GB2311610A - Piezoelectric element for the inspection of pipes - Google Patents

Piezoelectric element for the inspection of pipes Download PDF

Info

Publication number
GB2311610A
GB2311610A GB9709289A GB9709289A GB2311610A GB 2311610 A GB2311610 A GB 2311610A GB 9709289 A GB9709289 A GB 9709289A GB 9709289 A GB9709289 A GB 9709289A GB 2311610 A GB2311610 A GB 2311610A
Authority
GB
United Kingdom
Prior art keywords
pipe
exciter
ring
piezoelectric element
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9709289A
Other versions
GB2311610B (en
GB9709289D0 (en
Inventor
Peter Cawley
David Nathaniel Alleyne
Che Wan Chan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial College of Science Technology and Medicine
Original Assignee
Imperial College of Science Technology and Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9421187A external-priority patent/GB9421187D0/en
Priority claimed from GBGB9517794.5A external-priority patent/GB9517794D0/en
Application filed by Imperial College of Science Technology and Medicine filed Critical Imperial College of Science Technology and Medicine
Publication of GB9709289D0 publication Critical patent/GB9709289D0/en
Publication of GB2311610A publication Critical patent/GB2311610A/en
Application granted granted Critical
Publication of GB2311610B publication Critical patent/GB2311610B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0425Parallel to the surface, e.g. creep waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

INSPECTION OF PIPES The present invention is concerned with the inspection of elongate members generally, but especially pipes, rods, beams, struts and other structural members in order to ascertain their condition, especially whether or not they are subject to fatigue, corrosion or erosion. The invention will be particularly described with reference to its industrial application for inspecting pipes but this is not to be construed as a limit of its application.
The inspection of pipe condition for such deleterious effects as corrosion, erosion or fatigue is frequently complicated by the need to shut down plant, the provision of obscuring lagging and the difficulty in imaging the interior of the pipe. Existing techniques for the inspection of pipes include removing any lagging to inspect the pipe visually, and then employing ultrasonic inspectoscopes or the like to look for defects developing on the inside of the pipe. An alternative technique involves mounting an ultrasonic or eddy current probe on a sledge which is then towed along the inside of the pipe. As with the aforementioned external approach every point along the pipe length must be scanned by the probe resulting in very long inspection times.
For complete understanding of the invention the reader is referred to the parent (GB9705752) of this divisional application which describes the apparatus and method used to alleviate the aforementioned disadvantages of the prior art.
The excitation of Lamb waves has previously been achieved by the use of exciters comprising electromagnetic acoustic transducers (EMAT's) but EMAT's are too large to be used in the construction of an excitation assembly capable of inducing axi-symmetric Lamb waves in a pipe which will commonly be between 70mm and 460mm.
Accordingly the present invention provides a wave exciter/transducer characterised in that a piezoelectric element is polarised to deform when a voltage is applied across its faces and has a backing structure engageable by means to clamp the piezoelectric element to the pipe whereby a wave can be propagated in the pipe in response to a control signal and to generate a wave signal in accordance with a wave travelling through the pipe.
In a first possible embodiment of the exciter the piezoelectric element is an expansion type element which expands and contracts longitudinally and the backing structure is provided by a casing filled with a lossy material. The casing and lossy material serves the purposes of protecting electrical connections to the element, providing flexural stiffness to protect the very brittle element when it is pressed onto a rough pipe surface and damping our reverberations so that the Lamb wave exciter outputs a faithful reproduction of the excitation signal.
Experience with the expansion type transducer described above has shown that even when extreme care is taken in setting up the transducers there was a persistent baseline signal of about 1% of that of the mode of interest and setting up to obtain such a low baseline signal meant that a test could take as much as two hours. This is impractical for industrial use.
The aforementioned problem is alleviated by an alternative and preferred embodiment of the exciter wherein the element may be a shear polarised piezoelectric element.
In this embodiment the surface of the element which engages the pipe is displaced in only one direction at a time, the direction changing in accordance with the excitation waveform but always parallel to the opposite surface of the element by which it is mounted to the block. The force on the pipe is therefore instantaneously applied in one direction irrespective of the position of contact on the pipe and varying in magnitude and direction in accordance with the waveform applied to the element.
Experience with transducers housed in a casing filled with the lossy material shows that, at the operating frequency of approximately 70 kHz the damping is not adequate and when the transducer is used as a receiver a reverberation tail appears in the response. The extent of this tail varies between different transducers of nominally the same design, making it very difficult to obtain an axially symmetric excitation ring. The cause of the reverberation tail is a resonance of the exciter which frequently occurs between 70 and 80 kHz but may occur at other operating frequencies. The operating frequency of the exciter is about 70 kHz and so causes a major problem.
To alleviate the aforementioned problem the piezoelectric element is backed with a rigid backing which moves all resonance of the transducer beyond the operating frequency range. The rigid backing is preferably a steel backing block and may be applied to either the expansion or shear polarised type of piezoelectric element. A further advantage of this type of backing structure is a reduction in the size of each Lamb wave exciter and it is very robust.
A plurality of the exciters may be deployed in a ring equally spaced from each adjacent exciter and clamped against a wall of the pipe by a clamping means. Each exciter can act as a wave receiver by converting the mechanical force of the wave passing through the pipe to an electrical signal. Thus the exciter will in some cases be a transducer.
It may be possible to employ an excitation ring comprising a plurality of wave exciter/transducers equiangularly spaced around the pipe under inspection where each exciter is in communication with a corresponding channel of the analysing means so that non-axisymmetric modes of the waves can be received for analysis.
A receiver assembly may be controlled to receive only a single mode of the propagating wave travelling in a single direction.
Embodiments of an exciter for inspecting a pipe using Lamb waves and constructed according to the invention will now be described, by way of example only, with reference to the accompanying figures; in which, Figure 1 shows the group velocity dispersion curves for a pipe having a diameter of 76.2mm (3 inch) and a wall thickness of 5.5mm for both axi-symmetric L(*,*) and non axi-symmetric F(*,*) Lamb wave modes propagated along the pipe, Figure 2 diagrammatically illustrates a Lamb wave excitation assembly clamped to a pipe, Figure 3 is a block diagram of an apparatus, Figure 4 is a sectioned elevation of a first embodiment of a single Lamb wave exciter, Figure 5 is a sectioned end elevation of the Lamb wave exciter in figure 4, Figure 6 is a diagrammatic sectional view through the pipe showing the symmetric deployment of some Lamb wave exciters in one Lamb wave exciter ring.
Figure 7 shows a clamping means by which an excitation assembly can be secured to the pipe, Figure 8 depicts an expansion exciter/transducer deployed using asymmetric load clamping means, Figure 9 illustrates the deformation of a shear polarised piezoelectric exciter/transducer, Figure 10a portrays the signal received where a piezo electric shear transducer is used, Figure lOb shows the signal received where an expansion exciter/transducer is used, and Figure 11 depicts a second embodiment of a Lamb wave exciter Figure 1 shows that at a desired operating frequency of 70 kHz the fastest propagation mode in a 76.2mm diameter pipe with a wall thickness of 5.5mm is the L(0,2) mode as opposed to the L(0,1) mode and it is this Lamb wave mode which is used to inspect the pipe. The L(O,1) and L(0,2) wave modes are differently propagating axi-symmetric wave modes. The difference between them is in the distribution of displacements and stresses through the pipe. The terminology is more fully explained in the article by M.G.
Silk and K.F. Bainton in the journal "Ultrasonics" of January 1979 at pp 11-19 and entitled The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves.
Figure 2 shows a length of the pipe 1 to which a Lamb wave excitation assembly 2 of the apparatus is clamped. The excitation assembly 2 comprises a first excitation ring 3A (which is shown in more detail in figure 6) a second excitation ring 3B, and a third excitation ring 3C. Each ring is of similar construction to the ring 3A shown in figure 6.
The excitation rings 3A, 3B, 3C are each comprised of a set or belt of symmetrically deployed Lamb wave exciter/transducers 5, typically 16 for a 3 inch diameter pipe and 32 for a 6 inch diameter pipe. The minimum number of Lamb wave exciters required in a ring is related to the highest order non-axisymmetric mode in the dispersion diagram at the highest frequency present in the excitation signal. If this mode order is say 13 then the minimum number of elements is 14. Each Lamb wave exciter comprises a high impedance piezoelectric element 6 and is illustrated in detail in figures 4 and 5 or 11. In use each of the Lamb wave exciters is pressed into operative engagement with the surface of the pipe 1 by a clamping means which for this example of the apparatus applies a load of 40 N to every one of the exciters. This arrangement provides sufficient coupling between the pipe 1 and the exciters 5 to make a coupling fluid unnecessary.
An example of a suitable clamping means is shown in figure 7. This clamping means consists of a ring 19 having an internal aperture 20. Spacer means such as three radially extending screws (not shown) are located at 1200 intervals around the ring 19. The screws are adjustable to engage the pipe wall and support the ring coaxially around the pipe so that it is spaced from the pipe. This minimises contact with the pipe, and hence minimises any damping of the desired waves and also reduces any wave reflection caused by the clamping means. A plurality of radially extending through holes 21 are equiangularly spaced around the ring 19.
Sufficient through holes 21 are provided to enable the required number of Lamb wave exciters 5 to be mounted one in each through hole 21. Each Lamb wave exciter 5 is mounted on the end of an elongate push rod 22. The push rod 22 is slidably received into an externally threaded sleeve 23 so that a compression coil spring 24 acting between the sleeve 23 and an abutment 25 on the rod 22 tends to project the rod 22 longitudinally. The Lamb wave exciter 5 is installed in the clamping means by screwing the sleeve 23 into the internally threaded hole 21 so that the Lamb wave exciter 5 is pressed against the exterior of the wall of the pipe 1 by the action of the spring 24. The load can be adjusted by screwing and unscrewing the sleeve 23.
In a preferred form of the clamping means, the ring 19 is split radially into one or more separable parts 19a, 19b.
In the example illustrated in figure 7 the two parts l9a, l9b, are joined together by two hinge and bolt assemblies generally designated at 26a and 26b. Each hinge and bolt assembly comprises a pair of brackets 27a, 27b. The bracket 27a being mounted on a first part of the ring 19 adjacent where the ring is split, and each bracket 27b being similarly mounted upon the other ring part 19b.
One of the brackets 27a has a through hole 28 in it which extends tangentially to the ring and is of sufficient diameter for an allen key bolt 29 to be received through it.
The through hole 28 is not threaded. Each bracket 27b also includes a tangentially extending aperture into which the bolt 29 is received. The bolt 29 screws into a pivot pin 30 mounted to extend parallel to the axis of the ring 19. The aperture in each bracket 27b allows the bolt 29 to pivot when it is screwed into the pivot pin 30.
The bracket 27a in the assembly 26b differs from the one in the assembly 26a in that the bracket 27a consists of two forks which allow the bolt 29 to be swung out from the bracket when loosened so allowing the ring parts 19a, 19b to be hinged apart around the pivot pin 27b in the other of the brackets.
Although the preferred form of mounting means is the hinged split ring described, it is possible to use a simple ring slipped onto the end of the pipe or a split ring without the hinge and bolt assemblies described but with simple bolt together brackets, overlocking fastenings, buckle and belt type fastenings and a wide range of other mechanisms. The ring shaped mounting means is preferred but any structure which will take up a ring like shape and provide support for the Lamb wave exciters may be suitable, for example, a polygonal structure or an articulated belt structure.
A detailed section through one of the expander type exciter elements is shown in figures 4 and 5. The piezoelectric element 6 is elongate and polarised so that it expands and contracts along its length. Elements of this type are known for use as strain gauges. The element 6 has a backing structure comprising a casing 7, fabricated from Tufnel, in the base of which it is housed The casing has upright opposing side walls 8 and end walls 9 and a sealing cover 10. A miniature coaxial cable 11, for connection of the piezoelectric element 6 to control and analysis instrumentation, penetrates the cover 10 and is connected with the piezolelectric element 6 within a chamber 12 formed by the casing. A thin face plate shim 13 is secured against the face of the piezoelectric element 6 to provide a wear plate which protects the piezoelectric element 6 so as to freely transmit forces from the pipe to the piezoelectric element. The shim 13 must be sufficiently thin that its shear stiffness is high enough not to interfere with the coupling of the piezoelectric element 6 with the pipe 1. In the embodiment the shim is of 0.06mm thick steel or brass and may be electrically insulated from the piezoelectric element at the bondline between them. However, the shim 13 may be of a non-conducting material to electrically insulate the piezoelectric element 5. The chamber 12 is filled with tungsten loaded epoxy which is a lossy material serving the purposes of protecting the gauge and electrical connections, providing flexural stiffness so that the very brittle piezoelectric element 6 is not damaged when pressed against a rough pipe surface and it damps out reverberations so that the transducer outputs a faithful reproduction of an excitation signal applied to it or, when used as a receiver, it generates a voltage corresponding to a wave passing it.
Thus the lossy material provides means to accommodate pipe surface roughness and to damp out reverberations.
Figure 9 diagrammatically shows a shear polarised piezo electric transducer 6A which may be used in preference to the expansion type piezo electric transducer 6. With this type of transducer the face engaging the pipe wall moves in one direction only parallel to the pipe axis and so exerts a force in the same direction over its full length. Figures lOa and lOb illustrate the improvement achieved in signal clarity when a shear polarised transducer is used. Figure lOa shows the received signal obtained with a single shear polarised transducer loaded at three different positions along its length. It can be seen that the magnitude of the response is similar at the three positions and, crucially the phase is the same. Figure lOb shows the result of a similar experiment with an expansion type transducer where clear phase changes can be seen. The experiments were with a single transducer instead of a ring so that a significant amplitude of non axially symmetric modes can be seen.
Figure 11 shows a second embodiment of a single Lamb wave exciter for use in an excitation ring. In this embodiment the shear polarised piezoelectric element 6A as described above, is adhesively bonded to a rigid block 31.
In this case the rigid block 31 is made of steel and the bonding is achieved by an epoxy cement. A face shim 32, which may be made of brass, is bonded to the face of the piezoelectric element 6A. A passage 33 is formed through the backing block 31 and provides protective support for the electrical connections to the piezo electric element 6A. The rigid block backing structure can usefully back the expansion type piezoelectric element.
Each Lamb wave exciter ring 3 is controlled via the instrumentation shown in figure 3 so that each of the exciters 6 in any one exciter ring 3 act in phase. The instrumentation comprises a computer, which in this case is a personal computer 14 which computes the necessary excitation signals for each exciter ring 3A, 3B, 3C. The excitation signals are then fed to a multi-channel signal generator 15 which in the embodiment described has three channels to supply signals to each of the excitation rings 3A, 3B, 3C. The signal generator 15 will have sufficient channels to supply as many excitation rings as are desired.
More than three rings may be desired in some circumstances, e.g., to amplify the desired single mode Lamb wave. The excitation signals are then fed to an amplifier 16 which amplifies each channel of the excitation signals separately and applies them to the excitation rings 3 so that the excitation assembly generates a signal L(0,2) axi-symmetric mode Lamb wave propagating in one direction down the pipe.
In some applications modes other than the L(0,2) mode may be employed.
Different numbers of exciter rings 3 may be employed in order to suppress undesired axi-symmetric modes and to limit the propagation of the desired mode to one direction. In the currently preferred format, three rings are employed, successive rings being separated by a distance L as shown in Fig 2. This distance L is set to be: L = (2m+1)X1, m is integer 2 where X1 is the wavelength of the mode which is to be suppressed in both directions. In the preferred format, m=O so L = A1 2 However, due to the physical size of the rings, it is not always possible to achieve separations small enough to implement this, so m may be set to a larger integer.
The signal applied to the first exciter ring 3A is a toneburst centred on the desired frequency (commonly around 70 kHz) enclosed in a Hanning or Gaussian window to limit the bandwidth. The signal applied to the third ring 3C is identical to that applied to ring 3A but delayed by a time T given by: T = X ((2n + 1) - X1 ), n is integer o X, where X is the centre frequency of the toneburst (expressed in rad/sec) and X1 and X2 are the wavelengths at the centre frequency of the mode which is to be suppressed in both directions and the desired mode which is to be suppressed in the backward direction respectively. Generally, n is set to zero so: T = ir ( 1 - x2 The signal applied to the middle exciter ring 3B is the sum of the signals applied to rings 3A and 3C.
This arrangement suppresses the undesired mode in both directions at the centre frequency of the input toneburst, but not at the other frequencies present in the signal. If the desired mode is non dispersive (ie its velocity does not vary with frequency) then propagation of this mode in the backward direction is suppressed at all frequencies present in the input toneburst. However, if the mode is dispersive then suppression in the backward direction is only achieved at the centre frequency. In this case, it is desirable to modify the signal applied to the third ring 3C.
Suppose that the phase velocity of the desired mode is a function of frequency, c = g(X). Then the wavelength, X is given by 2nC = 2na() 'C, Suppose that the excitation signal applied to the first ring is x(t) and the Fourier transform of this signal is X(X)eiUt. At each frequency we want the excitation signal applied to the second ring to lag that applied to the first ring by T where T = X ~ L o g(co) and L is the spacing between the exciter rings. Then the Fourier components of the required signal are given by Y(o) = X(o),i(t'T) and the excitation signal applied to the second ring is given by the inverse Fourier transform of Y(t),
where the integral is taken over the full bandwidth of the signal.
The signal applied to ring 3B will again be the sum of the signals applied to rings 3A and 3C. A similar procedure may used in reception to improve the analysis of received signals comprising a dispersive mode.
The cancellation of more than one unwanted axisymmetric mode requires additional excitation rings.
Additional excitation rings may also be useful for increasing the amplitude of the desired single axisymmetric mode in the forward direction.
If the only object of using more than one exciter ring is to suppress backward propagation of the mode we wish to excite in the forward direction then it is advantageous to let L= X/4. Then, T is a quarter period at the centre frequency of the excitation signal and it may be shown that the amplitude of the forward propagating wave is maximised at this frequency.
In the embodiment the excitation elements also serve as receivers, thus a Lamb wave that has been propagated down the pipe 1 and reflected back up the pipe 1 disturbs the piezoelectric elements of each Lamb wave exciter in the exciter rings 3. This disturbance causes the piezoelectric elements to generate a voltage signal which is applied to the instrumentation shown on the right in figure 3. Thus each exciter ring 3 generates a corresponding signal. Each of these signals is fed, one each to each one of an array 17 of high bypass filters and then to a receiver amplifier 18 before being supplied to a digital to analogue converter 19 and then to the computer 14 for analysis. The high bypass filters may be set at 10kHz.
The signals received at each ring may be processed in software using an analysis similar to that used to produce the excitation signals for single mode, single direction propagation. The output of this processing is a signal comprising a single, axi-symmetric mode generated by reflections from features in the pipe. It is also possible to employ one receiver channel per Lamb wave exciter/transducer, rather than one per ring. If this is done it is possible to employ a more sophisticated analysis to determine the amplitudes of other, non-axisymmetric modes present in the reflected signal which may be produced by mode conversion at features in the pipe. One way of carrying out this analysis is described in: Alleyn D. N., and Cawley P., 'A 2-dimensional Fourier transform method for the measurement of propagating multi-mode signals', J Acoust Soc Am, Vol 89, pp1159-1168, 1991. This more sophisticated process can give more information about the nature and size of features in the pipe.
Figure 8 diagrams an expansion type piezoelectric transducer element 6 in which the clamping load is applied to the front edge of the transducer element.

Claims (5)

Claims
1. A wave exciter/transducer characterised in that a piezoelectric element (6) is polarised to deform when a voltage is applied across its faces and has a backing structure engageable by means to clamp the piezoelectric element (6) to the pipe whereby a wave can be propagated in the pipe in response to a control signal and to generate a wave signal in accordance with a wave travelling through the pipe.
2. An exciter according to claim 1 wherein the piezoelectric element (6) is a shear polarised piezoelectric element (6A).
3. An exciter according to claim 1 or 2 wherein the backing structure is provided by a rigid backing block (31).
4. An exciter according to any one of claims 1 to 3 wherein the pipe engageable face of the piezoelectric element (6) is protected by a face shim (13, 32) secured to it.
5. A wave exciter/transducer as herein described with reference to the accompanying figures.
GB9709289A 1994-10-20 1995-10-20 Inspection of pipes Expired - Lifetime GB2311610B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9421187A GB9421187D0 (en) 1994-10-20 1994-10-20 Inspection of pipes
GBGB9517794.5A GB9517794D0 (en) 1994-10-20 1995-08-31 Inspection of pipes
GB9705752A GB2308191B (en) 1994-10-20 1995-10-20 Inspection of pipes

Publications (3)

Publication Number Publication Date
GB9709289D0 GB9709289D0 (en) 1997-06-25
GB2311610A true GB2311610A (en) 1997-10-01
GB2311610B GB2311610B (en) 1998-08-19

Family

ID=27267439

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9709289A Expired - Lifetime GB2311610B (en) 1994-10-20 1995-10-20 Inspection of pipes

Country Status (1)

Country Link
GB (1) GB2311610B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1288853A (en) * 1969-12-23 1972-09-13
GB2014311A (en) * 1978-02-10 1979-08-22 Commissariat Energie Atomique A Device for Ultrasonic Inspection of the Quality of a Tubular Part
US4286470A (en) * 1979-10-19 1981-09-01 Lfe Corporation Clamp-on ultrasonic transducer
WO1981002636A1 (en) * 1980-03-03 1981-09-17 Republic Steel Corp Ultrasonic inspection
US4838127A (en) * 1986-09-29 1989-06-13 Altometer, Produktiebedrijf Van Rheometron A.G. Ultrasonic flow meter
WO1995005585A1 (en) * 1993-08-16 1995-02-23 Enprotech Corporation Multiple axis transducer mounting collar and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1288853A (en) * 1969-12-23 1972-09-13
GB2014311A (en) * 1978-02-10 1979-08-22 Commissariat Energie Atomique A Device for Ultrasonic Inspection of the Quality of a Tubular Part
US4286470A (en) * 1979-10-19 1981-09-01 Lfe Corporation Clamp-on ultrasonic transducer
WO1981002636A1 (en) * 1980-03-03 1981-09-17 Republic Steel Corp Ultrasonic inspection
US4838127A (en) * 1986-09-29 1989-06-13 Altometer, Produktiebedrijf Van Rheometron A.G. Ultrasonic flow meter
WO1995005585A1 (en) * 1993-08-16 1995-02-23 Enprotech Corporation Multiple axis transducer mounting collar and method

Also Published As

Publication number Publication date
GB2311610B (en) 1998-08-19
GB9709289D0 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
US6148672A (en) Inspection of pipes
Alleyne et al. The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers
Eitzen et al. Acoustic emission: establishing the fundamentals
Li et al. Implementing guided wave mode control by use of a phased transducer array
Alleyne et al. A signal regeneration technique for long-range propagation of dispersive Lamb waves
Alleyne et al. The inspection of chemical plant pipework using Lamb waves: Defect sensitivity and field experience
US5569854A (en) Apparatus and method for transmitting and receiving ultrasonic waves having an acoustoelectric, ultrasonic transducer
AU6925294A (en) Method and device for the non-destructive testing of objects using ultrasonics
GB2311610A (en) Piezoelectric element for the inspection of pipes
Yamasaki et al. Optimum excitation signal for long-range inspection of steel wires by longitudinal waves
Vogelaar et al. Pipe Attrition Acoustic Locater (PAAL) from multi-mode dispersion analysis
Holé et al. Single transducer generation of unipolar pressure waves
Konovalov et al. Generating short pulses at the output of an emission–reception system when the emitter is excited with pulses with a special shape
Kang et al. Wideband Electromagnetic Dynamic Acoustic Transducer as a Standard Acoustic Source for Air-coupled Ultrasonic Sensors
Jia et al. Experimental investigations of Lamb waves on pulsed piezoelectric transducers and their ultrasonic radiation into liquids
Sachse Applications of quantitative AE methods: dynamic fracture, materials and transducer characterization
Aronov et al. Methods of Experimental Investigation of Acoustical Interactions between Electroacoustical Transducers in Arrays
Brysev et al. Improvement of the focusing quality by parametric phase conjugation of ultrasonic beams in a ferrite cylinder with grooved working surface
Denis et al. A wave-based optimization strategy of curved joints for improved defect detection in coupled waveguides
Moetakef et al. Finite element simulation of bulk elastic waves in piezoceramic transducers using interdigital electrodes
Hay et al. Interfacing guided-wave ultrasound with wireless technology
Soni et al. Reference-free fatigue crack detection, localization and quantification in lug joints
Wright Electrostatic Transducers for Ultrasonics
Benmeddour et al. J, Study of fundamental Lamb modes behaviour with a sharp change of section in a plate
Hutchins et al. The field of finite-sized ultrasonic transducers in a solid

Legal Events

Date Code Title Description
PE20 Patent expired after termination of 20 years

Expiry date: 20151019