GB2327129A - Heat sensitive stencils - Google Patents

Heat sensitive stencils Download PDF

Info

Publication number
GB2327129A
GB2327129A GB9814940A GB9814940A GB2327129A GB 2327129 A GB2327129 A GB 2327129A GB 9814940 A GB9814940 A GB 9814940A GB 9814940 A GB9814940 A GB 9814940A GB 2327129 A GB2327129 A GB 2327129A
Authority
GB
United Kingdom
Prior art keywords
film
support
resin
seconds
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9814940A
Other versions
GB2327129B (en
GB9814940D0 (en
Inventor
Tetsuo Tanaka
Hiroshi Tateishi
Fumiaki Arai
Masanori Rimoto
Hiroshi Adachi
Kohichi Ohshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Ricoh Co Ltd
Ricoh Co Ltd
Original Assignee
Tohoku Ricoh Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19679998A external-priority patent/JP3632056B2/en
Application filed by Tohoku Ricoh Co Ltd, Ricoh Co Ltd filed Critical Tohoku Ricoh Co Ltd
Publication of GB9814940D0 publication Critical patent/GB9814940D0/en
Publication of GB2327129A publication Critical patent/GB2327129A/en
Application granted granted Critical
Publication of GB2327129B publication Critical patent/GB2327129B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/14Forme preparation for stencil-printing or silk-screen printing
    • B41C1/144Forme preparation for stencil-printing or silk-screen printing by perforation using a thermal head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • B41N1/245Stencils; Stencil materials; Carriers therefor characterised by the thermo-perforable polymeric film heat absorbing means or release coating therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

A heat sensitive stencil comprises a porous support (10) and a thermoplastic resin film (20) laminated on the support. The surface of the resin film opposite to that contracting the support has a surface smoothness of at least 10,000 seconds. The heat sensitive stencil may be made by bonding the resin film to the porous support with an adhesive, while maintaining both the support and film under a specific tension. Another process of fabricating a heat sensitive stencil is disclosed, and which involves applying a coating composition containing a resin and first and second solvents having a specific solubility and specific evaporation rates, to one surface of the thermoplastic resin film, followed by drying the applied composition to form a porous support. In an alternative process of fabricating a heat sensitive stencil, a resin dissolved in a solvent, is applied to one surface of the thermoplastic resin film, to form a wet resin coating over this surface, followed by spraying vapours or fine droplets of a second solvent overthe wet coating, the second solvent being incapable of dissolving the resin, followed by drying the resin coating to form a porous support.

Description

TITLE OF THE INVENTION Heat-Sensitive Stencil, Process of Fabricating Same and Method of Producing Printing Master Using Same BACKGROUND OF THE INVENTION This invention relates to a heat-sensitive stencil, to a process of fabricating same and a method of producing a printing master using same.
One known heat-sensitive stencil is composed of an ink-permeable thin paper serving as an ink support and a thermoplastic resin film bonded with an adhesive to the support. The stencil is heated imagewise by, for example, a thermal head to perforate the heated portions of the thermoplastic resin film, thereby obtaining a printing master for reproducing images by mimeographic printing.
An overcoat layer is generally provided over a surface of the thermoplastic resin film to prevent the sticking of the film with the thermal head.
The known heat-sensitive stencil has a problem, because the heated portions are not completely perforated.
The portion of the stencil which remains unperforated results in a white spot in reproduced images obtained therefrom. This problem can be overcome by increasing thermal energy for the perforation. However, an increase of the thermal energy causes an increase of the master producing time as well as a shortened service life of the heating means.
A method has been proposed to increase the heat sensitivity of the stencil by reducing the thickness of the thermoplastic resin film, by using a low softening resin as the film or by using a resin having a great thermal shrinkage as the film. This method, however, requires an increased cost and, further, causes deterioration of physical properties of the stencil.
An attempt has also been made to increase the smoothness of the surface of the film with a view toward reducing perforation failure. JP-A-H5-212983 discloses a method of producing a smooth surface stencil by controlling a tension between a thermoplastic resin film and a support during lamination thereof. JP-A-H8-67081 discloses a method of producing a smooth surface stencil by heat-bonding a thermoplastic resin film and a support without using an adhesive. These methods give a smoothness of at most 5,000 seconds, even when the film originally has a surface smoothness of more than 10,000 seconds.
SUMMARY OF THE INVENTION It has now been found that a surface smoothness of a stencil of 5,000 seconds is insufficient to prevent perforation failure, especially when the stencil is perforated by a thermal head with a small heat energy of not greater than 0.05 mJ/dot. The formation of printing masters with such a small energy is strongly desired in the field. It has also been found that a surface smoothness of at least 10,000 seconds, preferably 15,000 seconds, is required to obtain satisfactory perforation with a thermal energy of a thermal head of not greater than 0.05 mJ/dot.
It is an object of the present invention to provide a heat-sensitive stencil which can be thermally perforated uniformly with a thermal head using a small heat energy.
Another object of the present invention is to provide an economical process for the fabrication of a heat-sensitive stencil of the above-mentioned type.
It is a further object of the present invention to provide a method of forming a high quality printing master even using a small heat energy.
In accomplishing the foregoing objects, there is provided in accordance with one aspect of the present invention a heat-sensitive stencil comprising a porous support, and a thermoplastic resin film laminated on said support and having a surface smoothness of at least 10,000 seconds.
In another aspect, the present invention provides a process of fabricating a heat-sensitive stencil, comprising bonding a thermoplastic resin film having opposing first and second surfaces, said second surface having a surface smoothness of at least 10,000 seconds, to a porous support with an adhesive having a viscosity of at least 1,000 mPa s and containing a non-volatile matter such that said first surface faces on said support, said bonding being performed while maintaining each of said support and said film under a tension of at least 1 kgf/m in the same direction and while maintaining a ratio of the tension of said support in said direction to the tension of said film in said direction in the range of 1-4, said adhesive being used in such an amount that said nonvolatile matter is present between said film and said support in an amount of 0.05-1.0 g of per m2 of said film, so that said second surface of said film laminated on said support has a surface smoothness of at least 10,000 seconds.
In a further aspect, the present invention provides a process of fabricating a heat-sensitive stencil, comprising the steps of: applying a coating composition to one of the both surfaces of a thermoplastic resin film, said composition containing a resin, a first solvent capable of dissolving said resin, and a second solvent substantially incapable of dissolving said resin and having an evaporation rate lower than that of said first solvent, said film having the other surface with a smoothness of at least 10,000 seconds; and drying said applied composition to form a porous support on said one surface of said film.
The present invention also prcvides a process of fabricating a heat-sensitive stencil, comprising the steps of: applying a solution of a resin in a first solvent to one of the both surfaces of a thermoplastic resin film to form a wet resin coating over said one surface, said film having the other surface with a smoothness of at least 10,000 seconds; spraying vapors or fine droplets of a second solvent substantially incapable of dissolving said resin over said wet resin coating so that said second solvent is taken into said wet resin coating to cause a portion of said resin to precipitate; and then drying said resin coating to form a porous support on said one surface of said film.
The present invention further provides a method of producing a printing master, comprising heating a heatsensitive stencil imagewise by a thermal head with heating energy of not greater than 0.05 mJ/dot, said stencil comprising a porous support, and a thermoplastic resin film laminated on said support and aving a surface smoothness of at least 10,000 second.
BRIEF DESCRIPTION OF THE DRAWINGS Other objects, features and advantages of the present invention will become apparent from the detailed description of the preferred embod'-ents of the invention which follows, when considered in light of the accompanying drawings, in which: Figs. 1-4 are sectional views schematically illustrating various embodiments of heat-sensitive stencils according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION Referring Figs. 1-4, designated generally as 101, 201, 301 and 401 are heat-sensitive stencils according to the present invention. The reference numeral 10 designates a porous support, 20 a thermoplastic resin film, 30 an overcoat layer and 40 a backcoat layer. The overcoat layer 30 and the backcoat layer 40 are optionally provided as desired.
The thermoplastic resin film 20 may be made of any conventionally employed resin such as a polyester resin.
The thickness of the film 20 is suitably determined with the consideration of easiness in handling during preparation of the stencil and desirable heat sensitivity during the perforation with a thermal head and is generally 0.5-10 pm, preferably 1.0-5.0 pm. It is important that the thermoplastic resin film 20 should have a surface smoothness of at least 10,000 seconds, preferably at least 15,000 seconds in order to achieve the objects of the present invention.
The term "smoothness" herein is as measured in accordance with Oken Smoothness Test Method described in JAPAN TAPPI No. 5-B. An Oken-type smoothness measuring device (KY-55 manufactured by Kumagaya Riki Kogyo K. K.) is suitably used for this method. Before measurement of smoothness, samples are allowed to stand for 24 hours in an atmosphere maintained at a temperature of 200C and a relative humidity of 65 %. Measurement is made on arbitrary three areas of a sample and an average of the three measured values represents the smoothness of the film.
The overcoat layer 30 is provided over the thermoplastic resin film 20 and is brought into sliding contact with a thermal head in producing a printing master rom the stencil 201 or 401. The overcoat layer 30 functions to prevent the sticking between the thermal head and the stencil, so that the thermal head can smoothly run or slide on the stencil. The overcoat layer 30 can also serves to function as an antistatic layer. It is important that the overcoat layer 30 should have a surface smoothness of at least 10,000 seconds, preferably at least 15,000 seconds in order to achieve the objects of the present invention. The overcoat layer 30 may be a resin layer optionally containing one or more additives such as a metal salt of a fatty acid, a phosphate surfactant, a lubricant such as a silicone oil, or a fluorocarbon containing a perfluoroalkyl group, a lubricant and an antistatic agent. Alternatively, the overcoat layer 30 may be an oil layer or a layer of an inorganic or organic fine powder of, for example, a lubricant, an antistatic agent or a releasing agent. Since the overcoat layer 30 is formed on the thermoplastic resin film 20, the surface smoothness of the overcoat layer 30 generally depends upon that of the film 20.
The backcoat layer 40 is provided on the porous support 10 to improve the rigidity of the stencil, running or sliding property of the stencil on a master forming device and a printing device and to prevent the curling, static charging and blocking of the stencil. The backcoat layer 40 is desirably more porous than the porous support 10.
The porous support 10 may be a thin paper having a thickness of generally 5-70 urn, preferably 10-55 pm, and a basis weight of generally 5-15 g/m2 and formed of natural and/or synthetic fibers. The natural fibers may be, for example, those of wood, cotton, kozo (Broussonetia kazinoki), mitsumata (Edgeworthia papyrifera), ganpi (Wikstroemia sikokiana Fr, et Sav.), a flax plant, Manila hemp, straw and bagasse. The synthetic fibers may be, for example, polyester fibers, vinylon fibers, acrylic fibers, polyethylene fibers, polypropylene fibers, polyamide fibers and rayon fibers. Alternatively, the porous support 10 may be a porous resin layer.
When the porous support 10 is a thin paper, the stencil is prepared by the following process: The thermoplastic resin film 20 and the porous support 10 are bonded to each other with an adhesive having a viscosity of at least 1,000 mPa s and containing a non-volatile matter. The film 20 has opposing first and second surfaces wherein at least the second surface has a surface smoothness of at least 10,000 seconds. The bonding is carried out such that the first surface of the film 20 faces on the support 10. During the bonding, each of the support 10 and the film 20 is subjected to a tension of at least 1 kgf/m in the same direction, while maintaining a ratio of the tension of the support 10 in that direction to the tension of the film 20 in that direction in the range of 1:1 to 4:1. The adhesive is used in such an amount that the non-volatile matter is present between the film 20 and the support 10 in an amount of 0.05-1.0 g of per m2 of the film 20 (namely per m2 of the bonding area). By bonding the film 20 and the support 10 in the above condition, the second surface of the film 20 laminated on the support 10 has a surface smoothness at least 10,000 seconds.
When the tension ratio is smaller than 1:1, the laminate is apt to curl. Too high a tension ratio in excess of 4:1 causes shrinkage of the film 20 so that the smoothness is significantly lowered. It is also important that a tension of at least 1 kgf/m should be applied to the film 20 in order to maintain the surface smoothness thereof.
The adhesive is a solvent solution of a resin such as an acrylic resin, a vinyl resin, an ethylene resin, an amide resin, an urethane resin or a cellulose resin. The viscosity of the adhesive should be at least 1,000 mPa s at the time the film 20 has just been brought into contact with the support 10 through the adhesive. The viscosity can be determined by previous experiments. It is preferred that the adhesive be applied to the film 20 rather than to the support 10 for reasons of obtaining a better smoothness of the film. The amount of the adhesive (solid matter) also has been found to have an influence upon the smoothness and should fall within the abovedescribed range.
When the porous support 10 is a porous resin layer, the stencil may be prepared by the following two processes.
In one process, a resin for forming the porous resin layer is first dissolved, completely or partly, in a mixed solvent including a first solvent (good solvent) capable of dissolving the resin and a second solvent (poor solvent) substantially incapable of dissolving the resin and having a lower evaporation rate than the first solvent, thereby te obtain a coating liquid in the form of a solution or a dispersion. Preferably the second solvent has a boiling point which is higher by 10-400C than that of the first solvent and which is preferably 1500C or less.
The concentration of the resin in the mixed solvent solution is generally 2-50 % by weight, preferably 5-30 % by weight. The weight ratio of the first solvent to the second so vent, which has an influence upon the pore structure of the porous resin layer, is generally 40:60 to 95:5.
The thus obtained coating liquid is then applied over a surface of a thermoplastic resin film to form a wet resin coating. The application of the coating liquid may be carried out by any desired coating method such as blade coating, transfer roll coating, wire bar coating, reverse roll coating or gravure coating. In this case, it is preferred that the coating liquid immediately before being applied be heated at a temperature higher than that of the atmosphere at which the coating step is performed and which is generally room temperature. Thus, when the coating is performed with a die coater, the die from which the solution is applied to the thermoplastic resin film may be surrounded by a heating jacket to which a heating medium is fed. It is also preferred that coating liquid immediately after being applied to the thermoplastic resin film be cooled before the next drying step to a temperature lower by 2-300C, preferably 5-200C, than that of the coating liquid immediately before being applied.
The wet resin coating is then heated at a temperature below the boiling point of the second solvent but sufficient to vaporize part of the first solvent so that a portion of the resin precipitates. Subsequently, the coating is further heated preferably at 800C or less until the coating is completely dried. During the course of the vaporization of the solvents, there are formed a multiplicity of pores.
Examples of suitable poor and good solvents are shcwn in Table 1 below. As shown, good and poor solvents vary with the resin to be dissolved.
Table 1 Resin PVC*1 VCA*2 PB+3 PS*4 ANS*5 ALS*6 Solvent(b.p. C) Methanol(64.5) poor poor poor poor poor poor Ethanol(78.3) poor poor poor - - poor Ethyl acetate(77.1) - good poor good good Acetone (56.1) good good poor good good good Methyl ethyl ketone(79.6) good good poor good good good Diethyl ether(34.5) poor - - poor poor poor Tetrahydrofuran (65-67) good good good good Hexane(68.7) poor poor good poor poor Heptane(98.4) poor poor poor poor poor poor Benzene(80.1) - poor good good good good Toluene(lI0.6) - good good good good good Xylene(139.1) - good good good good good Chloroform(61.2) - good good good good good Carbon tetra chloride(76.7) - good good good - Water(100.0) poor poor poor poor poor poor *1 PVC: poly(vinyl chloride) *2 VCA: vinyl chloride-vinyl acetate copolymer *3 PB: polybutylene *4 PS: polystyrene *5 ANS: acrylonitrile-styrene copolymer *6 ABS: acrylonitrile-butadiene-styrene copolymer *7 MAR: methacrylic acid resin *8 PVA: poly(vinyl acetate) *9 PC: polycarbonate *10 AC: acetylcellulose resin *11 AR: acrylate resin *12 VB: polyvinyl-butyral Table 1 (continued) Resin MAR+7 PVA*8 PC+9 AT* 10 At*11 VB*12 Solvent(b.p.oC1 Methanol(64.5) - good poor - poor good Ethanol(78.3) - poor poor - poor good Ethyl acetate(77.1) good good poor good good good Acetone(56.1) good good poor good good good Methyl ethyl ketone(79.6) good good poor good - good Diethyl ether(34.5) - poor - - - poor Tetrahydrofuran (65-67) good - good good - good Hexane(68.7) poor poor poor poor poor poor Heptane(98.4) poor poor poor poor poor poor Benzene(80.1) good good good - good poor Toluene(110.6) good good good poor good poor Xylene(139.1) good good good poor good Chloroform(61.2) good good good good good Carbon tetra chloride(76.7) - - good poor - Water(100.0) poor poor poor poor poor poor Any resin may be used for the formation of the porous layer. Illustrative of suitable resins of the porous layer are a vinyl resin such as poly(vinyl acetate), poly(vinyl butyral), poly(vinyl acetal), vinyl chloridevinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer or styrene-acrylonitrile copolymer; a polyamide such as nylon; polybutylene; polyphenylene oxide; (meth)acrylic ester; polycarbonate; or a cellulose derivative such as acetylcellulose, acetylbutylcellulose or acetylpropylcellulose. These resins may be used singly or in combination of two or more. It is preferred that the porous resin layer contain a resin capable of softening at a temperature at which the perforation by a thermal head is carried out, generally at a temperature of 150 C or less, for reasons of facilitating the perforation of the thermoplastic resin film.
The porous resin layer can contain one or more additives such as a filler, an antistatic agent, a stickpreventing agent, a surfactant, an antiseptic agent and an antifoaming agent. Addition of a filler to the porous resin layer is desirable to control the strength, stiffness and the size of pores thereof. Use of a filler in the form of needles or plates is particularly preferred.
Illustrative of suitable fillers are needle-like natural mineral fillers such as magnesium silicate, sepiolite, potassium titanate, wollastonite, zonolite and gypsum fiber; needle-like synthetic mineral fillers such as nonoxide-type needle whiskers, oxide whiskers and mixed oxide whiskers; platy fillers such as mica, glass flakes and talc; pigments such as poly(vinyl chloride) particles, poly(vinyl acetate) particles, polymethyl acrylate particles, zinc oxide, titania, calcium carbonate and microcapsules (e.g. Matsumoto Microsphere); and natural or synthetic fibers such as carbon fiber, polyester fiber, glass fiber, vinylon fiber, nylon fiber and acrylic fiber.
The filler is generally used in an amount of 0.5-200 %, preferably 8-20 % based on the weight of the resin of the porous resin layer.
In the second process, a solution of a resin for the porous resin layer in a first solvent is prepared. The solution is applied over a surface of a thermoplastic resin film to form a wet resin coating over the surface.
Then, vapors or fine droplets of a second solvent substantially incapable of dissolving the resin are sprayed over the wet resin coating so that the second solvent is taken into the wet resin coating to cause a portion of the resin to precipitate. Thereafter, the resin coating is heated to dryness. The first and second solvents, the resin and optional additives used for the formation of the porous layer in the second method are similar to those described above in connection with the first method. In the second method, the size and number of pores may be controlled by the amount and particle size of the droplets of the second solvent. It is preferred that the thermoplastic resin film be previously applied with a spray of the second solvent before being applied with the solvent solution of the resin, since the contact area between the resulting porous resin layer and the thermoplastic resin film is decreased and, therefore, the stencil can be more easily perforated by a thermal head.
If desired, the above first and second methods may be combined for the fabrication of the stencil according to the present invention.
The heat-sensitive stencil thus formed by the above first or second methods has a porous resin layer serving as an ink support and formed on a thermoplastic resin film.
The stencil is adapted show an air permeability in the range of 3.0 cm3/cm2 sec to 200 cm3/cm2 sec, preferably 10 cm3/cm2 sec to 80 cm3/cm2 sec, in a portion thereof when the thermoplastic resin film of that portion is perforated to form perforations providing an open ratio SO/SP of at least 0.2, wherein SO represents a total area of the perforations and Sp represents the area of the portion.
The air permeability may be measured in the following manner. A square solid pattern (black pattern) with a size of 10 x 10 cm is read by a printer (PRIPORT VT 3820 manufactured by Ricoh Company, Ltd.) and a sample stencil is perforated with a thermal head in accordance with the read out pattern to form a printing master. The perforation operations are performed for five similar samples so that five printing masters having open ratios SO/SP of about 0.2, 0.35, 0.50, 0.65 and 0.80 are obtained.
The open ratio of a master may be measured by making a photomicrograph (magnification: 100) thereof. The photomicrograph is then magnification-copied (magnifying ratio: 200) using a copying machine (IMAGIO MF530 manufactured by Ricoh Company, Ltd.). Perforations shown in the copy are marked on an OHP film and then read by a scanner (300 DPI, 256 gradient). This is binarized with an image retouch software Adobe Photoshop 2.SJ. The open ratio of the perforations is measured using an image analysis software NIH IMAGE. The perforated portion of each of the printing masters is measured for the air permeability thereof by any conventional method. When at least one of the five masters has an air permeability in the range of 1.0 cm3/cm2 sec to 157 cm3/cm2sec, the stencil is regarded as falling within the scope of the present invention.
The porous resin layer preferably has an average pore diameter of 2-50 urn, more preferably 5-30 Wm, for reasons of proper ink permeability. The porous resin layer preferably has a thickness of 5-100 um, more preferably 6-50 from, for reasons of proper stiffness of the stencil and proper ink transference. The density of the porous resin layer is preferably 0.01-1 g/cm3, more preferably 0.1-0.7 g/cm3, for reasons of proper stiffness and mechanical strengths. If desired, an adhesive layer may be interposed between the porous resin layer and the thermoplastic resin film.
The following examples will further illustrate the present invention. Parts and percentages are by weight.
Example 1 An urethane resin adhesive containing substantially no volatile matters was applied to one surface of a porous sheet support, made of a polyester fiber (0.2 denier: 10 %, 0.5 denier: 40 %, 1.2 denier: 50 %) and having a base weight of 10 g/m2, in an amount of 0.5 g per m2 of the surface. The adhesive when applied to the porous support had a temperature of 900C and a viscosity of 1,300 aPa (measured by B-type viscometer). After the temperature of the adhesive applied to the surface of the support had been lowered to about 500C, a biaxially oriented polyester film having a thickness of about 1.S urn and a surface smoothness of more than 30,000 seconds was applied thereon, while maintaining the film and the support under tensions of 2 kgf/m and 5 kgf/m, respectively, in the same direction. The assembly was then allowed to be cooled to room temperature while maintaining the tensions applied to the film and the support unchanged. A liquid containing a silicone resin and a cationic antistatic agent was applied on the back side of the polyester film opposite the support and dried to form a stick preventing layer (overcoat layer), thereby obtaining a heat-sensitive stencil according to the present invention having a structure shown in Fig. 2.
Comparative Example 1 Example 1 was repeated in the same manner as described except that the amount of adhesive was increased to 1.5 g/m2.
Comparative Example 2 Example 1 was repeated in the same manner as described except that the adhesive when applied to the porous support had a temperature of 1200C and a viscosity of 600 mPa s.
Comparative Example 3 Example 1 was repeated in the same manner as described except that the tension applied to the support was increased to 10 kgf/m.
Example 2 Poly(vinyl butyral) 4 parts Methanol 33.6 parts Water 2.8 parts The above composition was stirred to dissolve the resin in the mixed solvent and allowed to quiescently stand to remove foams. The solution was then uniformly applied to a biaxially stretched polyester film (thickness: 1.5 um, surface smoothness: more than 30,000 seconds) with a wire bar at a temperature of 200C and a relative humidity of 60 %, thereby to form a wet coating having a deposition amount of 7.0 g/cm2 (on dry basis).
This was allowed to stand as such for 15 seconds and then placed in a drying chamber at 500C for 1 minute to dry the coating and to a porous layer. A liquid containing a silicone resin and a cationic antistatic agent was applied on the back side of the polyester film opposite the porous layer and dried to form a stick preventing layer (overcoat layer), thereby obtaining a heat-sensitive stencil according to the present invention having a structure shown in Fig. 2.
Example 3 Cellulose acetate butylate (softening point: 1310C) 5 parts Methyl ethyl ketone 85 parts The above composition was stirred to dissolve the resin in the solvent and allowed to quiescently stand to remove foams. The solution was then uniformly applied to a biaxially stretched polyester film (thickness: 1.5 Wm, surface smoothness: more than 30,000 seconds) with a wire bar at a temperature of 300C and a relative humidity of 90 %, thereby to form a wet coating having a deposition amount of 7.0 g/cm (on dry basis). Fine droplets of water were sprayed for 15 seconds from Humidiffer UV-107D (manufactured by Hitachi Inc.) over the surface of the wet coating placed at a distance 10 cm away from the Humidiffer. This was allowed to stand as such for 1 minute and then placed in a drying chamber at 500C for 2 minutes to dry the coating. The dried coating was a porous layer. A liquid containing a silicone resin and a cationic antistatic agent was applied on the back side of the polyester film opposite the porous layer and dried to form a stick preventing layer (overcoat layer), thereby obtaining a heat-sensitive stencil according to the present invention having a structure shown in Fig. 2.
Each of the thus obtained heat-sensitive stencils was measured for surface smoothness, open ratio, air permeability, perforation efficiency and printed image quality. The surface smoothness, open ratio and air permeability were measured by the methods described previously. The perforation efficiency was measured by perforating a sample with a thermal head of 600 dots/in at an energy of 0.03 mJ/dot using PRIPORT VT 3820 (manufactured by Ricoh Company Ltd.) to form 10x10 dots.
The perforated sample was observed with a microscope (magnification: 110) and the dots actually perforated were counted. The perforation efficiency is expressed as a percentage of the number of the perforated dots based on 10x10 dots. Image quality was evaluated with naked eyes for prints (solid pattern image) obtained using sample stencil with respect to white spots and blurs. Evaluation was made by comparison with the image obtained using a commercial stencil (VT2 Master manufactured by Ricoh Company Ltd.) and rated as follows: 5: much better, 4: slightly better, 3: comparable, 2: slightly inferior, 1: much inferior. The results are shown in Table 1.
Table 1
Example Smooth- Open Air Per- Perfora- Image ness ratio meability tion Effi- quality (sec) (%) (cm3/cm2-sec) ciency (%) Example 12,000 20 9 100 5 1 35 14 48 19 63 25 79 30 Compa- 4,700 20 9 92 2 native 35 13 Example 48 17 1 63 20 79 28 Compa- 6,400 20 8 95 3 rative 35 12 Example 48 16 2 63 21 79 29 Compa- 2,900 20 5 89 rative 35 11 Example 48 14 3 63 19 79 27 Example 22,000 20 4 100 5 2 35 9 48 12 63 16 79 24 Example 21,000 20 4 100 5 3 35 9 48 13 63 16 79 25 e invention may be embodied in other specific forms without departing from the spirit or essential cnaracteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all the changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
The teachings of Japanese Patent Application =. H9200897, filed July 10, 1997 and entitled "Heat-Sensitive Stencil Master, Process of Preparing Same and Method of Preparing Printing Master", inclusive of the specification, claims and drawings, are hereby incorporated by reference herein.

Claims (8)

WHAT IS CLAIMED IS:
1. A heat-sensitive stencil comprising a porous support, and a thermoplastic resin film laminated on said support and having a surface smoothness of at least 10,000 seconds.
2. A heat-sensitive stencil as set forth in claim 1, wherein said film is laminated on said support with an adhesive layer interposed therebetween.
3. A heat-sensitive stencil as set forth in claim 1, further comprising an overcoat layer provided on said film and having a surface smoothness of at least 10,000 seconds.
4. A process of fabricating a heat-sensitive stencil, comprising bonding a thermoplastic resin film having opposing first and second surfaces, said second surface having a surface smoothness of at least 10,000 seconds, to a porous support with an adhesive having a viscosity of at least 1,000 mPa s and containing a non-volatile matter such that said first surface faces on said support, said bonding being performed while maintaining each of said support and said film under a tension of at least 1 kgf/m in the same direction and while maintaining a ratio of the tension of said support in said direction to the tension of said film in said direction in the range of 1-4, said adhesive being used in such an amount that said nonvolatile matter is present between said film and said support in an amount of 0.05-1.0 g of per m2 of said film, so that said second surface of said film laminated on said support has a surface smoothness of at least 10,000 seconds.
5. A process as set forth in claim 4, further comprising applying a coating liquid to said thermoplastic resin film, and drying said applied liquid to form an overcoat layer thereon.
6. A process of fabricating a heat-sensitive stencil, comprising the steps of: applying a coating composition to one of the both surfaces of a thermoplastic resin film, said composition containing a resin, a first solvent capable of dissolving said resin, and a second solvent substantially incapable of dissolving said resin and having an evaporation rate lower than that of said first solvent, said film having the other surface with a smoothness of at least 10,000 seconds; and drying said applied composition to form a porous support on said one surface of said film, so that said the other surface of said film laminated on said support has a surface smoothness of at least 10,000 seconds.
7. A process of fabricating a heat-sensitive stencil, comprising the steps of: applying a solution of a resin in a first solvent to one of the both surfaces of a thermoplastic resin film to form a wet resin coating over said one surface, said film having the other surface with a smoothness of at least 10,000 seconds; spraying vapors or fine droplets of a second solvent substantially incapable of dissolving said resin over said wet resin coating so that said second solvent is taken into said wet resin coating to cause a portion of said resin to precipitate; and then drying said resin coating to form a porous support on said one surface of said film, so that said the other surface of said film laminated on said support has a surface smoothness of at least 10,000 seconds.
8. A method of producing a printing master, comprising heating a heat-sensitive stencil imagewise by a thermal head with a heating energy of not greater than 0.05 mJ/dot, said stencil comprising a porous support, and a thermoplastic resin film laminated on said support and having a surface smoothness of at least 10,000 seconds.
GB9814940A 1997-07-10 1998-07-09 Heat-sensitive stencil,process of fabricating same and method of producing printing master using same Expired - Lifetime GB2327129B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9200897 1997-07-10
JP19679998A JP3632056B2 (en) 1997-07-10 1998-06-26 Master for thermal stencil printing and its plate making method

Publications (3)

Publication Number Publication Date
GB9814940D0 GB9814940D0 (en) 1998-09-09
GB2327129A true GB2327129A (en) 1999-01-13
GB2327129B GB2327129B (en) 2000-11-08

Family

ID=26433459

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9814940A Expired - Lifetime GB2327129B (en) 1997-07-10 1998-07-09 Heat-sensitive stencil,process of fabricating same and method of producing printing master using same

Country Status (1)

Country Link
GB (1) GB2327129B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2350691A (en) * 1999-05-31 2000-12-06 Tohoku Riko Kk Thermosensitive stencil
EP1066979A2 (en) * 1999-07-07 2001-01-10 Riso Kagaku Corporation High-sensitive stencil sheet and method for producing the same
EP1090777A2 (en) * 1999-10-08 2001-04-11 Ricoh Company, Ltd Heat-sensitive stencil and process of fabricating the same
EP1293358A2 (en) * 2001-09-18 2003-03-19 Riso Kagaku Corporation Source sheet for stencil printing, plate manufacturing method, and stencil printing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739229B2 (en) * 2020-05-27 2023-08-29 Riso Kagaku Corporation Treatment liquid for screen printing plate and method for treating screen printing plate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1333103A (en) * 1969-09-29 1973-10-10 Ricoh Kk Heat-sensitive stencil sheet
GB1404696A (en) * 1973-08-01 1975-09-03 Asahi Dow Ltd Heat-sensitive copying method for preparing printing stencils
GB2176621A (en) * 1985-06-21 1986-12-31 Asia Stencil Paper Heat-sensitive stencil paper
JPH05212983A (en) * 1992-02-04 1993-08-24 Kohjin Co Ltd Base paper for thermosensitive stencile plate
JPH05254269A (en) * 1992-03-10 1993-10-05 New Oji Paper Co Ltd Thermal stencil paper for screen printing and production tereof
JPH0867081A (en) * 1994-08-30 1996-03-12 Toray Ind Inc Thermosensitive stencil printing sheet
GB2298494A (en) * 1995-02-22 1996-09-04 Ricoh Kk Thermosensitive stencil
EP0747238A1 (en) * 1995-06-09 1996-12-11 Riso Kagaku Corporation Stencil sheet roll and a method for preparing the same
EP0770500A2 (en) * 1993-09-09 1997-05-02 Riso Kagaku Corporation Process for producing a stencil printing sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1333103A (en) * 1969-09-29 1973-10-10 Ricoh Kk Heat-sensitive stencil sheet
GB1404696A (en) * 1973-08-01 1975-09-03 Asahi Dow Ltd Heat-sensitive copying method for preparing printing stencils
GB2176621A (en) * 1985-06-21 1986-12-31 Asia Stencil Paper Heat-sensitive stencil paper
JPH05212983A (en) * 1992-02-04 1993-08-24 Kohjin Co Ltd Base paper for thermosensitive stencile plate
JPH05254269A (en) * 1992-03-10 1993-10-05 New Oji Paper Co Ltd Thermal stencil paper for screen printing and production tereof
EP0770500A2 (en) * 1993-09-09 1997-05-02 Riso Kagaku Corporation Process for producing a stencil printing sheet
JPH0867081A (en) * 1994-08-30 1996-03-12 Toray Ind Inc Thermosensitive stencil printing sheet
GB2298494A (en) * 1995-02-22 1996-09-04 Ricoh Kk Thermosensitive stencil
EP0747238A1 (en) * 1995-06-09 1996-12-11 Riso Kagaku Corporation Stencil sheet roll and a method for preparing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WPI Abstract Accession Number 93-299380 & JP 05 212 983 A *
WPI Abstract Accession Number 93-348066 & JP 05 254 269 A *
WPI Abstract Accession Number 96-196067 & JP 08 067 081 A *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2350691A (en) * 1999-05-31 2000-12-06 Tohoku Riko Kk Thermosensitive stencil
GB2350691B (en) * 1999-05-31 2001-07-25 Tohoku Riko Kk Thermosensitive stencil production method thereof thermosensitive stencil printing master making apparatus and thermosensitive stencil printing apparatus
US6393979B1 (en) 1999-05-31 2002-05-28 Ricoh Company, Ltd. Thermosensitive stencil, production method thereof, thermosensitive stencil printing master making apparatus and thermosensitive stencil printing apparatus
EP1066979A2 (en) * 1999-07-07 2001-01-10 Riso Kagaku Corporation High-sensitive stencil sheet and method for producing the same
EP1066979A3 (en) * 1999-07-07 2001-04-11 Riso Kagaku Corporation High-sensitive stencil sheet and method for producing the same
EP1090777A2 (en) * 1999-10-08 2001-04-11 Ricoh Company, Ltd Heat-sensitive stencil and process of fabricating the same
EP1090777A3 (en) * 1999-10-08 2002-05-22 Ricoh Company, Ltd Heat-sensitive stencil and process of fabricating the same
US6889605B1 (en) 1999-10-08 2005-05-10 Ricoh Company, Ltd. Heat-sensitive stencil, process of fabricating same and printer using same
EP1293358A2 (en) * 2001-09-18 2003-03-19 Riso Kagaku Corporation Source sheet for stencil printing, plate manufacturing method, and stencil printing method
EP1293358A3 (en) * 2001-09-18 2003-08-13 Riso Kagaku Corporation Source sheet for stencil printing, plate manufacturing method, and stencil printing method
US6841233B2 (en) 2001-09-18 2005-01-11 Riso Kagaku Corporation Source sheet for stencil printing, plate manufacturing method, and stencil printing method

Also Published As

Publication number Publication date
GB2327129B (en) 2000-11-08
GB9814940D0 (en) 1998-09-09

Similar Documents

Publication Publication Date Title
US6050183A (en) Heat-sensitive stencil, process of fabricating same and method of producing printing master using same
US6403150B1 (en) Heat-sensitive stencil and method of fabricating same
US4981746A (en) Heat-sensitive stencil sheet
EP0790124B1 (en) Method for perforating heat-sensitive stencil sheet and stencil sheet and composition therefor
US5908687A (en) Heat-sensitive stencil and method of fabricating same
US6595129B2 (en) Heat-sensitive stencil, process of preparing stencil printing master and stencil printer
GB2327129A (en) Heat sensitive stencils
US5875711A (en) Heat sensitive stencil having a porous substrate with tightly bound fibers
US6889605B1 (en) Heat-sensitive stencil, process of fabricating same and printer using same
US5924361A (en) Method for perforating heat sensitive stencil sheet
US7252874B2 (en) Heat-sensitive stencil, method of preparing stencil printing master and stencil printer
US6138561A (en) Composition and method for perforating heat-sensitive stencil sheet
JP2004066737A (en) Stencil paper for thermal stencil printing and method for manufacturing it
CA2057877A1 (en) Heat-sensitive stencil paper
JP2002240454A (en) Master for thermal stencil printing, method and apparatus for stencil printing
JPH0313997B2 (en)
JPH0534157B2 (en)
JPS60180890A (en) Heat-sensitive stencil paper
JP3321318B2 (en) Manufacturing method of receiving paper
GB2378419A (en) Heat sensitive stencil
JP2002200858A (en) Master for heat-sensitive stencil printing, method for stencil printing and apparatus for stencil printing
JP4024630B2 (en) Heat-sensitive stencil paper and method for producing the same
JPH06106864A (en) Receiver medium for sublimation type heat transfer
JPH0483686A (en) Thermal mimeograph paper and manufacture thereof
JPH06106865A (en) Receiver medium for sublimation type heat transfer

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20130815 AND 20130821

PE20 Patent expired after termination of 20 years

Expiry date: 20180708