GB2305172A - Preparation of substituted thiazoles - Google Patents

Preparation of substituted thiazoles Download PDF

Info

Publication number
GB2305172A
GB2305172A GB9617951A GB9617951A GB2305172A GB 2305172 A GB2305172 A GB 2305172A GB 9617951 A GB9617951 A GB 9617951A GB 9617951 A GB9617951 A GB 9617951A GB 2305172 A GB2305172 A GB 2305172A
Authority
GB
United Kingdom
Prior art keywords
hal
thiazole
solvent
preparation
chlorinating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9617951A
Other versions
GB2305172B (en
GB9617951D0 (en
Inventor
Arthur Jackson
Graham Heyes
James Ian Grayson
Russell Clarke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Organics Ltd
Agro Kanesho Co Ltd
Original Assignee
Fine Organics Ltd
Agro Kanesho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9518824.9A external-priority patent/GB9518824D0/en
Application filed by Fine Organics Ltd, Agro Kanesho Co Ltd filed Critical Fine Organics Ltd
Priority to GB9617951A priority Critical patent/GB2305172B/en
Publication of GB9617951D0 publication Critical patent/GB9617951D0/en
Publication of GB2305172A publication Critical patent/GB2305172A/en
Application granted granted Critical
Publication of GB2305172B publication Critical patent/GB2305172B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms

Abstract

A process for the preparation of a substituted thiazole comprises reacting an isothiocyanate compound of the general formula Hal.CH(R 1 ). CH=C(R 2 ).NCS in which Hal is a chlorine or bromine atom and R 1 and R 2 is each a hydrogen atom or an alkyl group containing 1 to 3 carbon atoms, in solution with a chlorinating or brominating agent. The compound 2-chloro-5-(chloromethyl) thiazole, which is an important intermediate in the manufacture of agrochemical and pharmaceutical products, may be prepared in high yield by this method, without the need for a large excess of chlorinating agent and high temperatures.

Description

Preparation of Substituted Thiazoles The present invention is concerned with the preparation of thiazoles which are substituted in the 5 position, namely those having a haloalkyl group in that position. The invention is particularly directed to the preparation of 2-halo5-(haloalkyl) thiazoles. It may be exemplified by reference to the preparation of 2-chloro-5 (chloromethyl) thiazole.
This latter compound is an important intermediate in the manufacture of agrochemical and pharmaceutical products but there is no method available for its preparation which lends itself to the manufacture of the product on a commercial scale. Such methods as are available entail disadvantages which would render them impractical or uneconomical if attempts were made to adopt them commercially.
By way of example, German Patent Specification No. DE 3631538 describes a method of preparing 2 chJuxv5~(chloromethyl) thiazole by chlorination of allyl isothiocyanate. However the reaction requires the use of high temperatures and of a large excess of chlorine or other chlorinating agent. In addition, the desired product is produced with a large number of other substances, from which the desired substituted thiazole is separable only with difficulty.
An alternative method for the preparation of 2-chloro-5-(chloromethyl) thiazole is described in European Patent Specification No. 0446913.
According to that method, 2-chloroallyl isothiocyanate is chlorinated using chlorine or another chlorinating agent and gives the desired substituted thiazole in a higher yield than is obtainable by the above-described prior process, without the need for the large excess of chlorinating agent and the high temperatures which together are characteristic of that process.
However the allyl isothiocyanate which is the starting material for the improved process is prepared from 2,3- dichloropropene, which latter compound is not readily available. Thus this alternative method, while showing some practical advantages over the first-mentioned method, is not suitable for the manufacture of 2-chloro-5 (chloromethyl) thiazole on a significant scale.
It is therefore an object of the present invention to provide a process for the manufacture of 2-halo-5-(haloalkyl) thiazoles, in particular 2chloro-5-(chloromethyl) thiazole, by which some at least of the disadvantages of knpwn processes for this purpose a;e reduced or avoided.
The process according to the present invention comprises reacting an isothiocyanate compound of the general formula Hal.CH(R1). CH=C(R2) .NCS wherein the symbol Hal represents a chlorine or bromine atom and the symbols R1 and R2 each represents a hydrogen atom or an alkyl group containing from 1 to 3 carbon atoms, in solution with a chlorinating or brominating agent.
The product obtained by the process according to the present invention is a thiazole which has a haloalkyl group in the 5 position and has the general formula
wherein the symbols Hal each represents a chlorine or bromine atom, which may be the same or different, and the symbols R1 and R2 have the meaning given above. Thus where each symbol Hal represents a chlorine atom and where each of the symbols R1 and R2 represents a hydrogen atom, the product obtained is 2-chloro-5-(chloromethyl) thiazole.
The isothiocyanate which is a starting material for the process according to the present invention may be prepared by the method described by K. Schulze et al in Journal fuer Praktische Chemie, 1980, Vol. 322 at pages 629 to 637, wherein a compound of the general formula Hal. CH(R1). CH = C(R2). Hal wherein the symbols Hal, R1 and R2 have the meanings given above, is reacted with an alkali metal thiocyanate or with ammonium thiocyanate. For example the starting material may be 3-chloroprop-1-enyl isothiocyanate and may be prepared by reacting 1,3-dichloropropene with potassium thiocyanate in this way. 1,3-dichloropropene is a compound which is produced in large quantities as a fumigant and is a readily available and a much cheaper starting material than 2,3-dichloropropene.
The halogenating agent used in the process according to the present invention may be any suitable chlorinating or brominating agent. As chlorinating agent it is particularly preferred to use chlorine itself or sulphuryl chloride. The reaction is preferably carried out at a temperature within the range from -40 C to +500C, most preferably within the range from 0 0 -25 to 0 C.
The reaction is carried out in solution in a suitable solvent. The solvent should preferably be one which does not react with the halogenating agent.
For example, when the halogenating agent is a chlorinating agent, suitable solvents include aliphatic or cycloaliphatic hydrocarbons such as hexane or cyclohexane, and chlorinated hydrocarbons, for example dichloromethane, chloroform, 1 ,2-dichloroethane, 1,1,2-trichloroethane, 1,2,3-trichloropropane, 1,1,2,2-tetrachloroethane and chlorobenzene.
When the isothiocyanate compound which is used as a starting material in the process according to the present invention has been prepared by the method of K. Schulze et al from a di-halo compound as described above, the solvent used in that method may be the same as that used in the subsequent conversion of the isothiocyanate compound to the thiazole, in which case it is not necessary to separate the isothiocyanate compound before carrying out the process of the invention.
The time required for the process of the present invention depends upon the temperature at which it is chosen to carry out the reaction. In general a reaction time of from 1 to 24 hours is preferred.
The substituted thiazole prepared according to the invention may be separated from the reaction mixture by any desired method, for example by distillation or crystallisation. As an alternative, the thiazole may be converted to the form of a salt, for example the hydrochloride, and crystallised from the reaction mixture in that form and in high purity. The salt obtained in this way may be used as such in any further reaction or may be converted to the free base, for example by neutralisation with a base, or by vacuum distillation.
The substituted thiazole obtained by the present process may be further purified if desired, for example by recrystallisation or by distillation.
The invention will now be further described with reference to the following Examples, which illustrate, by way of example, the preparation of 2-chloro-5-(chloromethyl) thiazole or the corresponding hydrochloride salt by the process according to the present invention.
Example 1.
10g of 3-chloroprop-1-enyl isothiocyanate prepared by the method of K. Schulze et al described above were dissolved in 70ml of dichloromethane and a total 15g of chlorine gas was bubbled into the solution over a period of - 2 hours, while the temperature of the solution was maintained at between 100 and 20 OC. At the end of this time, GC analysis showed that the isothiocyanate had been consumed.
Removal of the solvent from the resulting reaction mixture, followed by vacuum distillation at 800 C under 2mm Hg, yielded 6g of 2-chloro-5-(chloromethyl) thiazole, in the form of a pale yellow oil which solidified on cooling.
Example 2 To a solution of 45g of 3-chloroprop-1-enyl isothiocyanate in 90ml of 1,2-dichloroethane, 50.5g of sulphuryl chloride was added over a period of 10 hours at a temperature 0 of -10 C. The reaction mixture was allowed to warm to 25 0C overnight.
The solution was cooled to -150 C and the pale yellow solid was isolated by filtration and then washed with hexane. The product was 38.2g of 2-chloro-5 (chloromethyl) thiazole hydrochloride, of melting point 59-61 0C, being a yield of 61.6%.
Example 3 To a solution of 57g of 3-chloroprop-1-enyl isothiocyanate in 100ml of dichloromethane, 75.0g of sulphuryl chloride was added over a period of 10 hours at a temperature from -100 to Oo C. The reaction mixture was allowed to warm to 250 C overnight and GC analysis showed that the isothiocyanate had been consumed.
Removal of the solvent from the reaction mixture, followed by vacuum distillation at 81 to 830 C and 2mm Hg, yielded 30.8g of a fraction which contained 2-chloro-5-(chloromethyl) thiazole of 75% purity.
A portion of this fraction, which was in the form of an oil, was recrystallised from 2 volumes of hexane at -250C and gave the pure thiazole in the form of a white solid, of melting point 28-310 C.
Example 4 To a solution of 50g of 3-chloroprop-1-enyl isothiocyanate in 100ml of dichloromethane, 54g of sulphuryl chloride was added over 5 hours at between Oo and -100 C. The reaction mixture was allowed to warm to 250C overnight.
A further 6g of sulphuryl chloride was added over 1.5 hours at between Oo and -100C and then the reaction mixture was allowed to stand overnight, to complete the reaction. The solution was cooled to -200 C and the resulting pale yellow solid was isolated by filtration.
The separated product was 42.4g of 2-chloro-5 (chloromethyl) thiazole hydrochloride, formed from the thiazole itself and by-product hydrogen chloride formed in the reaction. The salt had a melting point of 58-620C and a purity, determined by GC, of 94%.
The mother liquors were evaporated and the residue was dissolved in 30ml of dichloromethane.
On addition of hydrogen chloride gas at -l00C to the solution, a - further 2g of the thiazole hydrochloride salt was precipitated. The precipitated salt was separated by filtration and had a melting point of 61-630C, Example 5.
A solution of 277.7g of 3-chloroprop-2-enyl thiocyanate in 1,1,2,2-tetrachloroethane (1600ml) was prepared from l-3-dichloropropene by the abovedescribed method of K. Schulze et al. The solution was heated to 1200C and held at this temperature for 5 hours. GC analysis showed complete conversion of this thiocyanate to 3chloroprop-l-enyl isothiocyanate.
The solution was filtered to remove insoluble by-products and then cooled to between 0 and -l00C.
Sulphuryl chloride (283g) was added to the solution at this temperature over a period of 10 to 12 hours and then the reaction mixture was held at this temperature for a further 1 hour, after which time the reaction was complete.
The reaction mixture was fractionally distilled and gave a main fraction of 235g, containing 57% of 2-chloro-5-(chloromethyl) thiazole and 36% of residual 1,1,2,2-tetrachloroethane. The crude distilled product 0 was dissolved in 47Cml hexane and cooled to -25 C to crystallise the thiazole. 93g of white crystalline 2-chloro-5-(chloromethyl) thiazole of purity 98% and melting point 27-300 C was obtained. The overall yield based on 3-chloroprop-2-enyl thiocyanate was 33%.
Example 6 To a solution of 45g of 3-chloroprop-1-enyl isothiocyanate in 90ml of 1,2-dichloroethane, 50.5g of sulphuryl chloride was added over 10 hours at -100C. The reaction mixture was allowed to warm to 250 C overnight, to complete the reaction. The solution was cooled to -15 C and the product, a pale yellow solid, was isolated by filtration and washed with hexane. 38.2g of 2-chloro5-(chloromethyl) thiazole hydrochloride was thus obtained, having a melting point of 59-61 C and being a yield of 61.6%.
Example 7 A solution of 240g of 3-chloroprop-2-enyl thiocyanate in 1400g of 1,1,2-trichloroethane was held at 1100 C for 18 hours. GC analysis showed complete conversion to the isothiocyanate. The solution was filtered to remove insoluble by-products and then cooled to 0 0C. 223g of sulphuryl chloride was added at this temperature over a period of 10 hours and the reaction mixture was held at this temperature for a further 1 hour. The reaction mixture was fractionally distilled and gave a main fraction containing 96.2g of 2-chloro-5-(chloromethyl) thiazole, being a yield of 32% on the original thiocyanate.
Example 8 The reaction was carried out as in Example 7, except that the 1,1,2-trichloroethane solvent was replaced by the same weight of chlorobenzene. After the chlorination with sulphuryl chloride, the chlorobenzene was removed by evaporation under vacuum and the residue was dissolved in dichloromethane and saturated with gaseous hydrogen chloride. A 23% yield of 2-chloro-5 (chloromethyl) thiazole hydrochloride was isolated as a pale yellow solid.
Example 9 A solution of 50g of 3-chloroprop-2-enyl thiocyanate in 300g of 1,2,3-trichloropropane was held at 1500C for 4 hours after which GC analysis showed complete conversion of the thiocyanate to isothiocyanate.
The solution was filtered to remove insoluble by-products and then cooled to -200 C. At this temperature, a solution of 60g of sulphuryl chloride in 180g of dichloromethane was added over a period of 8 hours and the reaction mixture was then warmed to 250 C.
Fractional distillation of the reaction mixture gave a main fraction containing 18.6g of 2-chloro-5 (chloromethyl) thiazole of 85% purity, the remainder being 1,2,3-trichloropropane.
Example 10 A solution of 100g of 3-chloroprop-2-enyl thiocyanate in 600ml of 1,2-dichloroethane was heated to 1100 C in an autoclave and held at this temperature for 12 hours. The excess pressure was 1.0 bar. The solution was filtered to remove insoluble by-products and the solvent was evaporated, giving a final volume of 300ml. To this solution 153g of sulphuryl chloride was added at -20 C over 18 hours. The reaction mixture was allowed to warm to 200 C and was then cooled to -200 C to crystallize the product hydrochloride. The 2-chloro-5-(chloromethyl) thiazole hydrochloride was filtered off as a pale yellow solid and was washed with hexane. The weight of the hydrochloride thus obtained was 102.1g, being a yield of 66.6%.
As will be apparent from the foregoing Examples, in the case of 2-chloro-5-(chloromethyl) thiazole, the process makes possible the production of the substituted thiazole in good yields by means of a reaction at acceptable temperatures starting from 1,3-dichloropropene, which as already mentioned is a compound which is produced in large quantities as a fumigant and is therefore readily available.

Claims (15)

1. A process for the preparation of a substituted thiazole, which comprises reacting an isothiocyanate compound of the general formula Hal.CH(R1). CH=C(R2).NCS wherein the symbol Hal represents a chlorine or bromine atom and the symbols R1 and R2 each represents a hydrogen atom or an alkyl group containing from 1 to 3 carbon atoms, in solution with a chlorinating or brominating agent.
2. A process as claimed in Claim 1, wherein both of the symbols R1 and R2 represent a hydrogen atom.
3. A process as claimed in either of the preceding claims, wherein the symbol Hal represents a chlorine atom.
4. A process as claimed in any of the preceding claims, wherein the isothiocyanate compound has been prepared by reacting a compound of the general formula Hal.CH(R1). CH=C(R2).Hal wherein the symbols Hal, R1 and R2 have the above meanings, with an alkali metal thiocyanate or with ammonium thiocyanate.
5. A process as claimed in Claim 4, wherein said preparation of the isothiocyanate compound is conducted in the same solvent as is used for reacting the resulting isothiocyanate compound with a chlorinating or brominating agent.
6. A process as claimed in any of the preceding claims, wherein the chlorinating agent is chlorine or sulphuryl chloride.
7. A process as claimed in any of the preceding claims, wherein the solvent is an aliphatic or cycloaliphatic hydrocarbon or a chlorinated hydrocarbon.
8. A process as claimed in Claim 7, wherein the solvent is hexane or cyclohexane.
9. A process as claimed in Claim 7, wherein the solvent is dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,2,3-trichloropropane, 1,1,2,2-tetrachloroethane or chlorobenzene.
10. A process as claimed in any of Claims 1 to 5, wherein the solvent is 1,2-dichloroethane and the chlorinating agent is sulphuryl chloride.
11. A process as claimed in any of the preceding claims, carried out at a temperature within the range from -400C to +500C.
12. A process as claimed in Claim 11, wherein the temperature is within the range from -250C to OOC.
13. A process as claimed in any of the preceding claims, wherein the substituted thiazole so prepared is separated from the reaction mixture by distillation or crystallisation.
14. A process as claimed in any of Claims 1 to 12, wherein the substituted thiazole so produced is converted to a salt and separated in that form by crystallisation.
15. A process for the preparation of a substituted thiazole, which process is substantially as hereinbefore described with reference to any of the Examples.
GB9617951A 1995-09-14 1996-08-28 Preparation of substituted thiazoles Expired - Fee Related GB2305172B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB9617951A GB2305172B (en) 1995-09-14 1996-08-28 Preparation of substituted thiazoles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9518824.9A GB9518824D0 (en) 1995-09-14 1995-09-14 Preparation of substituted thiazoles
GB9617951A GB2305172B (en) 1995-09-14 1996-08-28 Preparation of substituted thiazoles

Publications (3)

Publication Number Publication Date
GB9617951D0 GB9617951D0 (en) 1996-10-09
GB2305172A true GB2305172A (en) 1997-04-02
GB2305172B GB2305172B (en) 1998-11-18

Family

ID=26307760

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9617951A Expired - Fee Related GB2305172B (en) 1995-09-14 1996-08-28 Preparation of substituted thiazoles

Country Status (1)

Country Link
GB (1) GB2305172B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0885882A1 (en) * 1997-06-14 1998-12-23 Laporte Industries Limited Preparation of vinyl isothiocyanates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748243A (en) * 1986-09-17 1988-05-31 Bayer Aktiengesellschaft Preparation of 2-chloro-5-chloromethylthiazole
EP0446913A1 (en) * 1990-03-16 1991-09-18 Takeda Chemical Industries, Ltd. Process for the preparation of chlorothiazole derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748243A (en) * 1986-09-17 1988-05-31 Bayer Aktiengesellschaft Preparation of 2-chloro-5-chloromethylthiazole
EP0446913A1 (en) * 1990-03-16 1991-09-18 Takeda Chemical Industries, Ltd. Process for the preparation of chlorothiazole derivatives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0885882A1 (en) * 1997-06-14 1998-12-23 Laporte Industries Limited Preparation of vinyl isothiocyanates

Also Published As

Publication number Publication date
GB2305172B (en) 1998-11-18
GB9617951D0 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
EP0763531B1 (en) Preparation of substituted thiazoles
KR880001658B1 (en) Process for 5-aroylation of 1,2-dihydro-3h-pyrrolo-(1,2-a)pyrrole-1-carboxylic esters
US7846304B2 (en) Process for purification of 2-chloro-5-chloromethyl-1,3-thiazole
US6407251B1 (en) Process for preparing 2-chloro-5-chloromethylthiazole
EP1070702B1 (en) Process for trifluoroacetate esters and thioesters
KR970008315B1 (en) Process for the preparation of 2-chloro-5-methylpyridine
KR100827940B1 (en) Continuous process for the preparation of pesticidal chlorothiazoles
GB2305172A (en) Preparation of substituted thiazoles
JP3223586B2 (en) Method for producing 2,5-bis (mercaptomethyl) -1,4-dithiane
EP0600489B1 (en) Process for producing 2-iminothiazoline derivatives and process for producing their intermediates
KR100674098B1 (en) Process for manufacture of N-alkenoxyor aryloxycarbonyl isothiocyanates and their derivatives in the presence of N,N-dialkylarylamine catalyst
KR100332160B1 (en) Improved preparation of cycloalkyl and haloalkyl O-aminophenyl ketones
US6680388B2 (en) Method for preparing substituted 5-amino-N-phenyl-1,2,4-triazole-3-sulfonamides
US20060122426A1 (en) Method for producing phthalic acid dichloride
KR910004668B1 (en) Process for the preparation of 6-demethyl-6-deoxy-6-methylene-5-oxytetracycline and 11a-chloroderivate thereof
US5302764A (en) Process for preparing trifluorohydrocarbon compound
US4122115A (en) Preparation of chloro- and bromo-fluoroacetyl chloride
EP0183797B1 (en) 5-halo-4h-1,3-dioxin-4-one compounds, process for their preparation and their use in the preparation of alpha-halo-acetoacetic esters
JP2002255948A (en) Method for producing 2-chloro-5-chloromethylthiazole
KR100187734B1 (en) A process for producing an aliphatic amide and salts thereof
US6069255A (en) Preparation of vinyl isothiocyanates
US5206369A (en) Process for the dehydration of dihydroxypiperidinedicarboxylates
US4515958A (en) Process for preparing 1-alkyl-5-mercaptotetrazoles
EP1266886B1 (en) Process for producing 4-bromothioanisole
JP3217541B2 (en) Method for producing guanine derivative

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20100828