GB2301629A - Oil recycling in screw compressor arrangements - Google Patents

Oil recycling in screw compressor arrangements Download PDF

Info

Publication number
GB2301629A
GB2301629A GB9510610A GB9510610A GB2301629A GB 2301629 A GB2301629 A GB 2301629A GB 9510610 A GB9510610 A GB 9510610A GB 9510610 A GB9510610 A GB 9510610A GB 2301629 A GB2301629 A GB 2301629A
Authority
GB
United Kingdom
Prior art keywords
screw compressor
oil
valve
separating means
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9510610A
Other versions
GB2301629B (en
GB9510610D0 (en
Inventor
John Hare
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compair Broomwade Ltd
Original Assignee
Compair Broomwade Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compair Broomwade Ltd filed Critical Compair Broomwade Ltd
Priority to GB9510610A priority Critical patent/GB2301629B/en
Publication of GB9510610D0 publication Critical patent/GB9510610D0/en
Priority to DE69603413T priority patent/DE69603413D1/en
Priority to EP19960303104 priority patent/EP0744550B1/en
Publication of GB2301629A publication Critical patent/GB2301629A/en
Application granted granted Critical
Publication of GB2301629B publication Critical patent/GB2301629B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant

Description

2301629 OIL RECYCLING IN SCREW COMPRESSOR ARRANGEMENTS The invention
relates to oil recycling in screw compressor arrangements used to compress a gas such as air.
Many screw compressors require the use of oil during their operation. The oil has three major functions within the scope of compressor arrangements; it cools the compressed gas, lubricates the bearings and seals the rotors in the air end (the actual screw compressor itself). Unfortunately, as a result the discharged compressed gas contains a large quantity of oil which must be extracted before it can be used. A pressure vessel is generally used to extract the bulk of the oil from the compressed gas during a primary separation process. This is also known as a reclaimer and usually contains a filter or separator element to separate the oil from the compressed gas. The oil collected by the separator element is scavenged back to the air end.
In other arrangements the separator element is not fitted in the reclaimer but an alternative special filter is provided to carry out the final separation of oil still entrained in the gas after it has been through the reclaimer, and the oil is then also recycled and returned or scavenged back to the screw compressor to be re-used. In order to scavenge this oil back to the compressor a small quantity of the compressed gas is constantly bled back with the oil to effect the scavenging process. The scavenge line consists of a small open pipe connecting the base of the special filter to the air end. At the end of the pipe adjacent the air end are fitted a filter, a small - 2 orifice which limits the air flow and a non-return valve to prevent oil in the air end passing back into the scavenge pipe.
The quantity of gas used in the scavenging process is relatively small on large compressor packages, but in small compressor units represents a significant loss in that it circulates in a closed loop requiring repressurisation after re-entry into the compressor to achieve the compressor final discharge pressure.
It is an object of the present invention to overcome this disadvantage and to minimise the gas losses due to the scavenging process.
According to the invention there is therefore provided a screw compressor arrangement comprising a screw compressor, primary and secondary separating means for extracting oil from compressed gas discharged from the screw compressor, means for returning the oil extracted by the secondary separating means to the screw compressor and valve means operable to regulate the flow of oil and gas from the secondary separating means back to the screw compressor.
Preferably the valve is the solenoid or pneumatic valve which is operable to be set normally open or normally closed.
The valve is preferably operable to vary the frequency in duration of valve operating. There may also be provided a control system to regulate the operation of the valve which may be electronic.
In a preferred embodiment of the invention the primary oil separating means comprise a reservoir and the secondary or separating means comprise a filter.
The secondary separating means may be enclosed within the primary separating means or they may be fitted downstream thereof.
The invention also provides a method of recycling oil in a screw compressor arrangement comprising the steps of extracting oil from compressed gas discharged from the screw compressor in a primary separation process, extracting the remaining oil from the compressed gas in a secondary separation process, returning the oil extracted during the secondary separation process to the screw compressor by means of a small quantity of compressed gas via valve means operable to regulate the flow of oil and gas back to the screw compressor.
The invention will now be described, by way of example only, with reference to the accompanying drawing Fig. 1 which is a schematic representation of a screw compressor arrangement according to the present invention.
The screw compressor arrangement 10 comprises a screw compressor 11 (air end) for compressing a gas, such as air, a motor 12 which drives the air end 11 and a pressure vessel 13. The pressure vessel 13 is reservoir for compressed gas and oil and may be made from aluminium, iron, steel or any other suitable material.
Gas is taken into the air end 11 via a gas intake filter 14 which is controlled by a pressure switch 14a. The pressure switch 14a senses the differential pressure between the atmospheric pressure existing in the vicinity of the gas intake filter 14 and the pressure downstream between the gas intake filter 14 and the inlet to the air end 11. As the filter 14 progressively filters out atmospheric dirt, it slowly blocks up and the pressure switch 14a helps to compensate for the resulting drop in inlet pressure to the air end 11 and to indicate when the filter 14 should be replaced. The quantity of gas intake is also controlled via a suction regulator 15 which is connected by a control line to the reclaimer 13.
The discharge of pressurised compressed air from the air end 11 contains a large quantity of oil, typically 10 to 15 litres per minute for each cubic metre of free air compressed per minute. This oil has to be separated from the compressed air before it passes into use. The compressed gas and oil mixture is therefore discharged from the air end 11 to the reclaimer 13 via an appropriate duct 24. A temperature thermistor 25 monitors the temperature of the gas/oil mixture.
The separation of the gas and oil is achieved in two stages; primary separation of the oil and gas is carried out within the reclaimer 13 and final separation is completed through the separator element in the reclaimer or alternatively through a special filter 18 fitted downstream of the reclaimer 13.
The difference in pressure across the special filter 18 is monitored by a pressure differential switch 18 to determine when the filter 18 must be replaced.
The fully cleaned gas is subsequently passed through an after cooler 19 before passing to the plant discharge 20 and into use. A pressure transducer 26 responds to the pressure in the customers gas main to energise the control system as and when required.
The reclaimed oil from the special filter is re- circulated from the reclaimer 13 and filter 18 via a small scavenge pipe 21 back to the air end 11. The scavenge pipe 21 conveys the oil and a small quantity of the compressed gas which is bled back with the oil to effect the scavenging process.
Incorporated into the pipe 21 is a solenoid valve 22 which operates to introduce an intermittent, rather than constant, scavenge. The timing of the operation of this valve 22 is important in that it cannot remain closed for excessively long periods because this will lead to flooding of the bottom of the special filter 18 and reducing its effeciency. The valve 22 must also be opened long enough to ensure that all the oil is cleared from the filter 18 and passed back to the air end 11.
In prior art arrangements nearly 0.08m3 per minute of free gas is used to scavenge the oil. This can represent up to 10% of the output of a small unit, say of 5.5Kw size. To compress this gas to typically 7 bar requires approximately 0.5Kw. By using a solenoid valve 22, the power consumption to the drive motor is reduced by nearly 0.5Kw whilst the actual gas flow remains unchanged. As the rotors are virtually sealed, the intermitted introduction of scavenged gas and oil after the rotor inlet closure does not increase gas losses back to the suction and the scavenge gas and oil mixes with the charge gas to be compressed to the final discharge pressure.
Thus during the greatest part of the running period additional power is not required to re-compress the scavenged gas as is the case with conventional machines.
The solenoid valve 22 can also be set to be normally open or normally closed. Normally open has the benefit of providing a fail safe function in the event of valve failure. Normally closed has the benefit of preventing small quantities of oil being driven back when the plant is being blown down on stopping. A non-return valve may be necessary to prevent this action for a normally open valve.

Claims (12)

CLAIMS:
1. A screw compressor arrangement comprising a screw compressor, primary and secondary separating means for extracting oil from compressed gas discharged from the screw compressor, means for returning the oil extracted by the secondary separating means to the screw compressor and valve means operable to regulate the flow of oil and gas from the secondary separating means back to the screw compressor.
2. A screw compressor arrangement as claimed in claim 1 in which the valve is a solenoid or pneumatic valve.
3. A screw compressor arrangement as claimed in claim 1 or claim 2 in which the valve is operable to be set normally open or normally closed.
4. A screw compressor arrangement as claimed in any one of the preceding claims in which the valve is operable to vary the frequency and duration of valve opening.
5. A screw compressor as claimed in any one of the preceding claims in which there is provided a control system to regulate the operation of the valve.
6. A screw compressor arrangement as claimed in claim 5 in which the control system is electronic.
7. A screw compressor arrangement as claimed in any one of the preceding claims in which the primary oil separating means comprise a reservoir and the secondary oil separating means comprise a filter.
8. A screw compressor arrangement as claimed in any one of the preceding claims in which the secondary separating means are enclosed within the primary separating means.
9. A screw compressor arrangement as claimed in any one of the preceding claims wherein the secondary separating means are fitted downstream to the primary separating means.
10. A method of recycling oil in a screw compressor arrangement comprising the steps of extracting oil from compressed gas discharged from the screw compressor in a primary separation process, extracting the remaining oil from the compressed gas in a secondary separation process, returning the oil extracted during the secondary separation process to the screw compressor by means of a small quantity of compressed gas via valve means operable to regulate the flow of oil and gas back to the screw compressor.
11. A screw compressor arrangement substantially as hereinbefore described with reference to and as shown in the accompanying drawing.
12. A method of recycling oil in a screw compressor substantially as hereinbefore described with reference to and as shown in the accompanying drawings.
GB9510610A 1995-05-25 1995-05-25 Oil recycling in screw compressor arrangements Expired - Fee Related GB2301629B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB9510610A GB2301629B (en) 1995-05-25 1995-05-25 Oil recycling in screw compressor arrangements
DE69603413T DE69603413D1 (en) 1995-05-25 1996-05-02 Oil circulation in screw compressors
EP19960303104 EP0744550B1 (en) 1995-05-25 1996-05-02 Oil recycling in screw compressor arrangements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9510610A GB2301629B (en) 1995-05-25 1995-05-25 Oil recycling in screw compressor arrangements

Publications (3)

Publication Number Publication Date
GB9510610D0 GB9510610D0 (en) 1995-07-19
GB2301629A true GB2301629A (en) 1996-12-11
GB2301629B GB2301629B (en) 1999-02-10

Family

ID=10775019

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9510610A Expired - Fee Related GB2301629B (en) 1995-05-25 1995-05-25 Oil recycling in screw compressor arrangements

Country Status (3)

Country Link
EP (1) EP0744550B1 (en)
DE (1) DE69603413D1 (en)
GB (1) GB2301629B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079501C (en) * 1999-10-26 2002-02-20 查世樑 Energy-saving single-bolt compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO323437B1 (en) * 2004-08-30 2007-05-07 Terje Engervik Air pre-treatment plant
CN105485522B (en) * 2015-12-31 2018-09-14 珠海市安粤科技有限公司 A kind of liquefied petroleum gas storage tank air-electricity linkage emergency cut-off control device
DE102017003888A1 (en) 2017-04-21 2018-10-25 Boge Kompressoren Otto Boge Gmbh & Co. Kg Machine for the compression of gas
EP3508729A1 (en) 2018-01-08 2019-07-10 Kaeser Kompressoren SE Compressor with suction conduit and method for controlling a compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1493569A (en) * 1975-01-24 1977-11-30 Atlas Copco Ab Liquid separation in a compressor installation
GB2008684A (en) * 1977-11-28 1979-06-06 Stal Refrigeration Ab Plant for Compressing a Gas
GB1564897A (en) * 1975-09-29 1980-04-16 Sevenska Rotor Maskiner Ab Gas compression system and method with oil cooling
US4279578A (en) * 1979-05-21 1981-07-21 Borg-Warner Corporation Compact oil separator for rotary compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB833991A (en) * 1955-10-17 1960-05-04 Lead Wool Company Ltd Improvements in or relating to air compressors and like apparatus
IT964237B (en) * 1971-08-25 1974-01-21 Hokuetsu Kogyo Co METHOD AND SYSTEM TO MINIMIZE ENERGY CONSUMPTION IN OIL CIRCUIT LUBRICATED ROTARY SORES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1493569A (en) * 1975-01-24 1977-11-30 Atlas Copco Ab Liquid separation in a compressor installation
GB1564897A (en) * 1975-09-29 1980-04-16 Sevenska Rotor Maskiner Ab Gas compression system and method with oil cooling
GB2008684A (en) * 1977-11-28 1979-06-06 Stal Refrigeration Ab Plant for Compressing a Gas
US4279578A (en) * 1979-05-21 1981-07-21 Borg-Warner Corporation Compact oil separator for rotary compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079501C (en) * 1999-10-26 2002-02-20 查世樑 Energy-saving single-bolt compressor

Also Published As

Publication number Publication date
GB2301629B (en) 1999-02-10
EP0744550A3 (en) 1997-07-09
GB9510610D0 (en) 1995-07-19
EP0744550A2 (en) 1996-11-27
EP0744550B1 (en) 1999-07-28
DE69603413D1 (en) 1999-09-02

Similar Documents

Publication Publication Date Title
CA1056355A (en) Method and device for driving liquid from a liquid separator
EP1008759A1 (en) Gas compressor
WO2000046502A3 (en) Coalescing device and method for removing particles from a rotary gas compressor
US20080251129A1 (en) System and method for collecting and increasing the pressure of seal leak gas
CA1333790C (en) Oil-free screw compressor apparatus
CN109253101A (en) Pipeline compressor pressure release stops in emergency, one-key start control method after orderly shutdown
EP0744550B1 (en) Oil recycling in screw compressor arrangements
ES2191045T3 (en) HELICOIDAL COMPRESSOR SUITABLE TO EFFECTIVELY SEPARATE OIL FROM COMPRESSED GAS.
US4311004A (en) Gas compression system and method
EP1366321B1 (en) System for producing and distributing compressed air
SE9403966L (en) Cooling system and method
WO2012012018A4 (en) Combination of expansion and cooling to enhance separation
CA2740649A1 (en) Vessel compressor methods and systems
CN106014944B (en) A kind of oil-free compressor control method and its equipment
JPH08144982A (en) Oil separator for compressor
CN101590673B (en) Automatic grinding mill for polyfluortetraethylene wastes
KR200299725Y1 (en) Compressor with Oil Separator
RU2692859C1 (en) Method of using hydrocarbon gas and modular compressor plant for its implementation
JP2002349462A (en) Oil injection type screw compressor
JP2637242B2 (en) Oil-free screw compressor device
KR20220052906A (en) Alternative methods of separation of gas mixtures for use as insulating media
EP1049875B1 (en) Apparatus and method for continuously disposing of condensate in a fluid compressor system
JPH08219024A (en) Drain eliminating method for oil-cooled compressor and device therefor
CN216381753U (en) Marine gas high-pressure supercharger
CN211314582U (en) Novel cooling circulation system

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20010525