres etc. The fibres may be any suitable fibres for reinforcing a ceramic matrix for example silica, alumina, mullite, aluminosilicate, silicon carbide, silicon nitride or other ceramic fibres.
Each of the laminates of fibres is impregnated with the slurry and the slurry impregnated laminates of fibres are stacked one on top of the other on a mould to form a stack.
The mould is placed in an autoclave and the autoclave is evacuated to a pressure less than 30mbar (3000Pa) and is heated to a temperature of 60 C for 10 hours to produce a ceramic matrix composite. The ceramic matrix composite is then heated to a temperature of 1200 C at atmospheric pressure to sinter the ceramic matrix composite. The application of the low pressure on the slurry impregnated laminates of fibres causes the suspension medium to be removed from the ceramic sol and hence the ceramic sol solidifies causing the ceramic matrix to harden. The application of the low pressure causes the suspension medium to be drawn from the slurry impregnated laminates of fibres.
The slurry impregnated laminates of fibres are either heated during or after evacuation of the autoclave, to encourage the removal of suspension medium and hence the solidification of the ceramic sol. It may be possible to manufacture the ceramic matrix composite at room temperature without the application of heat, but it is preferred to provide heat during or after evacuation to reduce the manufacturing time. It is preferred to heat the slurry impregnated laminates of fibres to a temperature in the range 60 to 150 C subject to temperature limitations of the mould.
The composition of the slurry is selected such that as the suspension medium is removed from the slurry the ceramic solidifies on the fibres to form the ceramic matrix without the formation of cracks in the ceramic matrix.
A sandwich structure 50, as shown in figure 3, comprises two layers 52 and 54 of a ceramic matrix composite with a layer 56 of ceramic filler arranged between the two layers 52 and 54 of ceramic matrix composite. The sandwich structure 50 has a plurality of apertures 58 and 60 to receive bolts whereby the sandwich structure 50 may be attached to other components. The apertures 58 and 60 are provided with ceramic tubes 62 and 64, which are arranged coaxially with the apertures 58 and 60 respectively, to reduce wear around the apertures 58 and 60.
The sandwich structure 50 is manufactured by firstly making the layers 52 and 54 of ceramic matrix composite.
The method of manufacturing the layer 52 of ceramic matrix composite, is shown in figure 2, and comprises forming a slurry comprising a ceramic sol, filler material and a suspension medium. The ceramic sol comprises any suitable ceramic for example silica, alumina, mullite, aluminosilicate, silicon nitride, silicon carbide etc. The filler material comprises particles of any suitable ceramic for example silica, slumina, mullite, aluminosilicate, silicon nitride, silicon carbide and the filler material particles are relatively large compared to the ceramic sol.
The filler material particles have a diameter greater than 1 micrometer. The ceramic sol comprises particles having a diameter of the order of 40 nanometres. The suspension medium has the characteristic of being removeable from the slurry by the application of a vacuum or by the combination of application of a vacuum and heat.
A number of laminates, or plies, of reinforcing fibres are formed. The laminates of fibres may be two dimensional weaves of fibres etc. The fibres may be any suitable fibres for reinforcing a ceramic matrix for example silica, alumina, mullite, aluminosilicate, silicon carbide, silicon nitride or other ceramic fibres.
Each of the laminates of fibres is impregnated with the slurry and the slurry impregnated laminates of fibres 32 are stacked one ontop of the other on a mould 30 to form a stack 34. The stack 34 is covered by a porous membrane 36, for example a wet filter paper or a perforated plastic sheet.
The porous membrane 36 is covered by abreather fabric or bleeder pack 38 and then the breather fabric 38 is covered by a vaccum bag 40. The vacuum bag 40 is sealed around the mould 30.
The interior of the vacuum bag 40 is then connected to a vaccum pump 44 via a pipe 42. The interior of the vacuum bag 40 is then evacuated to a suitably low pressure to consolidate the ceramic matrix composite. The interior of the vacuum bag 40 is evacuated to a pressure less than about 30mBar (3000Pa). The application of the low pressure on the slurry impregnated laminates of fibres 32 causes the suspension medium to be removed from the ceramic sol and hence the ceramic sol solidifies causing the ceramic matrix to harden. The application of the low pressure causes the suspension medium to be drawn from the slurry impregnated laminates of fibres 32 through the porous membrane 36 into the breather fabric 38.
The slurry impregnated laminates of fibres 32 are either heated during or after evacuation of the vacuum bag 40, in an autoclave, to encourage the removal of suspension medium and hence the solidification of the ceramic sol.
The resulting ceramic matrix composite is then pressure less sintered by heating to a realtively high temperature at atmospheric pressure. The ceramic matrix composite layer 52 is then machined to size and apertures drilled. To reduce porosity of the ceramic matrix composite layer 52, the ceramic matrix composite 52 is infiltrated with ceramic sol by imersing in a bath of ceramic sol and applying a vacuum.
The ceramic matrix composite 52 is then reheated to a relatively high temperature.
The same process is used to manuacture the layer 54 of ceramic matrix composite.
The two layers 52 and 54 are then assembled to define the predetermined shape, or profile, of the component, or article. Ceramic tubes 63,64 are inserted coaxially in the apertures 58 and 60. The open ends and edges of the assembly are sealed and a ceramic filler 56 is arranged into the space defined between the two ceramic matrix composite layers 52 and 54. The ceramic filler is allowed to cure at room temperature and finally the sandwich structure is heated in an autoclave at a relatively high temperature to produce the finished sandwich structure 50. The ceramic filler may be castable ceramic filler, a foamed ceramic etc for example foamed alumina, low density aluminosilicate insulation etc.
Example 2 A slurry comprising alumina and silica powders and water was formed, the loading of solids was 40 vol% and the ratio of alumina to silica was 95 to 5 by volume. Twelve laminates of 8 harness satin weave and mullite fibres, sold under the trade name Nextel 720 by Minnesota Mining and Manufacturing Company, were impregnated with the ceramic slurry to make each layer 52,54 of ceramic matrix composite. The impregnated laminates of fibres 32 were stacked 34 on the mould 30 and covered by porous membrance 36, a breather fabric 38 and vacuum bag 40.
The vacuum bag 40 was evacuated to a pressure less than 30 mbar (3000Pa) and was heated to a temperature of 40 C for 12 hours to produce an alumina/silica matrix composite layer 52,54. The alumina/silica matrix composite layer 52,54 was then heated to a temperature of 1250 C for 4 hours to sinter the alumina/silica matrix composite layers 52,54.
The layers 52,54 were then machined to size and apertures 58 were drilled.
The layers 52,54 were immersed in an alumina sol bath, then evacuated and refired at 900 C for 1 hour. The immersing in the alumina sol bath was repeated until the porosity was reduced sufficiently. The layers 52,54 are finally heated to 1250 C for 1 hour.
The layers 52,54 were assembled into position so that the apertures 58,60 are coaxial and alumina tubes 62 and 64 were inserted coaxially into the apertures 58,60 respectively.
The open ends and edges between the layers 52 and 54 were sealed, for example using polyester tape, and a wet mix of a castable ceramic filler 56 was vibrocast into the space between the layers 52 and 54. The ceramic filler 56 was allowed to cure at room tempeatue for 12 hours. The sandwich structure 50 was then heated in an autoclave to a tempeature of 1200 C for 1 hour to produce the finished component, or article.
An alternative method of manufacturing the sandwich structure 50, shown in figure 4, comprises using a shaped ceramic filler 56 as a mould 70 and manufacturing layers 52,54 of ceramic matrix composite on the surfaces of the ceramic filler 56, such that the ceramic matrix composite layers 52 and 54 and ceramic filler 56 form the sandwich structure 50.
The sandwich structure 50 is manufctured by firstly making the ceramic filler to the requited shape so that it forms a mould 70. For example foamed alumina may be machined to the required shapes.
A number of laminates of reinforcing fibres are formed, each of the laminates of fibres is impregnated with a slurry and the slurry impregnated laminates of fibres 72 are stacked one on top of the other on the mould 70 to form stacks 74A, 74B on the surfaces of the mould 70. The stacks 74A, 74B are covered with porous membranes 76, the porous membranes 76 are covered by a breather fabric 78 and the breather fabric 78 is covered by a vacuum bag 80. The vacuum bag 80 is sealed around the whole assembly.
The interior of the vacuum bag 80 is then connected to a vacuum pump 84 via a pipe 82. The interior of the vacuum bag 80 is then evacuated to a suitably low pressure as discussed previously to consolidate the ceramic matrix composite layers as discussed previously.
Thus in this case the ceramic matrix composite layers 52,54 are formed integrally with the mould to form the sandwich structure 50.

Claims (33)

  1. Claims:1. A method of manufacturing a ceramic matrix composite comprising the steps of: (a) forming a slurry comprising a ceramic sol, filler material and a suspension medium, (b) forming a plurality of laminates of fibres, (c) applying the slurry to each of the plurality of laminates of fibres, (d) stacking the plurality of laminates of fibres on a mould, (e) applying pressure to the stack of laminates of fibres to remove the suspension medium from the slurry to solidify the ceramic sol and thereby produce a ceramic matrix composite.
  2. 2. A method as claimed in claim 1 wherein step (e) comprises covering the stack with a porous membrane, covering the porous membrane with a breather fabric, covering the breather fabric with a vacuum bag and evacuating the vacuum bag to remove the suspension medium from the slurry to solidify the ceramic sol and thereby produce the ceramic matrix composite.
  3. 3. A method as claimed in claim 2 wherein step (e) comprises evacuating the vacuum bag to a pressure less than 3000 Pa and holding at that pressure for about 10 hours.
  4. 4. A method as claimed in claim 2 or claim 3 comprising heating the stack during or after evacuation of the vacuum bag to encourage the solidification of the ceramic sol.
  5. 5. A method as claimed in claim 4 comprising heating the stack to a temperature in the range 60 C to 150 C.
  6. 6. A method as claimed in any of claims 2 to 5 comprising pressure less sintering after evacuation of the vacuum bag.
  7. 7. A method as claimed in any of claims 1 to 6 wherein the ceramic sol comprises silica, alumina or mullite particles and the filler material comprises silica, alumina or mullite particles.
  8. 8. A method as claimed in claim 7 wherein the filler material particles have a diameter greater than 1 micron.
  9. 9. A method as claimed in claim 7 or claim 8 wherein the ceramic sol particles having a diameter of about 40 nanometres.
  10. 10. A method as claimed in any of claims 1 to 9 wherein the fibres comprise silica, alumina, mullite or a mixture of any two.
  11. 11. A method as claimed in any of claims 1 to 10 wherein the mould is hollow and has an inner surface, the method comprising stacking the laminates of fibres on the inner surface of the hollow mould.
  12. 12. A method as claimed in any of claims 1 to 11 wherein the mould comprises a styrofoam mould.
  13. 13. A method as claimed in any of claims 1 to 12 wherein the mould defines an aerofoil shape.
  14. 14. A method as claimed in any of claims 1 to 13 wherein the fibres comprise mullite or mullite and alumina, the ceramic sol comprises silica and the filler material comprises alumina.
  15. 15. A method of manufacturing a ceramic matrix composite substantially as hereinbefore described with reference to Figure 1 of the accompanying drawings.
  16. 16. A ceramic matrix composite article as produced by a method as claimed in any of claims 1 to 15.
  17. 17. A method of manufacturing a sandwich structure comprising at least two layers of ceramic matrix composite and a ceramic filler arranged between the at lest two layers of ceramic matrix composite, the method comprising the steps of: a) manufacturing each of the at least two layers of ceramic matrix composite using the steps of: i) forming a slurry comprising a ceramic sol, filler material and a suspension medium, ii) forming a plurality of laminates of fibres, iii) applying the slurry to each of the plurality of laminates of fibres, iv) stacking the plurality of laminates of fibres on a mould, v) applying pressure to the stack of laminates of fibres to remove the suspension medium from the slurry to solidify the ceramic sol and thereby produce a ceramic composite layer, b) arranging the at least two layers of ceramic matrix composite into a predetermined shape such that there is a space between the at least two layers of ceramic matrix composite, c) filling the space between the at least two layers of ceramic matrix composite with a ceramic filler material, d) heating the at least two layers of ceramic matrix composite and ceramic filler material to produce the sandwich structure.
  18. 18. A method of manufacturing a sandwich structure comprising at least two layers of ceramic matrix composite and a ceramic filler arranged between the at least two layers of ceramic matrix composite, the method comprising the steps of: a) forming a mould from a ceramic filler material to a predetermined shape, the mould having spaced apart surfaces, b) manufacturing each of the at lest two layers of ceramic matrix composite using the steps of: i) forming a slurry comprising a ceramic sol, filler material and a suspension medium, ii) forming a plurality of laminations of fibres, iii) applying the slurry to each of the plurality of laminates of fibres, iv) stacking the plurality of laminates of fibres on the mould, the at least two layers of ceramic matrix composite being formed on the spaced apart surfaces of the mould, v) applying pressure to the stack of laminates of fibres to remove the suspension medium from the slurry to solidify the ceramic sold and thereby produce ceramic matrix composite layers on the ceramic filler material.
  19. 19. A method as claimed in claim 18 or claim 19 wherein step (e) comprises covering the stacks with a porous membrane, covering the porous membrane with a breather fabric, covering the breather fabric with a vacuum bag and evacuating the vacuum bag to remove the suspension medium from the slurry to solidify the ceramic sol and thereby produce the ceramic matrix composite.
  20. 20. A method as claimed in claim 19 wherein step (e) comprises evacuating the vacuum bag to a pressure less than 3000 Pa and holding at that pressure for about 10 hours.
  21. 21. A method as claimed in claim 19 comprising heating the stack during or after evacuation of the vacuum bag to encourage the solidification of the ceramic sol.
  22. 22. A method as claimed in claim 21 comprising heating the stack to a temperature in the range 40 C to 150 C.
  23. 23. A method as claimed in any of claims 17 to 22 comprising pressure less sintering after evacuation of the vacuum bag.
  24. 24. A method as claimed in any of claims 17 to 22 wherein the ceramic sol comprises silica, alumina or mullite particles and the filler material comprises silica, alumina or mullite particles.
  25. 25. A method as claimed in claim 24 wherein the filler material particles have a diameter greater than 1 micron.
  26. 26. A method as claimed in claim 24 wherein the ceramic sol particles having a diameter of about 40 nanometres.
  27. 27. A method as claimed in any of claims 17 to 26 wherein the fibres comprise silica, alumina, mullite or a mixture of any two.
  28. 28. A method as claimed in any of claims 17 to 27 wherein the mould is hollow and has an inner surface, the method comprising stacking the laminates of fibres on the inner surface of the hollow mould.
  29. 29. A method as claimed in claim 17 wherein the mould comprises a styrofoam mould.
  30. 30. A method as claimed in any of claims 17 to 29 wherein the fibres comprise mullite or mullite and alumina, the ceramic sol comprises silica and the filler material comprises alumina.
  31. 31. A method of manufacturing a sandwich structure substantially as hereinbefore described with reference to Figures 2 and 3 of the accompanying drawings.
  32. 32. A method of manufacturing a sandwich structure substantially as hereinbefore described with reference to figures 3 and 4 of the accompanying drawings.
  33. 33. A sandwich structure as produced by a method as claimed in any of claims 17 to 32.
GB9926460A 1998-12-18 1999-11-10 A method of manufacturing a ceramic matrix composite Expired - Lifetime GB2347113B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB9926460A GB2347113B (en) 1998-12-18 1999-11-10 A method of manufacturing a ceramic matrix composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9827889.8A GB9827889D0 (en) 1998-12-18 1998-12-18 A method of manufacturing a ceramic matrix composite
GB9926460A GB2347113B (en) 1998-12-18 1999-11-10 A method of manufacturing a ceramic matrix composite

Publications (3)

Publication Number Publication Date
GB9926460D0 GB9926460D0 (en) 2000-03-15
GB2347113A true GB2347113A (en) 2000-08-30
GB2347113B GB2347113B (en) 2003-06-11

Family

ID=26314862

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9926460A Expired - Lifetime GB2347113B (en) 1998-12-18 1999-11-10 A method of manufacturing a ceramic matrix composite

Country Status (1)

Country Link
GB (1) GB2347113B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1281697A1 (en) * 2001-07-30 2003-02-05 The Boeing Company Oxide based ceramic matrix composites
EP1381507A1 (en) * 2001-04-24 2004-01-21 Coi Ceramics, Inc. Damage tolerant cmc using sol-gel matrix slurry
EP1647537A1 (en) * 2004-10-15 2006-04-19 General Electronic Company Methods of producing a ceramic matrix composite
US8313598B2 (en) 2010-04-21 2012-11-20 Rolls-Royce Plc Method of manufacturing a ceramic matrix composite article
WO2019175501A1 (en) 2018-03-13 2019-09-19 Safran Ceramics Composite with oxide/oxide ceramic matrix
AT525455B1 (en) * 2022-03-16 2023-04-15 Isovolta Primary material for use in the manufacture of a fiber-ceramic composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354736A (en) * 2023-03-27 2023-06-30 中国人民解放军国防科技大学 Preparation method of fiber reinforced alumina ceramic matrix composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936939A (en) * 1989-05-05 1990-06-26 Ceracom Technologies, Inc. Fabric-reinforced ceramic matrix composite material
WO1993010056A1 (en) * 1991-11-22 1993-05-27 Rolls-Royce Plc Method of manufacturing a composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936939A (en) * 1989-05-05 1990-06-26 Ceracom Technologies, Inc. Fabric-reinforced ceramic matrix composite material
WO1993010056A1 (en) * 1991-11-22 1993-05-27 Rolls-Royce Plc Method of manufacturing a composite material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1381507A1 (en) * 2001-04-24 2004-01-21 Coi Ceramics, Inc. Damage tolerant cmc using sol-gel matrix slurry
EP1381507A4 (en) * 2001-04-24 2008-02-27 Coi Ceramics Inc Damage tolerant cmc using sol-gel matrix slurry
EP1281697A1 (en) * 2001-07-30 2003-02-05 The Boeing Company Oxide based ceramic matrix composites
EP1647537A1 (en) * 2004-10-15 2006-04-19 General Electronic Company Methods of producing a ceramic matrix composite
US7153379B2 (en) 2004-10-15 2006-12-26 General Electric Company Methods of producing a ceramic matrix composite
US8313598B2 (en) 2010-04-21 2012-11-20 Rolls-Royce Plc Method of manufacturing a ceramic matrix composite article
WO2019175501A1 (en) 2018-03-13 2019-09-19 Safran Ceramics Composite with oxide/oxide ceramic matrix
AT525455B1 (en) * 2022-03-16 2023-04-15 Isovolta Primary material for use in the manufacture of a fiber-ceramic composite
AT525455A4 (en) * 2022-03-16 2023-04-15 Isovolta Primary material for use in the manufacture of a fiber-ceramic composite

Also Published As

Publication number Publication date
GB2347113B (en) 2003-06-11
GB9926460D0 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
US6660115B2 (en) Method of manufacturing a ceramic matrix composite
US5730915A (en) Method for preparation of casting tooling
US8309013B2 (en) Method for the production of components made of ceramic-matrix composite material
US9302946B2 (en) Process for producing a ceramic matrix composite part
US8048544B2 (en) Ceramics made of preceramic paper or board structures, method of producing the same and use thereof
CN111542431B (en) Method for producing a part made of composite material by injecting powder into a fibrous reinforcement and discharging it from a composite filter layer
CN115626833A (en) Ceramic matrix composite structures with controlled microstructure prepared with Chemical Vapor Infiltration (CVI)
JP6276514B2 (en) Method of making internal cavities and mandrels therefor in ceramic matrix composites
WO2002085618A1 (en) Damage tolerant cmc using sol-gel matrix slurry
GB2347113A (en) Manufacturing a ceramic matrix composite
EP0179908B1 (en) Method for forming fiber reinforced composite articles
CA2012240C (en) Fiber reinforced ceramic matrix composite member and method for making
EP0633869B1 (en) A method of manufacturing fibre composites
EP1284251A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
EP2349948B1 (en) Method for the production of components made of ceramic-matrix composite material
US20220281134A1 (en) Method for producing a part from composite material by injecting a filled slip into a fibrous texture
US20030035901A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
JPH01192764A (en) Production of silicon carbide honeycomb structural body
JP4654429B2 (en) Ceramic multilayer structure and manufacturing method thereof
CN117545606B (en) Method for injecting ceramic powder using in situ generated filters in fiber preforms
JPH03223178A (en) Production of fiber-reinforced inorganic material
JP3127452B2 (en) Method for producing fiber-reinforced metal composite material
JP2782885B2 (en) Method for producing fiber-reinforced inorganic material
GB2282827A (en) A method of manufacturing a fibre reinforced composite component

Legal Events

Date Code Title Description
AT Applications terminated before publication under section 16(1)
PE20 Patent expired after termination of 20 years

Expiry date: 20191109