GB2310897A - Reducing stress on the tips of turbine or compressor blades - Google Patents

Reducing stress on the tips of turbine or compressor blades Download PDF

Info

Publication number
GB2310897A
GB2310897A GB9708591A GB9708591A GB2310897A GB 2310897 A GB2310897 A GB 2310897A GB 9708591 A GB9708591 A GB 9708591A GB 9708591 A GB9708591 A GB 9708591A GB 2310897 A GB2310897 A GB 2310897A
Authority
GB
United Kingdom
Prior art keywords
blade
tip
abrasive coating
coating
leading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9708591A
Other versions
GB9708591D0 (en
GB2310897B (en
Inventor
Melvin Freling
Gary A Gruver
Jr Joseph John Parkos
Douglas A Welch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/138,521 external-priority patent/US5476363A/en
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of GB9708591D0 publication Critical patent/GB9708591D0/en
Publication of GB2310897A publication Critical patent/GB2310897A/en
Application granted granted Critical
Publication of GB2310897B publication Critical patent/GB2310897B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/312Layer deposition by plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/16Other metals not provided for in groups F05D2300/11 - F05D2300/15
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/228Nitrides
    • F05D2300/2282Nitrides of boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6032Metal matrix composites [MMC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

METHOD AND APPARATUS FOR REDUCING STRESS ON THE TIPS OF TURBINE OR COMPRESSOR BLADES Field of the Invention The present invention relates to methods for reducing stress on the tips of blades in a gas turbine engine, and more specifically, to a method for reducing stress on blade tips intended to contact a circumferencial seal.
Background of the Invention Gas turbine engines include a series of compressor and turbine blades that rotate about a central axis of the engine. The efficiency of the compressor and of the engine depends in part on the volume of compressed air that leaks through the interface between the compressor blades and the surrounding circumferencial shrouds or seals. Similarly, the efficiency of the turbine section is affected by leakage of the expanding products of combustion past the circumference of the turbine blades. Engine efficiency can be increased by decreasing the size of the gap between the tips of the compressor or turbine blades and the cooperating circumferencial seal to reduce leakage past the blade, seal interface.
One prior art method used to reduce loss between the blade tips and the cooperating circumferencial seal employs abradable seals. In this structural configuration, the circumferencial seal that surrounds the blades is formed of a material that can readily be worn away or abraded by contact with the blade tips. In order to seat the blades in the seal, the blades are rotated so that the tips of the blades rub against or abrade the outer seal until a proper fit is achieved. This method of seating the seal, produces a close tolerance fit that reduces air losses through the seal.
The use of abradable outer seals has been successful in increasing engine efficiency.
In the past, the abradable outer seals were commonly formed of a material commonly referred to as "fiber" metal. Fiber metal is a very soft, easily abradable material that allowed the blade tips to cut into the seals without causing significant damage or wear to the blade tips.
In modern turbine engines, even closer tolerances between the blades and seals than have been achieved in the past are desirable to further increase engine efficiency. To achieve this, outer seals are being formed from harder, denser and more durable materials capable of producing closer tolerances and greater seal life. However, the use of such materials contributes to increased damage and wear of the blade tips during the seating process. Physical contact between the blade tips and the harder seal materials tends to abrade and damage the blade tips. This damage in turn contributes to increased blade wear and increased metal temperatures which can lead to failures due to crack initiation and propagation. Tip abrasion reduces overall blade life and affects the aerodynamic configuration of the blade, thus decreasing engine efficiency.
One method known to reduce blade tip wear during seal seating in the harder seal material is to apply an abrasive coating to the blade tips as shown in FIGURES 1-2. An abrasive coating 10 is applied to the tip 12 of a blade 14. The abrasive coating is a hard material that helps the blade to cut into the abradable seal without causing significant wear or damage to the abrasive coating 10 or blade tip 12. Often, the abrasive coating includes abrasive particles 16 that are trapped within some type of metal matrix. The abrasive particles may protrude from the tip coating in order to assist the blade tip in cutting into and seating in the abradable seal.
Two examples of methods to apply an abrasive tip coating are disclosed within U.S. Patent Nos. 5,074,970 and 4,169,020, the specifications of which are incorporated herein by reference. Many different materials can be used as abrasive tip coatings, including nickel or aluminium oxide, cubic boron nitride, various abrasive carbides, oxides, silicides, nitrides, and other materials suspended in a matrix.
Such coatings can be applied by electroplating, plasma spraying, or in accordance with other methods commonly known and practised by those of ordinary skill in the art.
While it is true that abrasive tip coatings reduce blade tip wear and damage during the seating of the abradable seal, contact between the tip of the blade and the abradable seal add to the magnitude of the already high stress levels present at the tip of the blade during engine operation. As illustrated in FIGURE 3, during engine operation, the tip of the blade tends to deform at a resonance frequency. A representative mode shape for a typical tip resonance bending mode is shown in phantom in FIGURE 3. In the mode shown, the leading 17 and trailing 18 edges of the blade deform alternately inwardly and outwardly during resonance introducing bending stress through the thickness of the blade. As illustrated in the cross section of the blade shown in FIGURE 4, the absolute magnitude of the stress 19 increases as one moves from the center of the blade toward either of the opposing surfaces. Contact between the tip of the blade and the circumferencial seal further increases the magnitude of the stress at the blade tip and contributes to blade failure due to crack initiation and propagation.
Tip coatings further increase the magnitude of the stress at the blade tip because each of the abrasive particles 16 (FIGURE 2) can act as an individual stress riser on the blade tip. These stress risers in turn increase the chance of blade failure due to crack initiation and propagation.
The use of abrasive tip coatings is especially detrimental to the fatigue life of blades formed from highly crack sensitive materials, such as titanium. Titanium is one of the preferred materials from which compressor blades are manufactured, due to its high strength, temperature tolerance, stiffness, and low density. Therefore, fatigue strength reductions caused by tip coatings are particularly important in the production of more efficient, long life turbine engines made with such materials.
As the understanding of the aerodynamic processes occurring within gas turbine engines improves, it will become even more important to reduce the detrimental effect of tip coatings on overall blade life.
Blades are becoming increasingly thinner and more sharply contoured in order to increase aerodynamic efficiency. Thus, new blade configurations have less surface area on the blade tips on which to apply abrasive coatings. This decrease in surface area may require development of new abrasive coatings for seating the blades in the abradable seals.
Summary of the Invention The present invention helps to overcome the disadvantages of prior art blade designs by reducing the magnitude of the stress at the blade tip.
This reduction in stress in turn helps to prevent crack initiation and growth, thus increasing blade fatigue strength. The present invention can be used to decrease stress at the tip of any blade. However, the present invention is particularly advantageous on blades having tip coatings.
Furthermore, the present invention is applicable to blades formed of any materials, but is particularly advantageous for use on blades formed from crack sensitive materials, such as titanium alloys.
Stress at the tip of the blades is reduced by tailoring the configuration of the blade tip. The blade tip configuration is tailored to shift the maximum stress away from the blade tip, thus helping to increase high cycle fatigue strength.
In accordance with the present invention we provide a method for increasing blade fatigue strength in a turbine engine that includes blades, each of which has a base and a tip, in which an abrasive coating placed on the tip of the blade is applied only in a center portion of the blade tip.
Thus, the coating does not extend to or touch the outer edges of the blade tip. By coating only the center portion of the tip of the blade, the stress concentrations at the blade tip due to the abrasive coating are reduced, thereby increasing blade fatigue strength. One preferred abrasive coating used is formed of cubic boron nitride particles embedded in a nickel alloy matrix. The abrasive coatings are applied by electroplating, plasma spraying, or by employing other application methods.
Brief Description of the Drawings The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein: FIGURE 1 is an isometric view of a prior art blade that includes an abrasive tip coating; FIGURE 2 is an enlarged cross-sectional view of the blade of FIGURE 1, taken along section line 2-2 in FIGURE 1; FIGURE 3 is an isometric view of the blade of FIGURE 1 illustrating a representative bending mode shape; FIGURE 4 is an enlarged cross-sectional view of the blade of FIGURE 3, taken along section line 4-4 in FIGURE 3, illustrating the representative stress levels across the thickness of the blade; FIGURE 5 is an enlarged cross-sectional view of a representative stress level across the thickness of a blade incorporating the present invention; FIGURE 6 is an elevational end view of a blade in accordance with one preferred embodiment of the present invention; and FIGURE 7 is an enlarged cross-sectional view of the blade of FIGURE 6, taken along section line 11-11 in FIGURE 3.
FIGURE 8 is an elevational end view of the blade of FIGURE 6; FIGURE 9 is an enlarged cross-sectional view of an alternative embodiment of the blade of FIGURE 6, taken along the section line 7-7 in FIGURE 6; FIGURE 10 is an elevational end view of a blade, including an alternate embodiment of the present invention; and FIGURE 11 is a cross sectional view of the blade of FIGURE 10, taken along section line 11-11 in FIGURE 10.
Detailed Description of the Preferred Embodiments Referring initially to FIGURES 1-2, a prior art blade 14 that includes abrasive tip coating 10 on blade tip 12 and is configured to rub against a circumferencial seal is illustrated. As discussed above, the prior art blade 14 is generally configured as an air foil for use in either the compressor or turbine section of a turbine engine (not shown). The abrasive tip coating 10 includes abrasive particles 16 that create stress concentrations at the interface between the abrasive tip coating and the blade tip 12. These stress concentrations in turn help to induce and propagate cracks at the blade tip 12 during engine operation.
Now referring to FIGURES 5-7, a blade 20 including a first preferred embodiment of the present invention is illustrated. In accordance with the present invention, material is removed from the tip of the blade in order to reduce the stress at the tip of the blade. As illustrated in FIGURE 5, by forming chamfers 30 on the tip of the blade or otherwise removing material from the tip of the blade, the stress distribution 21 at the tip of the blade caused by blade bending is altered.
The maximum bending stress occurs at the outermost surface of the blade.
Thus, by chamfering the edges of the blade at the tip 23, the stress at the tip of the blade is reduced by an amount 33. This reduction in stress at the blade tip reduces blade failure by reducing the chance of crack initiation and propagation at the blade tip.
The present invention is applicable to either compressor or turbine blades, both with and without tip coatings and is particularly suited to highly stressed titanium compressor blades due to high susceptibility of titanium alloys to crack initiation and growth.
The preferred embodiment of blade 20 is represented in FIGURES 5-7 as having an air foil shape; however, the aerodynamic configuration of this embodiment of the blade is not meant to be limiting. In fact, the present invention is applicable to all different blade shapes and configurations. Blade 20 includes a body 22 having a leading edge 24, a trailing edge 26, a convex front and a concave back opposing surface 27 and 28, and a blade tip 29. The boundaries of the center portion of the blade tip are defined by the leading and trailing edges 24 and 26 and by opposing surfaces 27 and 28.
In accordance with the present invention, chamfers 30 extend along the opposing surfaces of the blade tip, at least partially between the leading and trailing edges 24 and 26. In a preferred embodiment shown, the chamfers 30 are located on both surfaces 27 and 28 and extend approximately an equal distance along the opposing surfaces of the blades.
However, the configuration of the preferred embodiment shown is not meant to be limiting, and in alternative embodiments, the chamfers could extend different distances along the opposing surfaces of the blade tip, around the entire upper periphery of the blade tip, or along a single surface of the blade.
As best seen in FIGURES 6 and 8, the chamfers 30 in the preferred embodiment begin behind the leading edge 24 of the blade and terminate ahead of the trailing edge 26 of the blade. In addition, as best seen in FIGURE 7, the chamfers begin just below the tip of the blade and slant inwardly toward the center of the blade. In the preferred embodiment, the chamfers slope inwardly at an angle + of approximately 45". The angle of the chamfer thus shown and defined is not meant to be limiting; however, the preferred angle + of the chamfer is believed to be within the approximate range of 30 to 500. Further, the chamfer can comprise multiple angles or surfaces joined to form the chamfer. In the preferred embodiment, a distance 42 (measured along the length of the blade) over which the chamfer extends is approximately 8 to 15 mils. However, the dimensions of the chamfer illustrated are not limiting and other chamfer angles and lengths could be used in alternative embodiments.
The angle + of the chamfer and the distance 42 over which the chamfer extends represent a tradeoff between the reduction in stress concentration desired at the blade tip and the amount of surface area of the blade tip left after chamfering. The amount of surface area remaining on the blade tip after chamfering determines the amount of surface area on which a tip coating can be applied. This limit in turn determines the surface area of tip coating available to cut into the abradable outer seals during the seating procedures. If insufficient surface area remains after chamfering, it is possible that the tip coating might be worn away by contact with the abradable outer seal prior to completing the seating process. On the other hand, insufficient chamfering reduces the amount of stress relief provided, thus possibly reducing the advantages of the present invention, as discussed in more detail below.
Abrasive tip coatings can be formed of numerous different materials including aluminium oxide, cubic boron nitride, various abrasive carbides, oxides, silicides, nitrides, or other suitable materials capable of surviving the severe environments in which blades operate.
These coatings can be applied through electroplating, plasma spraying, or by other suitable methods of application. In the preferred embodiment, a coating formed of cubic boron nitride particles embedded in a nickel alloy matrix is applied to the blade tips by electroplating.
Tailoring the angle + of chamfer and distance 42 over which the chamfer extends controls the tradeoff between required blade tip area and required stress relief. If a lower angle of chamfer is used, a greater tip area remains, thus allowing a larger surface area on which to place an abrasive coating. Increasing the angle of chamfer or the distance of the chamfer allows the location of the stress concentration to be moved further downwardly, away from the tip of the blade. This effect in turn decreases the stress concentration at the interface between the tip coating 46 and the body 22 of the blade, thereby decreasing blade susceptibility to crack initiation and propagation. The dimensions of the chamfer will vary with differing blade designs; thus with each new design it will be necessary to optimize the dimensions of the chamfer.
As best seen in FIGURE 8, the chamfer extends along the opposing surfaces of the blade tip over a distance 32. In the preferred embodiment, distance 32 is approximately 75-90% of the blade's overall width.
However, the chamfer can extend over different percentages of overall blade width or around the entire periphery of the blade without affecting the efficiency of the present invention, depending on the blade configuration. As with the chamfer angle, the distance over which the chamfer extends represents a tradeoff between the amount of tip area available on which to apply a tip coating and the amount of stress reduction at the blade tip desired. The length of the chamfer must be sufficient to reduce the stress at the highest stressed areas of the blade tip.
Generally, the middle portion of the blade is more highly stressed than the leading and trailing edges.
It is also desirable to form a radius of curvature 34 at the chamfer's leading and trailing edges. The radius of curvature helps prevent any sharp blade contours that could increase stress concentrations at the blade tip. in the preferred embodiment, a radius of curvature of .047-.078" is used; however, other radii could be used, depending on blade configuration and materials. The chamfers can be cut on the blade tip using a number of prior art grinding or milling methods.
In the preferred embodiment illustrated in FIGURES 6-8, the abrasive coating 46 is applied after the chamfering process such that the abrasive coating is not chamfered. Chamfering the blade prior to applying the abrasive coating is preferred because it simplifies handling and manufacturing of the blade. It is advantageous to peen the tip of the blades, including the chamfers, in order to induce compressive stresses in the chamfered region. These compressive stresses help to reduce crack initiation and propagation, thus increasing blade fatigue life. If peening is done after applying the abrasive coating, the abrasive coating could be damaged during the peening operation. Applying the abrasive coating after chamfering also helps to prevent damage to the abrasive coating during the chamfering process.
In the alternative embodiment shown in FIGURE 9, the abrasive coating 46' has been applied to the blade tip prior to chamfering. Thus, the abrasive coating has also been chamfered. As with the preferred embodiment, it is then advantageous to peen the blade. Although, as discussed above, chamfering prior to coating is preferred due to manufacturing considerations, coating prior to chamfering reduces stress at the blade tip and is also included in the present invention.
For illustrative purposes only, the exemplary embodiments of the present invention use tip coating 46 formed of cubic boron nitride particles in a nickel alloy matrix. The tip coating has an average thickness of 3-15 mils. The tip of the blade is chamfered prior to tip coating at an angle of 45C and extends approximately 75-80% over the length of the blade. In addition, the length 42 over which the chamfer extends is approximately 8-15 mils.
An embodiment of the present invention is illustrated in FIGURES 10 and 11. In this embodiment, chamfers are not used to reduce the stress concentration as the blade tip instead, an abrasive coating 68 is applied only in the central portion of the tip of the blade.
The abrasive coating begins slightly behind the leading edge 60 and terminates slightly ahead of the trailing edge 62. In addition, the edges of the abrasive coating do not extend all the way to the opposing surfaces 64 and 66 of the blade. Thus, the tip coating 68 is confined to the center portion of the blade tip and the peripheral edges of the tip coating are set back from the adjacent boundaries of the blade tip. As with chamfering, this embodiment of the present invention decreases the stress concentrations at the intersection between the body of the blade and the tip coating. Because the tip coating is confined to the center portion of the blade tip, it helps to reduce the stress concentrations at the highest stress edges of the blade tip, thus helping to prolong blade fatigue life.
The present invention is also applicable to alternate blade configurations having no tip coatings. As explained with respect to the preferred embodiment, chamfering the tip of the blade or otherwise removing material from the tip of the blade allows the stress at the tip of the blade to be reduced. This in turn helps to reduce blade failures due to crack initiation or propagation at the blade tip regardless of coatings or no coatings.
While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims (8)

1. A method of maintaining blade fatigue strength in a turbine engine wherein the blade contacts a circumferencial seal, comprising the steps of: (a) providing at least one blade having a blade tip including a leading edge, a trailing edge, opposing surfaces, and a center portion defined by the leading and trailing edges and opposing surfaces; and (b) applying an abrasive coating to the center portion of the blade tip so that a peripheral edge of the abrasive coating remains set back from the opposing surfaces of the blade tip and extends at least partially between the leading and trailing edges.
2. The method of claim 1 further comprising the step of peening the blade tip.
3. The method of claim 1, wherein the abrasive coating comprises cubic boron nitride particles embedded in a nickel alloy matrix, and wherein step (b) further comprises applying the cubic boron nitride coating to the center portion of the blade tip.
4. A blade having improved fatigue strength for use in a turbine engine wherein the blade contacts a circumferencial seal, the blade comprising: (a) a base and a tip, the tip including leading and trailing edges, opposing surfaces, and a center portion defined by the leading and trailing edges and opposing surfaces; and (b) an abrasive coating disposed on the center portion of the tip so that a peripheral edge of the abrasive coating remains set back from the opposing surfaces and extends at least partially between the leading and trailing edges.
5. The blade of claim 4, wherein the abrasive coating is applied by electroplating.
6. The blade of claim 4, wherein the abrasive coating is applied by plasma spraying.
7. A blade for a turbine engine substantially as described herein with reference to and as illustrated in Figures 10 and 11 of the accompanying drawings.
8. A method of maintaining blade fatigue strength substantially as described herein with reference to and as illustrated in the accompanying drawings.
GB9708591A 1993-10-15 1994-10-11 Method and apparatus for reducing stress on the tips of turbine or compressor blades Expired - Lifetime GB2310897B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/138,521 US5476363A (en) 1993-10-15 1993-10-15 Method and apparatus for reducing stress on the tips of turbine or compressor blades
GB9420419A GB2282856B (en) 1993-10-15 1994-10-11 Method and apparatus for reducing stress on the tips of turbine or compressor blades

Publications (3)

Publication Number Publication Date
GB9708591D0 GB9708591D0 (en) 1997-06-18
GB2310897A true GB2310897A (en) 1997-09-10
GB2310897B GB2310897B (en) 1998-05-13

Family

ID=26305773

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9708591A Expired - Lifetime GB2310897B (en) 1993-10-15 1994-10-11 Method and apparatus for reducing stress on the tips of turbine or compressor blades

Country Status (1)

Country Link
GB (1) GB2310897B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291494A1 (en) * 2001-09-11 2003-03-12 Snecma Moteurs Method for producing labyrinth seal tongues for movable parts in turbines
EP1452697A2 (en) * 2003-02-27 2004-09-01 General Electric Company Gas turbine and method for reducing bucket tip shroud creep rate
EP1555392A2 (en) 2004-01-13 2005-07-20 ROLLS-ROYCE plc Cantilevered stator stage
EP1624192A1 (en) * 2004-08-06 2006-02-08 Siemens Aktiengesellschaft Impeller blade for axial compressor
EP1930547A2 (en) * 2006-11-24 2008-06-11 IHI Corporation Compressor blade for a gas turbine engine
EP2952685A1 (en) * 2014-06-04 2015-12-09 United Technologies Corporation Airfoil, corresponding gas turbine engine and method of reducing frictional heating
EP3561226A1 (en) * 2018-04-24 2019-10-30 Siemens Aktiengesellschaft Compressor aerofoil
EP4095288A1 (en) * 2021-05-27 2022-11-30 MTU Aero Engines AG Method for coating a component

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1106261A (en) * 1965-02-24 1968-03-13 Gen Electric Improvements in rotary seal
US4227703A (en) * 1978-11-27 1980-10-14 General Electric Company Gas seal with tip of abrasive particles
US4232995A (en) * 1978-11-27 1980-11-11 General Electric Company Gas seal for turbine blade tip
GB2075129A (en) * 1980-05-01 1981-11-11 Gen Electric Tip cap for a rotor blade and method of replacement
GB2139114A (en) * 1981-11-02 1984-11-07 United Technologies Corp Co-spray abrasive coating
US4514469A (en) * 1981-09-10 1985-04-30 United Technologies Corporation Peened overlay coatings
US4589823A (en) * 1984-04-27 1986-05-20 General Electric Company Rotor blade tip
EP0292250A1 (en) * 1987-05-19 1988-11-23 Union Carbide Corporation Rotary gas seals and turbine and compressor blades
US4802828A (en) * 1986-12-29 1989-02-07 United Technologies Corporation Turbine blade having a fused metal-ceramic tip
WO1992021478A1 (en) * 1991-06-05 1992-12-10 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland A titanium compressor blade having a wear-resistant portion

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1106261A (en) * 1965-02-24 1968-03-13 Gen Electric Improvements in rotary seal
US4227703A (en) * 1978-11-27 1980-10-14 General Electric Company Gas seal with tip of abrasive particles
US4232995A (en) * 1978-11-27 1980-11-11 General Electric Company Gas seal for turbine blade tip
GB2075129A (en) * 1980-05-01 1981-11-11 Gen Electric Tip cap for a rotor blade and method of replacement
US4514469A (en) * 1981-09-10 1985-04-30 United Technologies Corporation Peened overlay coatings
GB2139114A (en) * 1981-11-02 1984-11-07 United Technologies Corp Co-spray abrasive coating
US4589823A (en) * 1984-04-27 1986-05-20 General Electric Company Rotor blade tip
US4802828A (en) * 1986-12-29 1989-02-07 United Technologies Corporation Turbine blade having a fused metal-ceramic tip
EP0292250A1 (en) * 1987-05-19 1988-11-23 Union Carbide Corporation Rotary gas seals and turbine and compressor blades
WO1992021478A1 (en) * 1991-06-05 1992-12-10 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland A titanium compressor blade having a wear-resistant portion

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291494A1 (en) * 2001-09-11 2003-03-12 Snecma Moteurs Method for producing labyrinth seal tongues for movable parts in turbines
FR2829524A1 (en) * 2001-09-11 2003-03-14 Snecma Moteurs METHOD FOR MAKING RADIAL END PARTS OF MOBILE TURBOMACHINE PARTS
US6783642B2 (en) 2001-09-11 2004-08-31 Snecma Moteurs Method of making labyrinth seal lips for the moving parts of turbomachines
EP1452697A2 (en) * 2003-02-27 2004-09-01 General Electric Company Gas turbine and method for reducing bucket tip shroud creep rate
EP1452697A3 (en) * 2003-02-27 2007-01-24 General Electric Company Gas turbine and method for reducing bucket tip shroud creep rate
EP1555392A2 (en) 2004-01-13 2005-07-20 ROLLS-ROYCE plc Cantilevered stator stage
EP1555392A3 (en) * 2004-01-13 2012-11-28 Rolls-Royce Plc Cantilevered stator stage
EP1624192A1 (en) * 2004-08-06 2006-02-08 Siemens Aktiengesellschaft Impeller blade for axial compressor
EP1930547A3 (en) * 2006-11-24 2010-03-10 IHI Corporation Compressor blade for a gas turbine engine
EP1930547A2 (en) * 2006-11-24 2008-06-11 IHI Corporation Compressor blade for a gas turbine engine
US8366400B2 (en) 2006-11-24 2013-02-05 Ihi Corporation Compressor rotor
EP2952685A1 (en) * 2014-06-04 2015-12-09 United Technologies Corporation Airfoil, corresponding gas turbine engine and method of reducing frictional heating
CN105275500A (en) * 2014-06-04 2016-01-27 联合工艺公司 Fan blade tip used as cutting tool
US10876415B2 (en) 2014-06-04 2020-12-29 Raytheon Technologies Corporation Fan blade tip as a cutting tool
EP3561226A1 (en) * 2018-04-24 2019-10-30 Siemens Aktiengesellschaft Compressor aerofoil
WO2019206747A1 (en) * 2018-04-24 2019-10-31 Siemens Aktiengesellschaft Compressor aerofoil
CN112020598A (en) * 2018-04-24 2020-12-01 西门子股份公司 Compressor wing section
EP4095288A1 (en) * 2021-05-27 2022-11-30 MTU Aero Engines AG Method for coating a component
US11873571B2 (en) 2021-05-27 2024-01-16 MTU Aero Engines AG Method for coating a component

Also Published As

Publication number Publication date
GB9708591D0 (en) 1997-06-18
GB2310897B (en) 1998-05-13

Similar Documents

Publication Publication Date Title
US5476363A (en) Method and apparatus for reducing stress on the tips of turbine or compressor blades
EP1813686B1 (en) Preparation of an article surface having a surface compressive texture
EP1930547B1 (en) Compressor blade for a gas turbine engine
EP1239116B1 (en) Fluted blisk
CA2405335C (en) Gas turbine engine compressor blade restoration
EP2135698B1 (en) Methods of treating metal articles and articles made therefrom
EP1138431B2 (en) Method of repairing an airfoil
US6520836B2 (en) Method of forming a trailing edge cutback for a turbine bucket
US10472729B2 (en) Abrasive tip blade manufacture methods
EP1175956B1 (en) Metallic article with integral end band under compression and method for making
US6302651B1 (en) Blade attachment configuration
JP2011525593A (en) Applying deep compressive residual stresses in peripheral repair welds of gas turbine engine airfoils
KR20030001239A (en) Method for repairing cracks in a turbine blade root trailing edge
GB2310897A (en) Reducing stress on the tips of turbine or compressor blades
US20090119920A1 (en) Method of producing a component
US7950121B2 (en) Method for rounding the edges of parts
JPH01155063A (en) Piston for internal combustion engine
CN116127653B (en) Blade shape optimization design method for improving fatigue strength, blade and centrifugal impeller
JPH08270417A (en) Engine valve

Legal Events

Date Code Title Description
PE20 Patent expired after termination of 20 years

Expiry date: 20141010