GB2298980A - Voltage storage circuit with tracking substrate potentials - Google Patents

Voltage storage circuit with tracking substrate potentials Download PDF

Info

Publication number
GB2298980A
GB2298980A GB9608980A GB9608980A GB2298980A GB 2298980 A GB2298980 A GB 2298980A GB 9608980 A GB9608980 A GB 9608980A GB 9608980 A GB9608980 A GB 9608980A GB 2298980 A GB2298980 A GB 2298980A
Authority
GB
United Kingdom
Prior art keywords
potential
input
voltage
electrode
voltage storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9608980A
Other versions
GB2298980B (en
GB9608980D0 (en
Inventor
Ian Juso Dedic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB929218987A external-priority patent/GB9218987D0/en
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of GB9608980D0 publication Critical patent/GB9608980D0/en
Publication of GB2298980A publication Critical patent/GB2298980A/en
Application granted granted Critical
Publication of GB2298980B publication Critical patent/GB2298980B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/44Sequential comparisons in series-connected stages with change in value of analogue signal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements
    • G11C27/024Sample-and-hold arrangements using a capacitive memory element
    • G11C27/026Sample-and-hold arrangements using a capacitive memory element associated with an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/02Reversible analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0678Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
    • H03M1/068Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
    • H03M1/0682Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/40Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type
    • H03M1/403Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type using switched capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Amplifiers (AREA)
  • Analogue/Digital Conversion (AREA)

Description

2298980 -I- VOLTAGE STORAGE CIRCUITS The present invention relates to
voltage storage circuits for use, for example, in analog-to-digital converters for storing an applied analog value prior to conversion into its digital equivalent.
Figure 1 of the accompanying drawings shows a previously-considered voltage storage circuit comprising an input switch element 1, a storage capacitor 2 and a high-impedance unity-gain amplifier element 3. Initially, with the switch element 1 in the closed position, an analog input voltage Vi applied between input terminals of the circuit is supplied to the storage capacitor 2 so that the potential difference between the plates of the storage capacitor tracks the input voltage Vi. At a predetermined moment in time tswitch the input switch element 1 is switched to the open position, with the result that the potential difference between the capacitor plates immediately prior to such switching is stored until such time as the input switch element 1 is closed again. During the period in which the switch element is in the open position the stored voltage is reproduced between output terminals of the circuit as an output voltage Vo, the amplifier element 3 serving to prevent loading of the storage capacitor by circuitry connected with the output terminals.
Figure 2 shows an input portion of the amplifier element 3 in more detail. This input portion includes an FET input transistor 33 having a drain electrode connected to a positive supply line Vdd of the element, a source electrode connected by way of a current source 32 to a negative supply line Vss of the element, and a gate electrode connected to one plate (the upper plat.e in Figure 1) of the storage capacitor 2. It will be. appreciated that the FET input transistor 33 is, connected in the so-called source follower configuration.
Further circuitry, not shown in Figure 2, is normally interposed between the source electrode of the FET input transistor 33 and an output of the element for buffering the source electrode potential to produce the output potential VO In use of the amplifier element 3 of Figure 2, the current source 32 causes a current to flow in the drain-source channel of the FET input transistor 33, with the result that the source electrode potential Vs thereof follows the gate electrode potential and hence the stored potential VC of the upper plate of the storage capacitor 2. Thus, the input portion of the is amplifier element 3 has a voltage gain of substantially unity, although in practice the source electrode potential V. is always slightly less than the potential Vc of the upper plate of the storage capacitor 2.
Because the input portion employs an FET input transistor the gate current of which is very small, the input impedance of the element is very high. Thus, after the input switch element 1 of the voltage storage circuit of Figure 1 has been opened, the storage capacitor is not discharged to a significant extent by the amplifier element 3.
The amplifier element 3 of Figure 2 suffers, however, from a disadvantage arising from charge injection into its input portion from the storage capacitor 2 (or vice versa) when the potential of the upper plate Vc of the storage capacitor 2 is changed. Although after the input switch element 1 has been opened, no such change in the upper plate potential will normally result, as explained later in the present specification the upper plate potential Vc unavoidably changes at the moment tswitch OE opening of the input switch element 1 due to charge injection at that moment by the input switch element 1 itself. Such charge injection by the input switch element I leads to a small, but at high precision significant, change in the stored voltage in the storage capacitor 2 and hence brings about a change in the potential VC of the upper plate thereof at the moment the switch element is opened.
The reasons for charge injection at the amplifier element input portion, in response to changes in the upper plate potential of the storage capacitor 2, will now be explained. As shown in Figure 2, the FET input transistor 33 unavoidably has small parasitic capacitances between its electrodes, there being a gate-source parasitic capacitance Cgs between the gate and source electrodes, a gate-drain parasitic capacitance Cgd between the gate and drain electrodes, and a drain-source parasitic capacitance Cds between the drain and source electrodes. Whenever the potentials of these three electrodes change relative to one another, charge must flow into or out of the parasitic capacitances, and it is the combination of these charge flows which leads to charge injection to/from the amplifier element input portion.
In the Figure 2 amplifier element, because the input transistor 33 is connected in the above-mentioned source follower configuration, the gate-source potential thereof is substantially constant, irrespective of the upper plate potential Vc of the storage capacitor 2, so that charge injection due to the gate-source parasitic capacitance Cgs can normally be neglected.
However, the gate-drain potential and the drainsource potential of the input transistor 33, being Vdd - Vc and Vdd - Vs respectively, are not constant and vary in dependence upon the upper plate potential Vc Thus, whenever Vc is changed, charge must flow n 1 into or out of the gate-drain parasitic capacitance Cgd and the drain- source parasitic capacitance Cds, in either case causing charge to flow into or out of the input portion of the amplifier element.
When the input switch element is open, the charge that flows must either charge or discharge the storage capacitor 2, depending upon the direction of flow. Such charge or discharge unavoidably leads to an error in the stored voltage between the plates of the storage capacitor 2.
The effects of the parasitic capacitances of the input portion of the amplifier element are particularly severe when the capacitance of the storage capacitor 2 is not large relative to the capacitances of the parasitic capacitances themselves, which may be the case for example when it is desired to reduce acquisition time of the voltage storage circuit.
According to a first aspect of the present invention there is provided a voltage storage circuit including:
a storage capacitor, one plate of which is connected to an input terminal of the circuit by way of an input switch element and the other plate of which is connected to a common terminal of the circuit, an input signal to be stored being applied between the said input and common terminals when the circuit is in use; and an amplifier element, having an input connected to the said one plate and an output connected to an output terminal of the circuit, for providing an output signal, between the said output and common terminals, dependent upon the voltage stored in the said storage capacitor, which amplifier element includes an electronic input device having a controllable current path provided between respective first and second current-path electrodes of the device and also having a control electrode to which a potential is applied to control the magnitude of current in the said current path, the said control electrode being connected to the said one plate, and the said first and second currentpath electrodes being connected with potential tracking means such that both the first current-path electrode potential and the second currentpath electrode potential track the control electrode potential, whilSt current flows in the said controllable current path, so that the respective potentials of the first and second current-path electrodes are kept substantially fixed in relation to the potential of the said one plate; the voltage storage circuit being formed on a single substrate, and the said input switch element and the said input device of the amplifier element being located within one or more wells of the conductivity type opposite to that of the surrounding material of said substrate, there being means for causing the or each well potential to track the potential of the said one plate.
By controlling the potential(s) of the well(s) in this way, parasitic capacitances (including the switch element capacitance and any interconnect capacitance) of the circuit can be bootstrapped out. The well(s) may, for example, be connected electrically to the said output terminal of the circuit. This permits the well potential(s) to track the output terminal potential.
The said storage capacitor may also located within such a well to bootstrap parasitic capacitances associated therewith.
Advantageously, one or more conductive sh-Jeelds extend over the area of the or each well, and there are means for causing the or each shield potential to track the potential of the said one plate. This assists in eliminating residual parasitic capacitance effects. In such a case, the said conductive shield may also usefully be connected electrically to the said output terminal of the circuit so that the shield potential tracks the output terminal potential.
The design of amplifier element ensures that the potentials of the control and first and second currentpath electrodes of the input device are all in substantially fixed relation to one another and to the one plate potential when the circuit is in use, so that the parasitic capacitances existing between those electrodes do not significantly affect operation of the circuit. This avoids charge injection to/from the amplifier element, with consequential charging/discharging of the storage capacitor, due to operation of the amplifier element connected to the said one plate of the storage capacitor. Thus, error in the stored voltage as a result of such charging/discharging is eliminated.
Preferably the potential tracking means include a current source, connected to the said first current- path electrode for causing the first current-path electrode potential to track the control electrode potential, and active follower means connected operatively between the said first and second currentpath electrodes for causing the second current-path electrode potential to track the first current-path electrode potential.
In such an arrangement the first current-path electrode is caused to track the one plate potential automatically, so that the active follower means can be connected operatively between the first and second current-path electrodes, i.e. exclusively on the output side of the input device, to achieve the required tracking of the second current-path electrode.
The said electronic input device is advantageously an FET input transistor such that the said control electrode is the gate electrode of the FET input transistor, the first current-path electrode is the source electrode of the FET input transistor, the said second current-path electrode is the drain electrode of the FET input transistor, and the said controllable current path is provided by the drain-source channel of the FET input transistor.
Such an FET input transistor provides the amplifier element with a high input impedance, so as to avoid discharge of the storage capacitor after the input switch element has been opened, the inevitable gate-source, gate- drain, and source-drain parasitic capacitances of the FET input transistor not affecting the circuit operation.
When the input device is an FET, the said active follower means may comprise a cascoding FET transistor connected with its drain-source channel in series with the drain-source channel of the FET input transistor so that the source electrode potential of the cascoding transistor tracks the gate electrode potential thereof and also comprise a bias generator connected operatively between the source electrode of the FET input transistor and the gate electrode of the cascoding transistor for maintaining therebetween a substantially constant potential difference.
Such a cascoding arrangement is simple but effective, the seriesconnection of the cascoding FET transistor with the FET input transistor ensuring that the source electrode potential of the cascoding transistor automatically tracks the gate electrode thereof.
The amplifier element is preferably made up of first and second substantially identical circuit portions, the first portion including the said input device and the said active follower means and the second portion including the said current source.
Such circuit symmetry can provide high stability C 8_ and predictability in the operation of the amplifier element, particularly as regards the relationship between the input and output potentials of the amplifier element, and can be conveniently fabricated.
When the amplifier element of the voltage storage circuit comprises two substantially identical circuit portions as described above, the said first portion of the amplifier element is preferably located within the said one or more wells, and the said second portion of the amplifier element is formed within one or more further wells, each of the conductivity type opposite to that of the surrounding areas of the substrate, the or each further well potential being substantially fixed in relation to the potential of a supply line of the circuit.
The said input switch element is preferably an electronic input switch element, operative in dependence upon the potential at a switching electrode thereof, the circuit further including switch driving means connected to cause the switching electrode potential to track the input terminal potential when the element is in its ON condition, thereby maintaining the switching electrode potential substantially fixed in relation to the input terminal potential, and operable to cause the switching electrode potential to change, relative to the input terminal potential, such that the element is changed from its ON condition to its OFF condition.
In such a circuit the switching electrode potential is fixed in relation to the input terminal potential, so that the amount of charge injected in the electronic switch element at the moment of switching OFF is substantially independent of the level of the input signal. Thus, error in the stored voltage due to such charge injection is substantially constant, or at least linear, for different input signal voltages, and appropriate measures can therefore be taken to compensate for such error.
The said switching electrode potential is advantageously derived from the said output signal, so that this potential can be obtained without loading or otherwise affecting the input signal.
Advantageously, the said switch driving means are connected operatively with the said output terminal and are operable, in dependence upon a switching signal received thereby, to apply to the said switching electrode either an ON potential, for maintaining the said input switch element in its ON condition, or an OFF potential, for maintaining the said input switch element in its OFF condition, the said ON and OFF potentials being each substantially fixed in relation to the said output terminal potential but differing from one another by a predetermined amount.
in this arrangement both the ON and OFF potentials are fixed relative to the input signal potential, so that the charge injection by the input switch element is substantially constant irrespective of the input signal potential.
The voltage storage circuit may well have respective first and second biassing lines connected operatively to the said output terminal so as to be at potentials that are respectively fixed in relation to the output terminal potential, the second biassing line potential being equal to one of the said ON and OFF potentials and the potential difference between the said first and second biassing lines being greater than or equal to the said predetermined amount. In this case the said switch driving means may include a bootstrap capacitor one plate of which is connected to the said switching electrode for providing the said switching electrode potential and also include connecting means connected with both plates of the bootstrap capacitor and with the said biassing lines and switchable, when the switching electrode potential is to be changed from the said one of its ON and OFF potentials to the other of those potentials, from a charging confIguration, serving to connect the said one plate of the bootstrap capacitor to the said second biassing line whilst connecting the other plate thereof to the said first biassing line, to a floating configuration serving to isolate the said one plate from the second biassing line whilst connecting the said other plate to the said second biassing line, thereby to cause the potential at the said one plate to be changed from the second biassing line potential to a potential differing therefrom by the said predetermined amount.
In such an arrangement one of the ON and OFF potentials can be outside the supply lines of the circuit, if necessary.
Alternatively, the voltage storage circuit may have respective first, second and third biassing lines connected operatively to the said output terminal so as to be at potentials that are respectively fixed in relation to the output terminal potential, the third biassing line potential being equal to one of the said ON and OFF potentials and the potential difference between the said first and second biassing lines being greater than or equal to the said predetermined amount. In this case the said switch driving means may include a bootstrap capacitor one plate of which is connected to the said switching electrode for providing the said switching electrode potential and also include connecting means connected with both plates of the bootstrap capacitor and with the said biassing lines and switchable, when the switching electrode potential is to be changed from the said one of its ON and OFF potentials to the other of those potentials, from a charging configuration, serving to connect the said one plate of the bootstrap capacitor to the said third biassing line whilst connecting the other plate thereof to the said first biassing line, to a floating configuration serving to isolate the said one plate from the third biassing line whilst connecting the said other plate to the said second biassing line, thereby to cause the potential at the said one plate to be changed from the third biassing line potential to a potential differing therefrom by the said predetermined amount.
in this example, the required change in the switching electrode potential, from the said output terminal potential when the switch element is in one of its ON and OFF conditions to a potential differing from the output terminal potential by the said predetermined amount when the switch element is in the other of its ON and OFF conditions, can be achieved using internal biasing lines whose potentials are not suitable for directly providing the ON and OFF potentials and/or whose potentials differ from the output terminal potential by less than the predetermined amount.
Preferably the said electronic input switch element is a MOSFET transistor in which case one of the said ON and OFF potentials can be substantially the same as the said output terminal potential. For example, if the MOSFET transistor is an n-channel enhancement type MOSFET, the OFF potential can be substantially the same as the output terminal potential. With such a MOSFET transistor as the electronic switch element the generation of suitable ON and OFF potentials can be desirably simple, particularly in the case of the said one of the ON and OFF potentials that can be obtained by simply applying the output terminal potential directly to the switching electrode.
c The voltage storage circuit preferably further includes input potential maintaining means, interposed between the said input terminal and the input side of the said input switch element, for maintaining the inputside potential of the input switch element, after the element is changed to the OFF condition, substantially fixed in relation to the potential of the said one plate of the storage capacitor.
This can prevent the input switch element from becoming turned ON inadvertently should the input signal potential change sufficiently relative to the switching electrode potential after the element has been turned OFF.
The said input potential maintaining means may comprise a further switch element connected in series with the said input switch element and operable, after the said input switch element has been changed to the OFF condition, to isolate the input side of that element from the said input terminal. In this way, variation in the input signal potential after opening of the further switch element does not affect the input side potential of the input switch element.
The said input potential maintaining means may further comprise an auxiliary capacitor connected between the input side of the said input switch element and the said other plate of the said storage capacitor and/or a feedback switch element connected between the said amplifier element and the input side of the said input switch element and operable, while the input side of that element is so isolated, to apply thereto a potential derived from the potential of the said one plate of the storage capacitor.
The gain of the said amplifier element is preferably substantially unity. In this case the switching electrode potential and the well potential(s) can conveniently be "bootstrapped" to the output 0 terminal potential because, when the amplifier element has a gain of substantial unity, the buffered output terminal potential is substantially equal to the one plate potential/input signal potential. Thus, the required switching electrode potential and the or each well potential can be derived from the buffered output signal without affecting the input signal.
A voltage storage circuit (the amplifier element of which has unity gain) embodying the first aspect of the invention may usefully be included in voltage summation circuitry which also includes:
first, second and third input nodes to which first, second and third potentials are applied when the circuitry is in use; an output node connected with the output terminal of the voltage storage circuit; and switching means connected with the said input nodes and with the said voltage storage circuit and switchable, after the input switch element of the voltage storage circuit has been changed to the OFF condition, from an input configuration to an output configuration, said input configuration serving to connect the said first and second input nodes to the said input and common terminals respectively of the voltage storage circuit, thereby to permit storage of the potential difference between the said first and second potentials in the storage capacitor of the voltage storage circuit, and said output configuration serving to connect the common terminal of the voltage storage circuit to the said third input node, thereby to produce at the said output node an output potential which is substantially equal to the sum of the third potential and the stored difference between the first and second potentials.
Such voltage summation circuitry is capable of very high precision voltage summation, the accuracy 0 being essentially limited only by the effectiveness with which the effects of parasitic capacitances in the voltage storage circuit can be eliminated. When, in each voltage storage circuit, the various parasitic capacitances of the circuit (the switch element capacitance, the amplifier element input capacitance and any interconnect capacitance) are bootstrapped out using the techniques indicated above, substantially the only limit on cancellation of parasitic capacitance effects arises from gain error of the amplifier elements. This gain error can be reduced to very low levels by adopting suitable designs of the amplifier element.
First and second voltage storage circuits, each embodying the first aspect of the invention and each having unity-gain amplifier elements, may be advantageously included in voltage summation circuitry which also includes:
first, second, third, fourth, fifth and sixth input nodes, a first pair of input voltages being applied to the said first and second input nodes, and a second pair of input voltages being applied to the said third and fourth input nodes, and a third pair of input voltages being applied to the said fifth and sixth input nodes, when the circuitry is in use; first and second output nodes connected with the respective output terminals of the said first and second voltage storage circuits; and switching means connected with the sa id input nodes and with the said voltage storage circuits and switchable, after the respective input switch elements of the first and second voltage storage circuits have been changed to the OFF condition, from an input configuration to an output configuration, said input configuration serving to connect the said first and second input nodes to the said input and common -Is- terminals respectively of the said first voltage storage circuit, and also to connect the said third and fourth input nodes to the said input and common terminals respectively of the said second voltage storage circuit, thereby to permit storage, in the said storage capacitor of the first voltage storage circuit, of a first potential difference between the two input voltages of the said first pair and to permit storage, in the said storage capacitor of the second voltage storage circuit, of a second potential difference between the two input voltages of the said second pair, and said output configuration serving to connect the respective common terminals of the first and second voltage storage circuits to the fifth and sixth input nodes respectively, thereby to produce between the said first and second output nodes a pair of output voltages the potential difference between which is substantially equal to the sum of the potential difference between the two input voltages of the said third pair and the difference between the stored first and second potential differences.
By virtue of the back-to-back connection of the two voltage storage circuits the individual (fixed) amounts of charge injected by the respective switch elements thereof at the moment they are turned OFF are the same for each circuit and hence effectively cancel one another out bearing in mind the differential nature of the input and output of the circuitry.
First and second voltage storage circuits, each embodying the first aspect of the invention and each having unity-gain amplifier elements, may in another preferred example be included in voltage doubling circuitry which also includes:
first and second inDut nodes between which an input voltage to be doubled is applied when the circuitry is in use; 0 first and second output nodes connected respectively with the respective output terminals of the first and second voltage storage circuits; and switching means connected with the said input nodes and with the said voltage storage circuits and switchable, after the respective input switch elements of the first and second voltage storage circuits have been changed to the OFF condition, from an input configuration to an output configuration, said input configuration serving to connect the said first input node to both the said input terminal of the said first voltage storage circuit and the said common terminal of the said second voltage storage circuit, and also to connect the said second input node to both the said input terminal of the said second voltage storage circuit and the said common terminal of the said first voltage storage circuit, thereby to cause each of the respective storage capacitors of the said voltage storage circuits to be charged to the said input voltage, and said output configuration serving to connect the respective common terminals of the first and second voltage storage circuits together so that the said storage capacitors are connected in series with one another between the said first and second output nodes, thereby to produce between those output nodes an output voltage which is substantially double the said input voltage.
Again, the back-to-back connection of the two voltage storage circuitsaffords cancellation of the charge injected by the input switch elements, so that the doubled voltage is highly accurate. The circuitry has a much improved speed/power/noise trade-off, perhaps up to ten times better, than comparable prior proposals.
Such voltage doubling circuitry has a particularly advantageous application in analog-to-digital c converters that carry out voltage doubling operations in the course of their conversion operations. Such a converter may incorporate a voltage conversion stage including: 5 voltage doubling circuitry as described above; comparator means connected for receiving a working voltage equal to or derived from the said input voltage and also connected for receiving a comparison potential and operable to perform a comparison between that working voltage and the said comparison potential and to provide digital data indicative of the result of the comparison; and voltage adjustment means connected between the respective common terminals of the said first and second voltage storage circuits and operable, after the said switching means have been switched from the said input configuration to the said output configuration, to apply between those terminals an offset voltage having a value selected, by the said digital data, from a plurality of preset possible values, thereby to produce between the said output nodes an analogue conversion voltage which differs from double the said input voltage by the selected offset voltage.
In such a conversion stage, by virtue of the use of high-precision voltage doubling circuitry as described above, the analogue conversion voltage can be derived with desirably high precision from the input voltage without the use of complex switching arrangements to interconnect the two storage capacitors. This analogue conversion voltage can be offset, from double the input voltage, by one of a number of preselected offset voltages selected in dependence upon the input voltage magnitude, as is required for example in analogue-to-digital converters of the "three-state-logic" kind. The said voltage adjustment means are connected between the respective c common terminals of the said first and second voltage storage circuits and are operable to apply between those terminals the said offset voltage. In this way, since the voltage adjustment means are connected in series with the two storage capacitors so as to cause a potential difference equal to the selected offset voltage to exist between the respective said other plates of the capacitors, and each storage capacitor has a potential difference between its respective plates equal to the input voltage, the required offset of the analogue conversion voltage from double the input voltage is achieved simply and accurately, without employing complex and inaccurate analogue voltage adders.
Preferably the said comparator means perform the said comparison whilst the switching means of the voltage storage circuits are in the said input configuration, providing high-speed operation. In one preferred example, the said comparator means are connected to the said first and second input nodes, so that the said input voltage is the said working voltage, and provide first such digital data if the said input voltage is less than or equal to minus the said comparison potential, and provide second such digital data if the said comparison potential is less than or equal to the said input voltage, and provide third such digital data in all other cases, and wherein the offset voltage selected by the said second digital data is -Vreff where + Vref is the offset voltage selected by the said first digital data, and the offset voltage selected by the said third digital data is zero; the said comparison potential being substantially equal to Vref/4.
By virtue of the immunity of the conversion algorithm embodied in such a conversion stage to missing code errors that would otherwise arise from 1,1 offset voltage of the comparator means, the full benefit of the improvement in the precision of the voltage conversion operation performed by the stage is obtained in terms of overall conversion accuracy.
One particularly-advantageous such analogue-todigital converter comprises:
a series of N stages, each being a voltage conversion stage as described above, an analogue voltage to be digitised being applied between the said first and second input nodes of the first stage of the series, and the said first and second input nodes of each successive stage being connected to the said first and second output nodes respectively of the immediately-preceding stage; control means operable to cause the switching means of each of the said stages in succession to be switched from the said input configuration to the said output configuration, such switching being controlled to occur in each of the stages, except for the first stage, at a time when the switching means of the immediately-preceding stage is in the output configuration so that prior to such switching the stage being switched receives as its input voltage the analogue conversion voltage produced by that immediately-preceding stage and so produces its analogue conversion voltage in dependence thereupon after such switching; and data processing means connected for receiving the said digital data provided by the said N stages and operative to derive therefrom a digital output word, comprising N+1 bits, representative of the applied analogue voltage.
Such an analogue-to-digital converter can operate very quickly, producing one full N+1 bit digital output word per clock period.
Preferably, such an analogue-to-digital converter 0 is operative alternately in first and second clock phases, and the said control means operate in the said first clock phase to maintain the respective switching means of the odd-numbered stages of the series in the input configuration whilst maintaining the respective switching means of the even-numbered stages in the said output configuration but operate in the said second clock phase to maintain the respective switching means of the even-numbered stages in the said input configuration whilst maintaining the respective switching means of the odd-numbered szages in the output configuration.
This arrangement permits the converter to operate at the above-mentioned high speed while keeping the control of the stages desirably simple.
Advantageously, for at least one pair of adjacent stages of the series, the respective storage capacitors of the said first and second voltage storage circuits in the second stage of the pair are smaller in capacitance than the comparable storage capacitors in the first stage of the pair, the storage capacitance ratio of the two stages of one or each such pair being preferably approximately 2:1. This can assist in reducing power consumption of the converter.
For at least one pair of adjacent stages of' the series, the respective amplifier element input devices of the said first and second voltage storage circuits in the second stage of the pair are preferably smaller in width than the comparable input devices in the first stage of the pair, the input device width ratio of the two stages of one or each such pair being advantageously approximately 2:1, again to reduce power consumption.
Furthermore, for at least one pair of adjacent stages of the series, the respective currents in the controllable current paths of the amplifier element 0 input devices of the said first and second voltage storage circuits in the second stage of the pair may be smaller than the comparable currents in the first stage of the pair, the current ratio of the two stages of one or each suchpair being preferably approximately 2:1, again to assist in reducing power consumption.
Advantageously, in each of the second to nth stages of the converter, where 2snsN, each of the respective storage capacitors of the said first and second voltage storage circuits of the stage has a capacitance that is reduced, relative to the capacitance of the comparable storage capacitor of the immediately-preceding stage, by a first scaling factor that is constant throughout those second to nth stages.
Scaling the capacitance by a constant scaling factor in this way helps to reduce power consumption of the converter and to reduce the amount of chip area required to make the converter.
The said first scaling factor is preferably 2.
This value of scaling factor is optimal in terms of reduced power consumption.
Advantageously, in each of the second to nth stages of the converter, where 22-.nsN, the amplifier element input device of each voltage storage circuit of the stage is of a channel width that is reduced, relative to the channel width of the comparable amplifier element input device of the immediatelypreceding stage, by a second scaling factor that is constant throughout those second to nth stages. 30 Such scaling by a constant factor for a number of successive stages can also contribute to reducing the power consumption of the converter and the chip area occupied thereby. The said second scaling factor is preferably also 2. This results in optimal power consumption reduction.
0 Advantageously also, in each of the second to nth stages of the converter, where 2snsN, the current in each of the said controllable current paths of the amplifier element input devices of the stage is controlled to be reduced, relative to the current in the comparable controllable current path of the immediately-preceding stage, by a third scaling factor that is constant throughout those second to nth stages.
Such scaling can further contribute to a reduction in the power consumption of the converter.
The said third scaling factor is preferably also 2. This value is optimal in terms of power consumption reduction.
In another preferred embodiment, for at least one pair of adjacent stages of the series, at least one of the said preset possible values of the offset voltage in the second stage of the pair is adjusted fractionally as compared with the corresponding preset possible value of the offset voltage in the first stage of the pair.
Such a fractional adjustment can be used to correct for gain errors in the amplifier elements used in each stage, and hence can maintain highprecision operation of the overall converter despite imperfections in those amplifier elements.
Alternatively, or in addition, the said data processing means may be operable to fractionally adjust the digital data provided by the respective comparator means of successive stages of the series so as to facilitate correction of voltage conversion errors in those successive stages.
Another advantageous analogue-to-digital converter comprises:
first and second stages, each being a voltage conversion stage as described above, connected together such that the said first and second output nodes of the 0 is first stage are connected to the said first and second input nodes respectively of the second stage and the said first and second output nodes of the said second stage are connected to the said first and second input nodes respectively of the first such stage, an analogue voltage to be digitised being applied, at the start of an iterative conversion operation of the converter, between the said first and second input nodes of the said first stage; control means operable to cause the switching means of the first and second stages to be switched alternately, starting with the first stage, from the said input configuration to the said output configuration, such switching being controlled to occur in one stage at a time when the switching means of the other stage are in the output configuration so that prior to such switching the one stage being switched receives as its input voltage the analogue conversion voltage produced by the other stage and so produces its analogue conversion voltage in dependence thereupon after such switching; and data processing means connected for receiving the said digital data provided alternately by the first and stages during the course of the said iterative conversion operation and operative to derive therefrom a digital output word representative of the applied analogue voltage.
In such an analogue-to-digital converter only two stages are required to perform a conversion operation, resulting in a desirably compact and simple design.
According to a second aspect of the present invention there is provided an analogue-to-digital converter, operable alternately in first and second clock phases, including:
first and second input nodes between which an analogue input voltage to be digitised can be applied 0 when the converter is in use; first and second voltage storage circuits, each including respective first and second storage capacitors and a unity- gain amplifier element having respective input and output terminals, which element includes an electronic input device having a controllable current path provided between respective first and second current-path electrodes of the device and also having a control electrode to which a potential is applied to control the magnitude of current in the said current path, the said control electrode being connected to the said input terminal of the amplifier element, and the said first and second current-path electrodes being connected with potential tracking means such that both the first current-path electrode potential and the second current-path electrode potential track the control electrode potential, whilst current flows in the said controllable current path, so that the respective potentials of the first and second current-path electrodes are kept substantially fixed in relation to the potential of the said input terminal; input sampling means operable during an initial one of the clock phases to connect the said input terminal of the first voltage storage circuit to the said first input node and to connect the said input terminal of the second voltage storage circuit to the said second input node; first and second output nodes connected respectively with the amplifier element output terminals of the said first and second voltage storage circuits; comparator means connected to the said first and second output nodes and also connected for receiving a comparison potential and operable in each clock phase to perform a comparison between the potential 0 difference between the first and second output nodes and the said comparison potential and to provide digital data indicative of the result of the comparison; voltage Adjustment means having a pair of connection terminals and operable in each clock phase to apply between those terminals an offset voltage having a value selected, by the said digital data provided by the said comparator means in the immediately-preceding clock phase, from a plurality of preset possible values; switching means operable in the first clock phase to connect the two first storage capacitors and the said connection terminals in series between the respective input terminals of the amplifier elements, whilst connecting the said second storage capacitors in parallel with one another between the first and second output nodes, and operable in the second clock phase to connect the two second storage capacitors and the said connection terminals in series between the resDective input terminals of the amplifier elements, whilst connecting the said first storage capacitors in parallel with one another between the first and second output nodes; and data processing means connected for receiving the said digital data provided by the said comparator means over a predetermined number of the said clock phases and operative to derive therefrom a digital output word representative of the applied analogue input voltage; 30 each said storage capacitor having a firsz plate which is the plate thereof that is connectible, by the said switching means, to the said input termin-al of the amplifier element in the voltage storage circult to which that storage capacitor belongs; and for each voltage storage circuit, a switc--. element of the input sampling means that is connected zo the 0 amplifier element input terminal, and switch elements of the said switching means that are connected to the said first plates of the storage capacitors, being formed in one or more wells of the opposite conductivity type to that of the surrounding material of a substrate in which the voltage storage circuit concerned is formed, there being means for causing the or each well potential to be substantially fixed in relation to the output terminal potential of the amplifier element in the voltage storage circuit concerned.
This arrangement of the switch elements enables parasitic capacitances in the voltage storage circuits to be bootstrapped out, in the same basic manner as described hereinbefore in relation to a voltage storage circuit embodying the first aspect of the invention. Such an analogue-to- digital converter requires only one stage to perform a conversion operation, resulting in an especially compact design. 20 Reference will now be made, by way of example, to the accompanying drawings, in which: Figure 1, discussed hereinbefore, shows a circuit diagram of a previouslyconsidered voltage storage circuit; 25 Figure 2, also discussed hereinbefore, shows in more detail an amplifier element included in the Figure I circuit; Figure 3 shows a circuit diagram of a voltage storage circuit to which the aforesaid first aspect of the present invention can be applied; Figure 4 shows one design or an amplifier element included in the Figure 3 circuit; Figure 5 shows another design of amplifier element for use in the Figure 3 circuit; Figure 6 shows in more detail an input witch element included in the Figure 3 circuit; 0 Figure 7 shows yet another design of amplifier element, together with an example of switch driving means, for use in the Figure 3 circuit; Figures B(A) and 8(B) show respective plan and cross-sectional views illustrating one possible layout of the circuit of Figure 3 on an integrated circuit substrate, according to a first embodiment of the present invention; and Figures 9(A) and 9(B) show respective plan and cross-sectional views illustrating another possible layout of the circuit of Figure 3 on an integrated circuit substrate, according to a second embodiment of the present invention; Figure 10 shows a circuit diagram of voltage summation circuitry employing a voltage storage circuit as shown in Figure 3; Figure 11 shows a circuit diagram of voltage doubling circuitry employing two voltage storage circuits as shown in Figure 3; 20 Figure 12 shows a circuit diagram of parts of an analogue-to- digital converter having a plurality of conversion stages each based upon the voltage doubling circuitry of Figure 11; Figure 13 shows a circuit diagram of parts of an analogue-to-digital converter, having a single conversion stage, to which the aforesaid second aspect of the present invention can be applied; Figure 14 is a schematic diagram of parts of the converter of Figure 12, for illustrating advantages of scaling the stages in the Figure 12 converter one from the next by a scaling factor; Figure 15 is a graph illustrating, in the case of a converter as shown in Figure 12 having 16 stages, the relationship between total current consumption of the converter and the scaling factor, and the relationship between total noise in the converter and the scaling 0 factor; and Figure 16 is a schematic diagram illustrating one example of the layout of the Figure 12 converter on a chip.
The voltage storage circuit of Figure 3 includes an electronic switch element 1, preferably an MOSFET transistor, a storage capacitor 2, a unity-gain buffer 3, and bootstrapped switch driving means 4,5 connected between an output terminal circuit and the gate electrode (control electrode) of the MOSFET 1.
Figure 4 shows a first example of the construction of the amplifier element 3 in the Figure 3 circuit. The element 3 comprises two basic portions, namely a cascoded source follower 31 and a current source 32.
The cascoded source follower 31 comprises an nchannel MOSFET input transistor 33 whose gate electrode is connected to one plate (the upper plate in Figure 3) of the storage capacitor 2. The drain-source channel of the input transistor 33 is connected in series with the drain-source channel of a further n-channel MOSFET transistor, which will be referred to hereinafter as a cascoding transistor 34. The drain electrode of the cascoding transistor 34 is connected to a positive supply line Vdd of the circuit, whilst the source electrode of the input transistor 33 is connected to an output terminal OUT of the circuit.
Also in the cascoded source follower 31, a bias generator 35 is connected between the source electrode of the input transistor 33 and the gate electrode of the cascoding transistor 34. This bias generator serves to maintain a substantially constant potential difference between the gate electrode of the cascode transistor and the source electrode of the input transistor 33, irrespective of variation of the source electrode potential.
0 The current source 32 is constituted substantially identically to the cascoded source follower 31 and comprises two n-charinel MOSFET transistors 36 and 37 (corresponding respectively to the transistors 33 and 34 of the cascoded source follower 31), connected in series between the output terminal OUT of the circuit and a negative supply line Vss of the circuit, and an associated bias generator 38 (corresponding to the bias generator 35 in the cascoded source follower 31) which serves to maintain a substantially constant potential difference between the gate electrode of the transistor 37 and the source electrode of the transistor 36. In this case, the source electrode of the transistor 36 is connected directly to the negative supply line Vss, so that the gate electrode potential of the transistor 37 is fixed in relation to the negative supply line. The current source 32 has a bias input BIAS connected to the gate electrode of the transistor 36. A bias potential can be applied to the bias input of the current source 32 for controlling operation of the element, as will be described hereinafter.
Since the current source 32 is connected in series with the cascoded source follower 31, it serves to complete a current path between the positive and negative supply lines Vdd and Vss.
In operation of the amplifier element of Figure 4, the current source is operable to cause a substantially constant current to pass through the above-mentioned current path and hence through each of the transistors 33 and 34 of the cascoded source follower 31. This causes the source electrode potential of the input transistor 33 to track the gate electrode potential thereof such that the output terminal potential V. follows the potential VC of the upper plate of the storage capacitor 2. Thus, the voltage gain of the element is substantially unity.
0 Similarly, the source electrode potential of the cascoding transistor 34 is caused to track the gate electrode potential thereof, which potential is in turn maintained substantially fixed in relation to the source electrode potential of the input transistor 33 by the bias generator 35. Accordingly, the drain electrode potential of the input transistor 33 tracks the source electrode potential thereof and hence also tracks the potential Vc of the upper plate of the storage capacitor 2.
As will be apparent, irrespective of the upper plate potential Vc of the storage capacitor 2, the source and drain electrode potentials of the input transistor 33 are each substantially fixed in relation to one another and to the gate electrode potential of that input transistor. Thus, the gate-source, gatedrain and drain-source parasitic capacitances Cgs, Cgd, Cds are not charged or discharged as the upper plate potential Vc of the storage capacitor 2 varies, and thus these parasitic capacitances have substantially no effect on the voltage stored in the storage capacitor 2.
Because the input transistor 3 is an FET input transistor, the gate current is substantially zero, so that the charge stored in the storage capacitor is not diminished significantly by operation of the amplifier element 3 after the input switch element I has been opened.
In the Figure 4 amplifier element, the actual output terminal potential is not exactly equal to the upper plate potential Vc, but is reduced slightly in accordance with the ON gate- source differential voltage of the transistor 33, as follows:
Vo = Vc - (VT + VDSAT) where VT is the threshold voltage of the input transistor 33 and VDSAT is the saturation voltage of 0 the input transistor 33.
As will be apparent from Figure 4, the cascoded source follower 31 and the current source 32 are constructed substantially identically to one another. Thus, the counterpart of the input transistor 33 of the cascoded source follower 31 is the transistor 36 in the current source 32, to which transistor 36 the abovementioned bias potential is applied. Because the same current flows through the respective drain-source channels of the transistors 33 and 36, and these transistors are of identical dimensions, the gatesource potential of the transistor 33 can be controlled by adjusting the gate-source potential of the transistor 36 in the current source 32. This gatesource potential of the transistor 36 is equal to the difference between the bias potential and the negative supply line potential, so that by applying a suitable constant bias potential to the bias terminal, the difference between the output terminal potential V. and the upper plate potential VC of the storage capacitor 2 can be set to a desirably small constant level.
In the Figure 4 amplifier element, the transistors 33, 34, 36 and 37 can be of the depletion or enhancement type.
Figure 5 shows a more sophisticated example of the construction of the amplifier element 3, employing depletion-type n-channel MOSFET transistors to provide high speed operation. In the Figure 5 example, the amplifier element again comprises a cascoded source follower 31 and a current source 32, and the FET input transistor 33 in the cascoded source follower 31 is again connected in the cascoded source follower configuration previously described with reference to Figure 4, the gate electrode of the transistor 33 being connected to receive the upper plate potential Vc of the storage capacitor 2, the source electrode of the 0 transistor 33 being connected to the output terminal OUT of the circuit and the drain electrode of the transistor 33 being connected by way of first and second cascoding transistors 341 and 342 to the positive supply line Vdd of the circuit.
In this case, the cascode bias generator 35 comprises three seriesconnected transistors 351, 352 and 353 connected for applying suitable bias potentials to the respective gate electrodes of the first and second cascoding transistors 341 and 342, so that the respective gate electrodes of the cascoding transistors 341 and 342 are each maintained at potentials substantially fixed in relation to the source electrode potential of the input transistor 33.
The current source 32 of the Figure 5 amplifier element is constituted identically to the cascoded source follower 31 thereof and includes, connected between the source electrode of the input transistor 31 and the negative supply line Vss, three series connected transistors 36, 371 and 372 (corresponding respectively to the transistors 33, 341 and 342 of the cascoded source follower 31). In this case the gate electrode potential of the transistor 36 (equivalent to the bias potential applied to the bias input in the Figure 4 amplifier element) is provided by the negative supply line VSSI while the respective gate electrode potentials of the transistors 371 and 372 are provided by a bias generator 38 (constructed identically to the bias generator 35 in the cascoded source generator 31) comprising three series-connected transistors 381 to 383. It will be seen that the bias generators 35 and 38 are connected in series with one another between the positive and negative supply lines so as to complete a further current path therebetween.
In the Figure 5 amplifier element, because the gate electrode of thetransistor 36 in the current 0 source 32 is connected directly to the negative supply line Vs., the gate and source potentials of the transistor 36 are equal to one another. Since the same drain-source current flows through the input transistor 33 as through its counterpart transistor 36 in the current source 32, and the cascoded source follower 31 and the current source 32 are of substantially identical construction, it follows that the gate and source potentials of the input transistor 33 in the cascoded source follower 31 will also be substantially equal to one another in potential. Thus, the voltage gain of the Figure 5 amplifier element is closer to unity (approximately 0.9995) than is the case with the Figure 4 amplifier element. As compared with the Figure 4 amplifier, the Figure 5 amplifier element is also capable of fast operation. In other respects, however, the operation of the Figure 5 element is substantially identical to that of the Figure 4 amplifier element.
Returning now to Figure 3, the bootstrapped switch driving means comprises potential generating circuitry 4 having an input connected to the output terminal of the circuit and operable to provide at respective outputs thereof potentials Vhigh and Vlow (Vhigh Vlow) each of which has a constant offset from the output terminal potential. These two potentials must be at suitable levels to apply to the gate electrode of the MOSFET 1 in order to maintain it in its ON and OFF conditions.
The two potentials Vhigh and Vlow are applied as inputs to a selector element 5 which also receives a switching signal CK. The output of the selector circuit 5 is connected to the gate electrode o-l-- the MOSFET switch element 1 for controlling the potential thereof. The selector element 5 switches the gate electrode potential between the two potentials Vhigh 0 and Vlow in dependence upon the switching signal CK. This signal CK may be a logic signal provided by digital logic circuitry controlling operation of the voltage storage circuit.
In order to avoid unpredictable charge injection by the MOSFET input switch element 1 into the storage capacitor 2 when the input switch element is turned OFF, the control potential applied to the gate electrode of the MOSFET must be substantially fixed in relation to the input terminal potential, at least when the MOSFET is to be ON, as will now be explained with reference to Figure 6.
Figure 6 shows the input switch element 1, in this example an n-channel enhancement type MOSFET, in detail. The MOSFET 1 has a source electrode providing an input terminal IN of the switch element, a drain electrode providing an output terminal OUT of the switch element, and a gate electrode connected to be switched alternatively between the two abovementioned control potentials Vhigh and Vlow. The drain-source channel of the transistor is non-conducting when the gate-channel potential thereof is zero (or negative) so that when the applied control potential is Vlow (:s V.) the output terminal of the switch element is isolated from the input terminal thereof, the offresistance (Roff) of the switch element in this condition being typically more than 10,000 MO. When the gate potential is changed to Vhigh (' Vo) the drain-source channel is brought into conduction, the on-resistance (Ron) of the switch element in this condition being of the order of los or 100s of ohms.
In an analog-to-digital converter employing a voltage storage circuit such as that shown in Figure 3 the operation of the switch element 1 is normally required to be controlled by digital logic circuitry of the converter and, partly for this reason, in prior 0 proposals fixed digital logic potentials (for example 0 and +VDD volts) were conventionally applied to the gate to control the switching of the element.
However, a problem arises when such digital logic 5 potentials ar e used as will now be explained.
The MOSFET switch element I of Figure 6 unavoidably has a parasitic gatechannel capacitance Cgc between its gate electrode and its drain-source channel. This parasitic capacitance has a first component due to physical overlap between the gate and the channel of the FET, and a second component associated with charge stored in the channel when the FET is in the ON condition. It is found that this second component varies with the channel potential (i.e. with the potential Vi of the signal being switched) but in an unpredictable manner.
The gate-channel capacitance gives rise to charge injection from the gate to the channel at the moment of switching tswitch, which in turn gives rise to an error in the stored voltage. Charge injection due to the above-mentioned first component of the gate-channel capacitance depends essentially on the change in gate voltage AVG at tswitch (e.g. O_VDD _-_VDD) and so is substantially independent of the channel potential Vi at tswitch- Charge injection due to the second component of the gate- channel capacitance is, however, influenced by the input signal potential Vi relative to the gate potential at the moment of switching, leading to the above-mentioned error in the stored voltage and for non-linearity in the operation of the voltage storage circuit.
It is not readily practical to compensate for such charge injection, for example by coupling an inverted version of the gate signal through a small adjustable capacitor, because the effect of the above-mentioned second component of the gate-channel capacitance is not 0 sufficiently predictable.
The effects of charge injection at the moment of switching tswitch in prior proposals employing fixed control potentials, such as digital logic potentials, are particularly significant in the case where it is desired to employ a storage capacitor having a small capacitance to reduce the acquisition time of the circuit.
In the bootstrapped switch driving means 4,5 of Figure 3, however, at least the control potential applied to the switch element 1 to maintain it in the ON condition is fixed relative to the input terminal potential Vi so that the amount of charge injected by the element 1 when it is switched OFF is substantially constant irrespective of the input terminal potential. Because this charge injection is constant, it leads to a constant error in the stored voltage, which can be readily compensated for.
Incidentally, in some cases it may be possible for the control potential applied to the switch element 1 when it is to be maintained in the OFF (as opposed to the ON) condition to be fixed, rather than variable with the input potential Vi as in Figure 3. This is because the above-mentioned first component of the gate-channel parasitic capacitance Cgc is linear.
The potentials Vhigh and Vlow required depend on the type and threshold voltage of the MOSFET used in the MOSFET 1. This switch element can be of the enhancement or depletion type and can be of n-channel or p-channel. For an n-type channel MOSFET, Vhigh will be applied to the gate electrode to turn ON the MOSFET (i.e. Vhigh is the ON potential) and Vlow will be applied to turn it OFF (i.e. Vlow is the OFF potential), whereas for a p-channel MOSFET Vhigh will 3S be applied to the gate electrode to turn OFF the MOSFET (i.e. Vhigh is the OFF potential) and Vlow will be 0 -37 applied to turn it ON (i.e. Vhigh is the ON potential).
In the case of an n-channel MOSFET having a threshold voltage VT, for low on-resistance Vhigh - Vi 2 VT + Von where Von is a predetermined potential difference. Similarly, for high off-resistance Vlow - Vi < VT - Voff, where Voff is also a predetermined potential difference.
The difference between the ON and OFF potentials is thus Von + Voff, which must be at least several hundred mV.
It may be possible to use the output terminal potential Vo directly to provide one of the two potentials Vhigh and Vlow. For example, in the case in which the MOSFET switch element 1 is an n-channel depletion type switch element Vhigh can simply be Vo; likewise, in the case in which the MOSFET switch element I is an n-channel enhancement type switch element, Vlow, can be the output terminal potential Vo.
In the Figure 3 voltage storage circuit, the potential generating circuitry 4 is shown interposed between the output terminal and the selector circuit 5. However, this circuitry 4 may in some cases be omitted if the required potentials Vhigh and Vlow are already available on existing internal biasing lines o-f the circuit, in particular on internal biasing lines of the amplifier element 3. Alternatively, as will be described later in more detail with reference to Figure 9, the required potentials Vhigh and Vlow may be derived from internal biassing line potentials that are not directly suitable for proving the potentials Vhigh and Viow.
It will be apparent that in the above-described examples of suitable constructions of the amplifier element 3, the amplifier element has bias generators 35 c and 38 which provide gate electrode bias voltages on internal biasing lines of the element. These bias voltages track the output terminal potential.
The potential levels of these internal biasing lines may be suitable for directly providing the required ON and OFF potentials for use in controlling switching of the switch element 1, in which case the potential generating circuitry 4 in the Figure 3 circuit can of course be omitted entirely.
In other cases, the amplifier element may well have a pair of internal biasing lines the potential difference between which is greater than or equal to the difference (Von + Voff) between the recruired ON and OFF potentials. However, the respective potential levels of the internal biasing lines of the pair may not always be suitable for providing the ON and OFF potentials directly. Alternatively, one of the required ON and OFF potentials, for example the ON potential in the case of enhancement type MOSFET switch element or the OFF potential in the case of a depletion type MOSFET switch element, may on some occasions need to be outside the supply lines of the circuitry.
These difficulties may be overcome by adopting a circuit construction for the amplifier element 3 and switch driving means 4,5 as described below with reference to Figure 7.
In Figure 7, the amplifier element 3 is made up mainly of enhancement type n-channel MOSFET transistors but is otherwise constructed in a similar manner to the examples shown in Figures 4 and 5, and comzrises a cascoded source follower 31 and a current source 32 connected in series between the positive supply line Vdd and the negative supply line Vss As before, the cascoded source follower 31 includes an inDut transistor 33 and a cascoding transistor 3-1111, plus a further transistor 342, connected between the positive 0 supply line Vdd and the drain electrode of the transistor 331, and a cascode bias generator 35 comprising transistors 351 and 352 connected in series, together with an additional transistor 353, between the positive supply line Vdd and the source electrode of the transistor 33. In this case, the output terminal OUT of the circuit is connected to the drain electrode of the transistor 351 which, when the amplifier element is in use, is maintained at substantially the same potential as the gate electrode of the transistor 33, i.e. at the voltage VC of the upper plate of the storage capacitor 2 connected to the gate electrode. In this respect, the transistors 342 and 353 are selected and connected so as to constitute a PMOS current mirror which serves to decrease the amplifier gain error by ensuring that the current in transistor 351 is the same as that in the input transistor 33, so that the output voltage closely follows the input voltage. It should be noted, however, that such use of a PMOS current mirror is optional.
The amplifier element 3 of Figure 7 has a first internal biasing line Ll which is connected to the source electrode of the transistor 31. When the circuit is in use, this internal biasing line will be maintained at a potential V, which is lower than the capacitor voltage VC by an amount equal to the threshold voltage VT of the transistor 31, i.e. V1 = V c VT- The amplifier element 3 has a further biasing line L' connected to the drain of the transistor 351 of the cascode bias generator, which biasing line (as noted above) is maintained at substantially the capacitor voltage Vc when the circuit is in use, but the potential difference between the internal biasing lines Ll and L' is only VT which is less than the abovementioned potential difference (Von + Voff) between the ON and OFF potentials required for controlling the 0 switch element 1. However, the transistor 352 included between the transistors 351 and 352 in the cascode bias generator 35 operates to generate, at a second biasing line L2 of the element, a potential V2 which is always greater than the output terminal potential Vo by an amount substantially equal to the threshold voltage VT of the transistor 352. The potential difference between the first and second biasing lines Li and L2 is substantially equal to two transistor threshold 10 voltages 2VT1 which potential difference is greater than or equal to the required difference (Von + Voff) between the ON and OFF potentials of the switch element I. An example of switch driving means 4,5 capable of 15 employing these potentials V, and V2 to generate the required ON and OFF potentials will now be given. In this example the switch element 1 is of the n- channel enhancement type so that the OFF potential, Vlow, can be the output terminal potential Vo itself, and the ON 20 potential is Vhigh " Vlow + 2VT. This ON potential can be greater than the positive supply line Vdd in this example. In Figure 7, the potential generating means 4 includes a bootstrap capacitor 44 and connecting means 25 45, comprising transistors 451 to 453, connected for providing controllable connections between the plates of the bootstrap capacitor 44 and the internal biasing lines Ll and L2 and the output terminal OUT. The transistors 451 to 453 of the connecting means 30 45 each receive a logic signal SW which is at the high logic level when the switch element 1 is to be OFF and at the low logic level when the switch element 1 is to be ON. The logic signal SW is derived from the switching signal CK used to control the switch element 1, so that it can be changed from the high logic level to the low logic level in response to the switching signal CK.
0 The transistor 451 is a p-type transistor which is therefore turned ON when the logic signal SW is at the low logic level, whereas the transistors 452 and 453 are n-type transistors which are therefore turned ON only when the logic signal SW is at the high logic level.
The p-type transistor 451 is connected between the second biasing line L2 and the negative plate of the bootstrap capacitor 44, the n-type transistor 452 is connected between that plate and the first biasing line L1, and the n-type transistor 453 is connected between the positive plate of the bootstrap capacitor 44 and the output terminal OUT.
The positive plate of the bootstrap capacitor 44 is permanently connected to the gate electrode of the switch element 1.
Operation of switch driving means 4,5 of Figure 7 is as follows. When the logic signal SW is at the high logic level to cause the switch element to be in the OFF condition the n-type transistors 452 and 453 are turned ON so that the positive plate of the bootstrap capacitor 44 and the gate electrode of the switch element 1 are maintained at the output terminal Vo (=Vlow) potential while the negative plate of the capacitor 44 is maintained at the potential V, (=V 0 VT) of the first biasing line L1. Thus the bootstrap capacitor is charged to a potential substantially equal to VT If the logic signal SW is now changed, in response to the switching signal CK, from the high logic level to the low logic level to turn the switch element ON, both of the n-type transistors 452 and 453 are turned OFF, and the p-type transistor 451 is turned ON. Thus, the negative plate of the bootstrap capacitor 44 undergoes a change in potential from V, to V2 at a time when its positive plate is isolated from the output terminal potential Vo As a result, the positive plate 0 potential is free to float in accordance with the change (V2 - V, - 2VT) in the negative plate potential, and so the positive plate potential changes by V 2 - V1 As a result the gate electrode potential of the switch element 1 changes from the output terminal potential Vo (=Vlow) to Vo + 2VT (=Vhigh), even if Vo + 2VT ' Vdd- It should be noted that the capacitance of the bootstrap capacitor 44 should be large compared to the gate capacitance of the switch element 1 in order that the magnitude of the change in the potential at the positive plate of the bootstrap capacitor 44 at the moment of switching is not diminished unduly as compared with the corresponding change in the potential at the negative plate thereof.
is As described above, the use of a bootstrap capacitor and appropriate connecting means, actuable in dependence upon the switching signal CK used to control switching, can enable the required ON and OFF potentials to be derived from the potentials of internal biasing lines of the circuit even when those lines do not have potentials that are suitable for providing those ON and OFF potentials directly. The bootstrap capacitor 44 can also permit these ON and OFF potentials to be outside the supply lines of the circuit. Moreover, the use of internal biasing lines which are necessarily already present in the circuit in the generation of the ON and OFF potentials can result in a worthwhile saving in the amount of circuitry required.
In accordance with the aforesaid first aspect of the present invention the voltage storage circuit of Figure 3 is constructed as an integrated circuit in order to make it possible to bootstrap all the parasitic capacitances in the circuit, including the capacitance of the switch element 1, the input capacitance of the amplifier element 3 and any interconnect capacitance.
To this end, the switch element 1, storage capacitance 2, and parts of the amplifier element 3 of the Figure 3 circuit are formed in a well (denoted at 7 of Figure 3) of opposite conductivity type to that of the surrounding material of the substrate. Fo'-r example, if the integrated circuit is of the CIMOS type having an n-substrate, the well 7 in which the switch element 1, storage capacitor 2 and buffer element 3 are formed will be of the p-conductivity type. The well is then connected so that its potential is substantially fixed in relation to the upper plate potential Vc of the storage capacitor 2. For example the well may be connected electrically to the output terminal of the circuit, as shown in Figure 3.
Figure 8 illustrates one possible layout, within such an integrated circuit, of the voltage sto-rage in circuit of Figure 3, in a first preferred embodiment of the present invention in which the amplifier element 3 is constituted substantially as shown in Figure 4. As indicated in Figure 8, the switch element 1, storage capacitor 2 and the input transistor 33 and cascoding transistor 34 of the amplifier element 3 are formed within a p-well 7p formed in a n-substrate 8n. The current source 32, current source bias generator 33 (both not shown in Figure 8), the cascode bias generator 35 and switch driving means 4,5 are formed outside the well 7p. The cascode bias generator 35 and switch driving means 4,5 may alternatively also be within the well.
As shown in detail in Figure 8, the inputL voltage of the Figure 3 circuit is applied between an input terminal (IN) 11 and a common terminal (COM)!2 thereof, the common terminal 11 being connected to the lower plate 21 of the storage capacitor 2. The upper plate 22 of the storage capacitor 2 is connected to the gate electrode 33g of the transistor 33 and also to the drain electrode id of the switch element 1. The source c electrode is of the switch element 1 is connected to the input terminal (IN) 11.
The output terminal (OUT) 13 of the circuit is connected to the source electrode 33s of the transistor 33, the transistor 33 being formed to have a common channel 33c with the cascode transistor 34. The drain electrode 34d of the cascoding transistor 34 is connected to the positive supply rail Vdd and the gate electrode 349 thereof is connected, by way of the cascode bias generator 35, to the output terminal 13.
The switch driving means 4,5 are connected between the output terminal 13 of the circuit and the gate electrode lg of the switch element 1.
The p-well 7p is connected electrically to the output terminal 13 by a p+ contact region 9 provided within the p-well 7p at a location therein adjacent to the n+ channel 33c, as shown in Figure 8(B). A contact serves to connect the contact region 9 to the output terminal 13, as shown in Figure 8(A). Also, as shown in Figure 8(B) a shield 15 is optionally provided over the devices within the well, which shield is also connected electrically by contact 16 to the output terminal 13 of the circuit.
It will be appreciated that, since they are formed in a pwell in Figure 8, the MOSFET switch element 1, and the transistors 33 and 34 of the amplifier element 3 must be of the n-channel type.
In the case of the amplifier element of Figure 5, the cascoded source follower 31 (comprising the FET input transistor 33, the cascode transistors 341 and 342 and the transistors 351 to 353 of the cascode bias generator 35) is formed entirely within a P-well of the circuit containing the storage capacitor 2 and switch element 1. As before, the well may, for example, be electrically connected to the output terminal OUT of the circuit. The current source 32 of the Figure 5 amplifier element will then be formed in a second p- c well, which should be connected electrically to a point in the circuit. The potential of which is fixed in relation to the supply lines of the circuit, for example the negative supply line itself.
It is not essential in the Figure 3 circuit for the input switch element 1, the storage capacitor 2 and the amplifier 3 to be formed together in a single well.
In a second preferred embodiment shown in Figure 9, by way of example, the switch element 1 and the storage capacitor 2 and the amplifier element 3 are formed in different respective p-wells 71p, 72p and 73p.
The p-well 71p is connected electrically to the output terminal (OUT) 13 of the circuit by way of an auxiliary buffer element 17 and contacts 18 and 19, so as to be at a potential substantially fixed in relation to the output terminal potential and hence in relation to the upper plate potential of the storage capacitor 2.
The p-wel.1 72p is connected electrically to the bottom plate 21 of the storage capacitor by way of contact 23 so as to be at a potential substantially fixed in relation to the upper plate potential when the switch element I is in the OFF condition.
The p-well 73p is connected electrically to the output terminal (OUT) 13 of the circuit by contact 18 so that it is also at a potential substantially fixed in relation to the upper plate potential of the storage capacitor 2.
The parts 14, 24 of the interconnection portions between the circuit elements 1, 2 and 3 that are outside the wells 71p, 72p and 73p extend over interconnect shielding portions 151, 152 whose potentials are maintained ecrual to the well potentials, thereby to eliminate parasitic capacitances associated with the interconnection portions.
The well 72p for the storage capacitor 2 is optional.
0 A particularly advantageous application of a voltage storage circuit embodying the invention will now be described with reference to Figure 10.
Figure 10 shows voltage summation circuitry employing a voltage storage circuit constituted as described hereinbefore with reference to Figure 3.
The voltage summation circuitry includes, in addition to the components of the Figure 3 voltage storage circuit, an input isolation switch element connected in series with the input switch element between that element and a first input node I,, a selection switch element 47 connected between, on one hand, respective second and third input nodes 46 1 the 12 and 13 and, on the other hand, the common terminal COM of the voltage storage circuit, and a feedback switch element 48 connected between the output terminal OUT of the voltage storage circuit and the input side of the input switch element 1.
An auxiliary capacitor 49 may optionally also be provided, connected between the input side of the input switch element 1 and the common terminal COM of the voltage storage circuit, in which case the feedback switch element 48 may be omitted.
In use of the voltage summation circuitry of Figure 10, initially the switch elements 1 and 46 are both controlled to be ON while the feedback switch element 48 is kept OFF. At this time, the selection switch element 47 is configured to connect the second input node 12 to the common terminal COM of the voltage storage circuit. The input switch element 1 of the voltage circuit is then turned OFF, with the result that the potential difference V, - V2 between the first and second input nodes I, and 12 at the moment of switching is stored in the storage capacitor 2 of the voltage storage circuit.
Thereafter, the input isolating switch element 46 is also turned OFF and the feedback switch element 48 0 turned ON. As a result, the potential of the input side of the switch element ON is maintained substantially fixed in relation to the potential VC of the upper plate of the storage capacitor 2 after the input switch element 1 is turned OFF, irrespective of subsequent variations in the first input node potential.
If the auxiliary capacitor 49 is present between the input side of the input switch element 1 and the terminal COM of the voltage storage circuit, this auxiliary capacitor serves alternatively, or in addition, to the feedback switch element 48 to maintain the potential of the input side of the input switch element 1 substantially fixed in relation to the potential VC of the upper plate of the storage capacitor 2 after the input switch element 1 is turned OFF.
Maintenance of the input side potential after switching OFF of the input switch element 1 is desirable to avoid the possibility of the input switch element 1 being turned ON again if the first input node potential changes sufficiently relative to the OFF potential applied to the gate electrode of the input switch element 1.
At the same time as, or after, the input Isolating switch element 46 is turned OFF, the configuration of the selection switch element 47 is changed to connect the third input node 13 to the common terminal COM in place of the second input node 12' As a result, the output terminal potential becomes substantially equal to the third input node potential V plus the stored difference V between the first 3 1 - V2 I.
and second input node potentials, i.e.
Vo = V1 - V2 + V3 + Verror where Verror is an error voltage in the stored potential difference V, - V2 caused by charge injection by the input switch element 1 at the moment it is 0 turned OFF. When, as discussed hereinbefore, the ON potential applied to the input switch element I tracks the input node potential, this error voltage Verror is substantially constant irrespective of the potentials applied to the circuit, so that this error voltage can be compensated for in a desirably simple manner.
It will be appreciated that, by virtue of the effective elimination of parasitic capacitance effects in the voltage storage circuit, the potential of the lower plate of the storage capacitor can be changed freely, after storage of a desired potential difference, without affecting the stored potential difference in an unpredictable manner. This enables a voltage storage circuit constituted as described hereinbefore with reference to Figure 3 to provide particularly high accuracy in voltage summation applications.
As a further advantageous application of the voltage storage circuit of Figure 3, Figure 11 shows voltage doubling circuitry 50 including first and second voltage storage circuits VSC, and VSC2 each constituted asdescribed hereinbefore with reference to Figure 3.
The circuitry 50 has first and second input nodes 1, and 12 and first and second output nodes 01 and 02. A first controllable switch element 51 is connected between the first input node I, and input terminal IN, of the first voltage storage circuit VSCI. A second controllable switch element 52 is connected between the second input node 12 and common terminal COM, of the first voltage storage circuit VSCj, A third controllable switch element 53 is connected between the first input node I, and common terminal COM2 of the second voltage storage circuit VSC2. A fourth controllable switch element 54 is connected between the second input node 12 and input 0 terminal IN2 of the second voltage storage circuit VSC2 A fifth controllable switch element 55 is connected between the respective common terminals COM1, 5 COM2 of the voltage storage circuits VSC, and VSC2.
The respective output terminals OUT, and OUT2 of the first and second voltage storage circuits VSC, and VSC2 are connected respectively to the first and second output nodes 0, and 02 of the circuitry 50.
The circuitry 50 further comprises control means which apply a first control signal 01 to the switch elements 51 to 54 and a second control signal 02 to the switch element 55. The control means 60 also apply to the voltage storage circuits VSC, and VSC2 the above- mentioned switching signal CK used to control switching of the respective switch elements 1 of the voltage storage circuits. The switch elements 51 to 54 are controlled to be in the ON condition when the control signal 01 is active, and the switch element 55 is controlled to be in the ON condition when the control signal 02 is active. The generation of the switching signal CK applied to the switch driving means 4,5 of each of the voltage storage circuits is synchronised by the control means 60 with the switching of the control switch elements 51 to 55, such that the respective switch elements 1 of the voltage storage circuits VSC, and VSC2 are maintained in the ON condition when the switch elements 51 to 54 are initially in the ON condition but are turned OFF before those elements 51 to 54 are switched to the OFF condition.
In operation of the Figure 11 voltage doubling circuitry, the control signal 01 is initially activated so that the controllable switch elements 51 to 54 are initially switched to the ON condition, the switch element 55 being OFF at this time. Thus, when 01 is active the switch elements 51 to 55 are in an input 0 -so- configuration which permits an input voltage Vi between the input nodes I, and 12 to be applied between the respective input and common terminals of each of the voltage storage circuits VSC, and VSC2.
While the switch elements 51 to 55 are in this input configuration, the respective switch elements 1 of the voltage storage circuits VSC, and VSC2 are controlled by their associated switch driving means 4,5 to be in the ON condition. As a result, the respective storage capacitors 2 thereof are each charged to the input voltage Vi. In this respect, it is to be noted that the input voltage is applied with reverse polarity to the second voltage storage circuit VSC2 as compared with the first voltage storage circuit VSCj, While the switch elements 51 to 54 are still turned ON, the control means 60 apply the switching signal CK to the respective switch driving means 4,5 of the voltage storage circuits in order to switch OFF the respective switch elements 1 of the voltage storage circuits. As a result, the input voltage Vis at the moment of switching tswitch is stored in the respective storage capacitors 2 of the voltage storage circuits.
Thereafter, the control means 60 deactivates the control signal 01, so that the switch elements 51 to 54 are switched OFF, and then activates the control signal 02 so that the switch element 55 is switched ON. In this condition, the switch elements 51 to 56 are in an output configuration. In this output configuration, the respective storage capacitors 2 of the voltage storage circuits VSC, and VSC2 are connected in series between the respective inputs of the amplifier elements 3 of the voltage storage circuits VSC, and VSC2' Since these amplifier elements 3 of the voltage storage circuits serve only to reproduce at their respective outputs the potentials at their inputs, the output voltage V. produced between the first and second output 0 nodes 01 and 02 is substantially equal to double the stored input voltage Vis, i.e. Vo = 2Vis.
Accordingly, the circuitry 50 serves to provide an output voltage V. which is substantially double the applied input voltage Vi at the moment of switching tswitch The circuitry of Figure 11 is capable of providing very high accuracy in voltage doubling because the effects of parasitic capacitance in the circuitry are minimised. This is because in a voltage storage circuit constituted as described hereinbefore, the parasitic capacitances which affect the applied input signal (i.e. the capacitance of the input switch element 1, the capacitance at the input of the amplifier element 3, and any interconnect capacitance in the voltage storage circuit) can all be bootstrapped. In view of the fact that the voltage storage circuits should preferably be formed in respective wells (to permit bootstrapping of the interconnect capacitance of the voltage storage circuits), the entire voltage doubling circuitry 50 should preferably be formed as an integrated circuit.
It should be noted that this approach to voltage doubling is fundamentally different from that adopted in previously-considered switched-capacitor circuits used to perform voltage doubling. In these previouslyconsidered circuits, the circuit operation is designed to be insensitive to parasitic capacitances by ensuring that all nodes in the circuit are either driven by amplifiers (so that the parasitic capacitances are charged by the amplifier outputs and have no effect), or are always returned to the same voltage on all clock phases ("virtual ground" design so that no net charge flows into or out of the parasitic capacitances). An example of the latter approach is provided in EP- B0214831.
0 By designing the circuits to be insensitive to parasitic capacitances, the problems caused by parasitic capacitances per se are eliminated, but the elimination of parasitic problems leads to a different problem, associated with inevitable mismatch between the capacitors used to store and double the input voltage, which prevents desirably high accuracy from being achieved.
This problem arises because in previously- considered voltage doubling circuits based on switched capacitors, the variable which is conserved during a voltage doubling operation is charge (transferred from one capacitor to another) rather than voltage as in the Figure 11 circuitry.
Considering this problem in more detail, to double a voltage when charge is conserved, a capacitor of value 2C (or two capacitors, each of value C, in parallel) is charged to the input voltage, and then all the charge is transferred to a single capacitor of value C (which may or may not be one of the originallycharged capacitors). Conservation of charge gives: 2 C. Vin -- C'Vout Vout= 2 Vin However, it is found that in practical circuits the output voltage Vout is not precisely double the input voltage Vin, and this is due to mismatch between the respective capacitances of the capacitors used to perform the voltage doubling operation. In this respect, if the respective capacitances of the two capacitors that are charged to the input voltage Vin are C, and C2 respectively, and the capacitance C3 of a third capacitor which receives the combined charge stored in those two capacitors is C31 conservation of charges gives:
(Cl +C2) Vin = C3 Vout Vout= (Cl+C2)/C3] Vin 0 Random mismatches between nominally identical capacitors are typically between 0.1% (relatively easy to achieve on an integrated circuit) and 0. 01% (extreme precautions required, for example large capacitors split into units and interleaved). Such capacitance matching error results in a comparable error in the doubled voltage and, when the voltage doubling circuit is employed in an analog-to-digital converter for example, the linearity of the analogto-digital converter can be limited to between 10 and 13 bits by such error. Error due to capacitance mismatch in such previouslyconsidered charge-transfer based voltage doubling circuits can be eliminated by using complicated switching arrangements. one previouslyconsidered method is to charge a capacitor Cl to the input voltage, transfer the charge to a storage capacitor C2, charge Cl to the input voltage again, and then transfer all the charge back onto Cl. This results in an exact doubling voltage of the input because the charge starts and finishes on the same capacitor, but this method is more complex, slower (involving more clock phases), and more sensitive to amplifier switching noise. Another previously-considered method is to "autocalibrate,', i.e. provide additional circuitry which measures the capacitor mismatch and adjusts for it. The provision of such circuitry, however, adds to circuit complexity and reduces speed of operation. 30 Furthermore, the previously-considered voltage doubling circuits which rely on charge transfer also rely effectively on the capacitors being linear, so that doubling the charge on a capacitor necessarily doubles the voltage across it. Depending on the physical structure of the capacitor, non-linearity of the capacitors used in those previously- considered 0 voltage doubling circuits can also limit the linearity of the voltage doubling circuit as a whole.
In the Figure 11 circuit, on the other hand, the requirement for highly linear, accurately-matched capacitors is eliminated. Charging two capacitors in parallel and then connecting them in series will always exactly double the input voltage regardless of the matching and linearity of the capacitors, provided that the effects of parasitic capacitances can be cancelled out satisfactorily.
In the Figure 11 circuitry, since the bootstrap switch driving means 4,5 of each voltage storage circuit ensure that the charge injection of the switch elements I is kept constant, then provided that the voltage storage circuits are designed so that all parasitic capacitances therein are driven by the amplifier element outputs, substantially the only limit on linearity of operation is gain error of the amplifier elements. This is because the parasitic capacitance cancellation is not fully effective if the gains of the amplifier elements of the voltage storage circuits are not exactly unity. This gain error from exactly unity should therefore be minimised.
In practice, this gain error can be made as small as is required by the desired precision of the particular voltage doubling application (although to obtain optimum accuracy a relatively complex a-.-iplifier element construction will be required). By adopting a suitable amplifier element construction this means that a linearity of at least 1ppm or better should be achievable, the actual performance limit being dependent then upon random noise due to amplif- ':er and thermal (kT/C) noise. in an analog-to-digital converter using such voltage doubling circuitrv, linearity could be maintained in excess of 20 bits.
Finally, by virtue of the back-to-back connection 0 of two voltage storage circuits VSC, and VSC2 in the voltage doubling circuitry 50 of Figure 11, the respective amounts of charge injected by the switch elements 1 of the circuits at the moment of switching effectively cancel out, making the circuitry selfcompensating.
An example of the use of voltage doubling circuitry 50 such as that shown in Figure 11 will now be given with reference to Figure 12.
Figure 12 shows parts of an analog-to-digital converter (ADC) employing voltage doubling circuitry as shown in Figure 11. The Figure 12 ADC is a 11threestate logic" ADC.
A three-state logic ADC performs its analog-todigital conversion by carrying out a series of voltage conversion operations, starting with an applied analogue input voltage, each involving a voltage doubling operation. Digital data is produced in each such voltage conversion operation, the digital data from the successive conversion operations being combined to produce a digital output word representative of the applied analog input voltage.
In each voltage conversion operation performed by a three-state logic ADC, in a first phase of the operation an analog input voltage is compared with a predetermined comparison potential Vr/4, where Vr is a predetermined reference potential, to produce one of three digital data values as indicated in Table 1 below.
Result of Com-oarison Dicrital Data Vr/4:s Vi +1 _Vr/4:5 Vi ": Vr/4 0 Vi "' _Vr/4 -1 Table 1
Then, in a second phase of the operation, in dependence upon the digital data produced in the first phase the input voltage Vi is converted to produce an analog conversion voltage Vc which is related to Vi by 5 the expressions indicated in Table 2 below.
Digital Data Analoq Conversion Voltacre c 2Vi - Vr 2Vi 2Vi + 1 0 - 1 + Vr Table 2
In the next conversion operation this analog conversion voltage VC is used as the analog input voltage, the conversion voltage VC converging in successive such operations towards zero. Each successive conversion operation produces one "bit" of three-state logic digital data (+ 1, 0, 1). An output word expressed in normal binary (two-state) logic can be derived from all the three-state bits in combination by suitable digital logic circuitry, R three-state bits producing a binary logic output word consisting of (R+1) bits.
A fuller description of the operation of a previously-considered threestate logic ADC is provided in 11Pujitsu Facts: Three-states logic controls CMOS cyclic A/D converter is used in MB87020'I by K. Gotoh and 0. Kobayashi, and in EP-B-0214831, both of which documents are incorporated herein by reference.
The ADC of Figure 12 comprises N voltage conversion stages ST1, ST2---STN connected in series, each of which is capable of performing a voltage conversion operation as described above with reference to Table 1 and 2. Only the first two such voltage conversion stages ST, and ST2 of the ADC are illustrated in Figure 12.
0 Each of the stages STi is based upon voltage doubling circuitry 501 generally as described hereinbefore with reference to Figure 11, the input nodes I, and 12 of the voltage doubling circuitry 501 providing input nodes of the stage, and the output nodes 01 and 02 of the voltage doubling circuitry 501 similarly providing output nodes of the stage.
The voltage doubling circuitry 501 of each stage STi differs from the Figure 11 voltage doubling circuitry, however, in that in place of the single switch element 55 of the Figure 11 circuitry, the voltage doubling circuitry SO' has, connected in series between the respective common terminals COM, and COM2 of the two voltage storage circuits VSC1 and VSC2 o"'E the circuitry, two controllable switch elements 55 and 56 and voltage adjustment means 58.
In each stage STi, the switch elements 51 to 56 can be in either the above-mentioned input configuration (switch elements 51 to 54 in the ON condition whilst switch elements 55 and 56 are in the OFF condition) or in the output configuration (switch elements 55 and 56 in the ON condition whilst switch elements 51 to 54 are in the OFF condition).
As in the case of the voltage doubling circuitry 50 of Figure 11, the switch elements 51 to 56 of each stage STi are controlled by control signals 01 and 02. However, in the ADC of Figure 12 control means 601 common to all the stages are provided for generating the first and second control signals of each stage and, when 01 is active the switch elements 51 to 56 of the odd-numbered stages ST1, ST3, ST'S are maintained in the input configuration whilst the switch elements 51 to 56 of the even-numbered stages ST2, ST4, ST6---are maintained in the output configuration, and vice versa when 02 is active.
Each voltage conversion stage STi also includes 0 comparator means 70 connected to the first and second input nodes I, and 12 of the stage for receiving the input voltage Vi applied to the stage and also connected to receive the above-mentioned comparison potential Vr/4. The comparator means 70 provide at the output thereof three-state logic digital data a (+1, 0, -1), serving as the digital output of the stage, in accordance with Table 2 above. The digital data of each stage is applied to data processing means 80 for processing to produce a digital output word. The digital data a is applied also to the voltage adjustment means 58 for controlling operation thereof.
The voltage adjustment means serve, when the switch elements 55 and 56 are ON, to apply between the respective common terminals COM, and COM2 of the voltage storage circuits of the stage an offset voltage Vos selected, from one of three different possible voltages, by the digital data a produced by the comparator means. In the case in which a = +1 (corresponding to the case in which Vr/4 s Vi,) the selected offset voltage Vos = -Vr. When a 0 (corresponding to the case in which -Vr/4 Vi < Vr/4) the selected offset voltage Vos = 0. When a = -1 (corresponding to the case in which Vi < -Vr/4) the selected offset voltage Vos = +Vr In operation of the ADC shown in Figure 12, an analog input voltage Vil to be digitised is applied between the first and second input nodes I, and 12 of the first voltage conversion stage ST1. Initially, the control means 601 activates the control signal 01, so that the first voltage conversion stage ST, is maintained in the input configuration (switch elements 51 to 54 thereof ON). In this configuration the switch elements 55 and So are both maintained in the OFF condition, so that the voltage adjustment means 58 are isolated from the rest of the circuitry.
c While 01 is active the comparator means 70 of the first stage ST, compare the applied input voltage Vi with the comparison potential Vr/4 and produce threestate logic digital data a in dependence upon the result of the comparison.
Before the end of the period during which 01 is active, the switching signal CK is applied by the control means 601 to each switch driving means 4,5 of the first stage ST, to cause the respective switch elements 1 of the voltage storage circuits VSC, and VSC2 of the stage ST, to be Switched OFF, with the result that the input voltage Vil the first stage ST, is stored in each of the respective storage capacitors 2 of those circuits.
is The control means 601 then deactivates 01 and activates 02 to switch the first stage ST, to the output configuration. In this configuration, the switch elements 51 to 54 of the stage are in the OFF condition, and the switch elements 55 and 56 of the stage are in the ON condition. The voltage adjustment means 58 are therefore connected in series between the respective storage capacitors 2 of the voltage storage circuits VSC1 and VSC21 so that the selected offset voltage Vos (-V r, 0, +Vr depending on the digital data a) is applied between the respective common terminals COM, and COM2 of the voltage storage circuits VSC1 and VSC2. Thus, an analog conversion voltage V. is produced between the first and second output nodes 01, 02 of the stage ST, which differs from double the stored input voltage Vil by the selected offset voltage Vos applied between the respective common terminals COM1, COM2 of the voltage storage circuits VSC, and VSC2 by the voltage adjustment means 58 (i.e. V,, 2vil + Vos).
Thus, in accordance with Table 2 above the conversion voltage vcl produced by the voltage 0 conversion stage ST, can be 2Vil - Vr, 2Vil, or 2Vil + Vr, depending upon the result of the comparison between Vil and the comparison potential Vr/4.
As shown in Figure 12, the voltage conversion stages of the ADC are connected in series, so that the second voltage conversion stage ST2 receives as its input voltage Vi2 the analog conversion voltage Vcj produced by the first voltage conversion stage ST1. As noted above, the switch elements 51 to 56 of the second stage ST2 are controlled 02 to be in the input configuration when the switch elements 51 to 56 of the first stage ST, are in the output configuration, so that the second stage ST2 can begin to perform its comparison operation on the conversion voltage Vcj is produced by the first stage ST, without delay. The switching signal CK for the switch driving means 4,5 of the second stage ST2 is accordingly generated while 02 is active (rather than while 01 is active as was the case with the switch driving means 4,5 the first conversion stage ST1), so that the analogue conversion voltage VC, of the first stage ST, is stored in the second stage ST2. After the end of the period during which 02 is active, 01 is activated again, causing the second stage ST2 to be switched to the output configuration. It therefore produces is analogue conversion voltage Vc2 in dependence upon the analogue conversion voltage Vcl of the preceding (first) stage.
The analog conversion voltage Vc2 is applied to the input of the next stage ST3, and is converted in turn (during the next Deriod during which 01 is active) to an analogue conversion voltage Vc3 Successive voltage conversion operations are thus performed at, each "swap" in the activation of the control signals 01 and 02. The periods t, and t2 during which the conzrol signals 01 and 02 are respectively active constitute first and second clock phases of the converter, the c second phase commencing after the end of the first clock phase in each successive clock period of the converter.
Since the first stage ST, is switched back to input configuration when the second stage ST2 is switched to the output configuration (to convert the analog conversion voltage Vcj just provided by the first stage into the analog conversion voltage Vc2) a new analogue input voltage can be received by the converter each time 01 is reactivated. In this way, the ADC can produce a new conversion result (a digital output word based on N three-state bits) in every clock period.
It is not essential that the comparator means 70 of a given stage directly compare the applied input voltage of the stage with the comparison potential. The comparison could be between the comparator potential, on the one hand, and, on the other hand, the input voltage as stored in the voltage storage circuits, or an initial analogue conversion voltage provided by the stage prior to the comparison (the analogue conversion voltage subsequently being corrected).
In place of the N stages used in Figure 12, it would alternatively be possible to use just two voltage conversion stages operating iteratively with each one alternatively sampling the output of the other. This arrangement would take one clock period (i.e. 2 clock phases) to produce every two bits of three-state logic digital data. Thus, to perform an N bit conversion, the arrangement would take N/2 clock periods, which is much slower than a converter employing N stages. The amount of circuitry required would however be decreased.
It is also possible to construct a three-state logic ADC employing just one voltage conversion stage 0 operating iteratively, although in this case the voltage conversion stage must employ voltage storage circuits constructed differently from the voltage storage circuits in the conversion stages STi in the 5 Figure 12 ADC, as described below with reference to Figure 13.
In Figure 13 a voltage conversion stage 90 for use in a three-state logic ADC includes first and second modified voltage storage circuits VSC,' and VSC2' connected respectively to first and second input nodes I, and 12 of the voltage conversion stage 90.
Each modified voltage storage circuit includes an input switch element 1, a unity-gain amplifier element 3 and bootstrapped switch driving means 4. 5 as described hereinbefore with reference to Figures 3 to g(B). However. in place of the single capacitor 2 in the voltage storage circuit of Figure 3, each modified voltage storage circuit includes two capacitors, labelled Cl and C3 in the case of the first modified voltage storage circuit VSC,', and C2 and C4 in the case of the second modified voltage storage circuit VSC2'. The capacitors Cl to C4 are normally of the same capacitance, but this is not essential for correct operation of the voltage conversion stage 90.
Each modified voltage storage circuit also includes a number of switch elements 91 to 106, there being four switch elements associated with each capacitor Cl to C4. Thus, the switch elements 91, 92, and 96 are associated with the capacitor Cl, the switch elements 101, 102, 105 and 106 are associated with the capacitor C2, the switch elements 93, 94, 97 and 98 are associated with the capacitor C3, and the switch elements 99, 100, 103 and 104 are associated with the capacitor C4.
The switch elements 91 to 106 are turned on and off in accordance with control signals 01 and 02 0 produced by the bootstrapped switch driving means, as explained in more detail hereinafter.
* Associated with each modified voltage storage circuit VSC, or VSC2' is an input isolation switch element 46 connected in series with the input switch element 1 between that element and the relevant inmut node I, or 12 of the voltage conversion stage 90, and a feedback switch element 48 connected between an output node of the modified voltage storage circuit (at the output terminal of the amplifier element 3) and the input side of the input switch element 1. The input isolation switch element 46 and feedback switch element 48 correspond to the switch elements of the same name and reference numeral in the voltage summation circuitry of Figure 10, and serve the same purpose. The feedback switch elements 48 can alternatively be replaced by resistors.
Voltage adjustment means 58, generally similar to the voltage adjustment means 58 in Figure 12, are connected between the first and second modified voltage storage circuits VSC,' and VSC2'. Furthermore, comparator means 70, similar to the comparator means of each voltage conversion stage STi in Figure 12, are connected between the respective output nodes of the modified voltage storage circuits.
The voltage adjustment means 58 includes a further plurality of switch elements 581 to 588. The six switch elements 582 to 584 and 586 to 588 are activated in pairs in dependence upon the logic level of the three-state data "bit" ai produced by the comparator means. In this way, when ai = -1 the switch elements 582 and 586 are activated and as a result an offsez voltage Vos generated between the output terminals of the voltage adjustment means 58 is equal to +VrI where Vr is a predetermined reference voltage; when ai = 0 the switch elements 583 and 587 are activated and the 0 offset voltage Vos is zero; and when ai = +1 the switch elements 584 and 588 are activated and the offset voltage Vos is equal to -Vr, The activation of the other two switch elements 581 and 585 in the voltage adjustment means 58, which are connected respectively to the second and first input nodes 12 and I, of the stage 90, will be explained below.
Control means 61, generally similar to the control means 601 in Figure 12, are operative to generate not only master control signals OIM and 02M, but also respective further master control signals SAMM and CONM. The master control signals 01M, 02M and SAMM are applied to the bootstrapped switch driving means 4,5 of each modified voltage storage circuit. The bootstrapped switch driving means of each modified voltage storage circuit generate bootstrapped control signals 0,, 02 and SAMPLE, in accordance with the corresponding master control signals 01M, 02M and SKMM, for application to the switch elements of the modified voltage storage circuit concerned, the potentials of the bootstrapped control signals tracking the output terminal potential of the amplifier element 3 in the modified voltage storage circuit. A further control signal CONVERT, used to activate the feedback switch element 48 associated with each modified voltage storage circuit, may be a bootstrapped control signal derived fromthe master signal CONM, but can alternatively be provided directly by the master signal CONM since it is not essential for the signal applied to the feedback switch elements 48 to be bootstrapped.
At the start of a conversion operation by the voltage conversion stage 90 of Figure 13, an analog,.:e input voltage to be converted into its digital equivalent is applied between the first and second input nodes 11 and 12 of the voltage conversion stage 0 90. To facilitate sampling of the applied analogue voltage, the control means 61 generates the master control signal SAMM which activates the associated bootstrapped control signals SAMPLE in each modified voltage storage circuit to connect the input nodes I, and 12 via the switch elements 1 and 46 to the respective inputs of the amplifier elements 3 in the modified voltage storage circuits. At this time, the CONVERT control signal is deactivated, so that the feedback switch elements 48 are in the off condition.
The switch elements 581 and 585 in the voltage adjustment means 58 are also activated by the control signal SAMPLE, so that the output terminal potentials of the voltage adjustment means are equal respectively to the potentials of the second and first input nodes 12 and I,, The other switch elements 582 to 584 and 586 are maintained in the off condition at this time.
Assuming that during sampling of the input voltage the control signal 0, is active, the switch elements 91, 95, 101 and 105 will be in the on condition, so that the capacitor C, in the first modified voltage storage circuit VSC11 has its top plate connected to the first input node Ii and its bottom plate connected to the second input node 12. Similarly the capacitor C2 in the second modified voltage storage circuit VSC2' has its top plate connected to the second input node 12 and its bottom plate connected to the first input node I,. Each capacitor C, and C2 therefore stores the applied analogue input voltage, so as to achieve sampling of that input voltage.
Whilst the control signal 01 is active, switch elements 94, 98, 100 and 104 are in the on condition, so that the capacitors C3 and C4 are connected in parallel with one another between the respective output terminals of the amplifier elements 3. Because the amplifier elements have unity gain, the sampled 0 analogue input voltage is also stored in each of the capacitors C3 and C4 during 01.
The SAMPLE control signal is then deactivated, so as to terminate the sampling of the input voltage, the control signal 01 remaining active.
After the SAMPLE control signal is deactivated, the CONVERT control signal is activated for the remainder of a conversion operation. Because the input and output terminal potentials of the unity-gain amplifier element 3 are always equal, the input-side and output-side terminals of the input switch element 1 are maintained at the same potential, so that element I is maintained safely in the off condition, irrespective of subsequent changes in the potential of the associated input node I, or 12' The sampled input voltage, which is held by the capacitors C3 and C41 is compared by the comparator means 70 with a predetermined comparison potential Vr/4 in the same way as in the Figure 12 ADC. A first "bit" a, of three-state logic digital data (+1, 0, -1) is produced by the comparator means 70 in dependence upon the result of the comparison (see Table 1 above).
After the first data bit a, is obtained, a pair of the switch elements 582 to 584 and 586 to 588 in the voltage adjustment means 58 is activated according to the first data bit a,. The voltage adjustment means 58 thus produces one of its predetermined offset voltages vos (-V r, 0, +Vr depending on the digital data bit a,) between its output terminals. With the control signal 01 still active, the switch elements 91, 95, 101, and 105 are all still in the on condition, so that a first series connection now exists between the respective input terminals of the switch elements 3. This first series connection consists of the capacitor C1, the voltage adjustment means 58 and the capacitor C2. Thus, the voltage between the respective input 0 terminals of the amplifier element 3 is a first conversion voltage Vcl equal to twice the sampled analogue input voltage stored in the capacitors C1 and C2 Plus the offset voltage Vos selected by the first data bit a,. In this way, a voltage conversion operation, in accordance with Table 2 above, is performed.
The input terminal potentials of the amplifier elements 3 are buffered by the amplifier elements 3, so that the first conversion voltage Vcl is reproduced between the respective output terminals of the amplifier elements 3.
The switch elements 94, 98, 100 and 104 are all still in the on condition, so that the capacitors C3 and C4 are connected in parallel with one another between the respective output terminals of the amplifier elements 3, and each store the first conversion voltage Vc1 The first conversion voltage Vc, is compared by the comparator means 70 with the comparison potential Vr/4, and a second data bit a2 is produced in dependence upon the result of the comparison.
The control means then deactivates the control signal 01 and activates the control signal 02. At the same time, the second data bit a2 is applied to the voltage adjustment means to select a new offset voltage Vos in accordance with that data bit a2. With 02 active the switch elements 93, 97, 99 and 103 are in the on condition. As a result, the capacitors C3 and C4 are connected in series with the voltage adjustment means 58 to form a second series connection (C3-Vos-C4), in place of the first series connection (Cl-Vos-C2) mentioned above, between the respective input terminals of the amplifier elements 3. The resulting new conversion voltage Vc2l produced between the respective output terminals of the amplifier 0 elements 3, is therefore equal to twice the first conversion voltage Vcj plus the new selected offset voltage VOS With 02 active the switch elements 92, 96, 102 and 106 are in the on condition, so that this new conversion voltage Vc2 is stored in the capacitors Cl and C2 which are connected in parallel between the respective output terminals of the amplifier elements 3.
The new conversion voltage Vc2 is compared with the comparison potential Vr/4 in the comparator means to produce the next data bit a3. The control signal 02 is then deactivated, the control signal 01 is activated, and the data bit a3 is applied to the voltage adjustment means to select a new offset voltage is Vos, With 01 active the first series connection (Cl-Vos-C2) replaces the second series connection (C3-Vos-C4) between the amplifier element input terminals, and the capacitors C3 and C4 store the resulting new conversion voltage Vc3 20 Thereafter, the control signals 01 and 02 are activated alternatively, a new data bit ai and new conversion voltage being produced during each successive control signal phase. As described before with reference to Figure 12, the data bits ai are applied to data processing means 80 (not shown) of the ADC for processing to produce a digital output word representative of the originallyapplied analogue voltage. It will be understood that the Figure 13 voltage conversion stage requires N clock phases to produce a digital output word based on N three-state bits.
It will be appreciated that the switch elements 48, 91, 92, 93 and 94 in the first modified voltage storage circuit VSC,, and the corresponding switch elements 1, 48, 103, 104, 105 and 106 in the second modified voltage storage circuit VSC2', each have no 0 voltage across their two terminals when either 01 or 02 is active, since, for each amplifier element 3, the input terminal potential is equal to the output terminal potential.
The switch elements 91 to 94 and 103 to 106 connected to the capacitor top plates can switch without non-overlap (i.e. without delay after switchoff of, say, element 91 before element 92 can be switched on) since all of the four nodes to which these elements are connected (amplifier element input terminal, amplifier element output terminal, and the respective top plates of the two capacitors) have the same voltage before and after switching (i.e. before and after each control signal phase change from 01 to 02 or vice versa). This ability to switch the top plate switches 91 to 94 and 103 to 106 without nonoverlap simplifies the generation of the control signals.
It should be noted that the switches 95 to 102 connected to the capacitor bottom plates should be switched a predetermined short time after switching of the switch elements 91 to 94 and 103 to 106 connected to the capacitor top plates, in order to avoid charge injection effects. The predetermined short time should be minimised in view of the fact that during this time the input terminal of each amplifier element 3 is effectively coupled to the output terminal of the other amplifier element, so that positive feedback can occur. The effects of this positive feedback are not serious in view of the fact that the amplifier elements have unity gain, but none the less it is preferable to avoid leaving the voltage conversion stage 90 in this condition for longer than is absolutely necessary. Thus, as soon as the top plate switch elements 91 to 94 and 103 to 106 have settled, the bottom plate switch elements 95 to 102 are switched.
0 In accordance with the aforesaid second aspect of the present invention the switch elements I and 91 to 94 in the first modified voltage storage circuit VSC1' are formed in one or more wells of the opposite conductivity type to that of the surrounding material of the substrate, the potential of the or each well being fixed in relation to the output terminal potential of the amplifier element 3 in the first modified voltage storage circuit. The same applies to the switch elements 1 and 103 to 106 in the second modified voltage storage circuit VSC2'. This arrangement of the switch elements enables parasitic capacitances in the modified voltage storage circuits to be bootstrapped out, in the same basic manner as described hereinbefore with reference to the voltage storage circuit of Figures 3 to 9.
In the Figure 13 voltage conversion stage, the first voltage conversion operation is performed during the initial clock phase in which the analogue input voltage is sampled, immediately after sampling is complete. This speeds up operation of the converter, but does require the provision of extra switch elements (the elements 581 and 585 shown incorporated in the voltage adjustment means 58) to charge the capacitor bottom plates of the capacitors C, and C2 to the input node potentials during sampling. It would be possible to omit these switch elements 581 and 585 and simply perform a comparison operation in the initial clock phase (to obtain a,), the first voltage conversion operation being performed in the next clock phase.
A voltage conversion stage as described above with reference to Figure 12 or 13 is applicable, with suitable modifications, to other analogue-todigital converters that require voltage doubling and offsetting operations.
In order to minimise power consumption of an ADC employing a series of voltage conversion stages as 0 described above with reference to Figure 12, it is advantageous to "scale" successive stages. This will now be discussed in more detail with reference to Figure 14.
In Figure 14 the first three stages of an ADC as shown in Figure 12 are represented schematically. The storage capacitors 2 in the first stage each have a capacitance C, the transistors in the amplifier element 3 are each of channel width W, and the current flowing through each of those transistors in the amplifier element 3 is I.
In the second stage, the storage capacitors 2 are each of capacitance kC, where 1/k is a predetermined scaling factor (k < 1) the transistors in the amplifier elements 3 are each of width kW, and the current flowing through each transistor is kI. Similarly, in the third stage the capacitance is k2C, the transistor channel width k2W, and the transistor current k21.
Thus each successive stage is scaled, at least insofar as these three parameters are concerned, by the scaling factor 1/k. As a result, the total current consumed in the device, expressed in relation to the current consumed by the first stage, is 1 + k + k2 + k3...........
Each stage has a noise power at its own input of 1/k but, relative to the input terminal of the ADC, this is reduced by the product of the gains of the preceding stages. For example, the second stage noise power = 1/k, the voltage gain of the preceding stages (in this case the voltage gain of the first stage) = 2, and hence the noise power, relative to the input noise power, is 1/4k.
Thus, total noise power at the input for all the stages is 1+ 1 + 1 + 1 + Zk- -16--k2 -3 64k When k = M, for example, 0 is total noise = 1+%+IA+% = 2 Similarly substituting k = 4 in the total current equation above, total current = i+lA+:k+l/e = 2 For a constant total power all sizes must then be divided by the result of the power summation, i.e. input noise is multiplied by the same factor.
Input noise = E noise. E power = (l+k+k2+). (1+1 + 1 + 1.) :-6-k 2 -4k 3 i-k 16k Let m = 2k Input Noise = (,+m + m2 + (1+1 + Z 1 2 + 2 4 2m m (1 + 3m + Wm 2 + + m-1 + V -2 4m + This is a minimum when m = 1, i.e. k = A.
From the above analysis, it will be apparent that the optimum scaling factor for minimum total power consumption of the ADC should be 2. This provides a minimum noise level for a given power consumption or a minimum power consumption level for a given noise level. Thus, each stage should be substantially half the size of the preceding one. In this case, the total power consumption equals two times the power consumption of the first stage, and the total noise power equals two times the first stage noise power.
Figure 15 shows the variation of total current and noise with the scaling factor 1/k in the case of a 16 stage ADC. As Figure 15 shows, the noise minimum for a given power consumption and the power consumption minimum for a given noise level each occur when the scaling factor 1/k = 2.
Although the analysis presented above suggests that scaling of the conversion stages should be applied to all stages of the ADC, in practice scaling of stages cannot continue to the final stage, since for a 16 stage series (17 bit ADC) this would mean that the last stage was 1 - 1 2r5 65536 times the size of the first stage.
At a particular stage in the series, when the stage size has become suitably small, all the succeeding stages are made the same size; this increases the noise slightly but means that a huge range of sizes is not required.
For example, if scaling stops after six stages, the smallest stage size (used in the sixth and all successive stages) is 1/32 relative to the size of the first stage. In this case total power = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 2 4 8 16 32 32 32 Once a minimum stage size is selected, a stage of such size can be designed as a "unit" stage that can be paralleled up (or ',stretched" in layout) to form the bigger stages. For example, if the unit stage is of size 1/32 relate to the first stage: first stage = 32 parallel units second stage = 16 parallel units 25 third stage = 8 parallel units One possible layout on a chip of an ADC employing a unit stage of size 1/32 is shown in Figure 16. For a given minimum size of stage, the optimum scaling factor 1/k is still very close to 2, as will be clear from Table 3, which presents the optimum scaling factors for different smallest stage sizes in the case of a 15 stage ADC (16 bits).
Compared to the optimum noise power figure of 4.0 when scaling is not stopped, a smallest stage size of 1/32 results in a total power increase or noise increase of around 10% or 0.46 dB, whereas a minimum stage size of 1/16 increases the power or noise by around 255 or 0.99 dB. These two minimum stage sizes 0 would appear to be good compromises.
Smallest Stage Minimum Optimum Size overall noise scaling factor _(first stage =1) (noise at k=1/2) (l/k) small 4.0 (4.0) 2.0 1 4.03 (4.04) 1.99 256 1 4.08 (4.08) 1.99 128 1 4.19 (4.19) 1.97 64 1 4.44 (4.45) 1.92 32 1 4.97 (5.02) 1.83 is 16 1 6.05 (6.23) 1.68 8 Table 3
Scaling such as that described above can usefully be applied, in another aspect of the present invention, to any suitable kind of analog-ue-to-digital converter employing a series of voltage conversion stages. For example, it would be possible to apply scaling to the voltage conversion circuits described in EP-B-0214831 in a case in which a plurality of stages as described in that document were connected together as a series.
The current consumed by the ADC of Figure 12 is directly proportional to the capacitance of the storage capacitors 2 and inversely proportional to conversion rate. This means that for higher resolution and higher conversion rates the power is of course increased. However, it is estimated that a 16 bit 10 Ms/s converter would consume less than 0.5 W. This suggests that by reducing the conversion rate to 1 Ms/s, the power could be reduced to 50 mW, or 5 mW at 100 ks/s.
For lower resolutions (for example 12 bits), the 0 power and area decrease rapidly since the capacitance can be much smaller; a 12 bit 50 Ms1s converter is estimated to consume 200 mW including the power consumption of the digital logic circuitry required to process the digital data provided by the different conversion stages.
This represents a much improved power/speed tradeoff relationship as compared with previously-considered converters. One major reason for this is that each stage in the series can be half the size and power of the previous stage, giving a total power for the converter which is approximately double that of the first stage. This also gives a big reduction in chip size: it is estimated that a 16 bit 1OMs/s converter would occupy less than 10 mM2 in a suitable process.
In addition to the voltage doubling circuitry and comparator means, the digital logic circuitry for a Nbit output word ADC comprise (N-1)2 D-type flip-flops and (N-1) full adders, all clocked at the conversion rate. For a 16-bit resolution this gives a basic cell count of about 2000, and a power consumption at 5 V and 10 MHz of about 25t of the estimated analogue power consumption at 16 bit resolution (for 15 bit resolution the analogue power consumption would be reduced by a factor of 4).
As noted above, the gain of each of the amplifier elements 3 of the voltage conversion stages of the ADC should be exactly unity. If they are not, apart from giving rise to a gain error in the transfer function, an additional gain error results because the parasitic capacitances will not be completely bootstrapped out. Non-linearity resulting from these errors can be corrected for by adjusting the reference voltage Vr used by each stage slightly along the series of stages; for example, to correct for a 0.1% gain error, Vr may be reduced by 0.1% for each successive Stage.
0 Alternatively, or in addition, the digital data processing means 80 receiving the digital data from each stage may carry out any required correction for voltage conversion errors in the analogue circuitry by adjusting the digital data of the successive stages fractionally.
In order to produce an ADC capable of high speed operation, it is essential that the operation of the switch elements and of the amplifier elements in the stages is sufficiently fast. The unity-gain amplifier elements 3 can be designed to be much faster than conventional operational amplifiers, and SPICE simulations have indicated that a settling time of 50 ns (corresponding to a conversion rate of 10 Ms/s) is practical to 16 bit accuracy in a suitable process. Using depletion mode NMOS buffers and sacrificing some resolution, settling times of 10 ns can be obtained to 12 bit accuracy. This suggests that ADCs based on the Figure 12 design could be employed in applications such as HDTV.
Circuit noise is not a serious problem in the Figure 12 ADC, because the noise due to the amplifier elements is effectively reduced by virtue of the doubling of the analogue input voltage before it reaches the amplifier elements. It is conceivable that the amplifier elements can be designed so that they contribute less noise than kT/C noise. This kT/C noise is due to thermal noise which limits the accuracy of a given stored voltage sample in any switched capacitor circuit, and prevents very small capacitors from being used. It is estimated that for a 16 bit signal to noise ratio, storage capacitors of at least 10 pF are required in the first stage, reducing by half in each subsequent stage.
For maximum performance, the Figure 12 ADC is preferably produced by a pwell (n-substrate) CMOS 0 process, desirably using depletionmode devices.
It is difficult to obtain sufficiently large voltage swings even with a single 5 V power supply (lower voltage swings mean that lower noise levels are required in the circuitry making up the different stages), and this problem is exacerbated with still lower supply voltages such as 3.3 V.
However, none of the devices in the ADC are exposed to full supply voltage because they are connected in series; only the source/drain diodes are subjected to a higher voltage and even this is not as large as the supply voltage. The largest voltage (5 V) is produced across the well-substrate junction. In view of this, it may be advantageous to use split +3 V (or +3.3 V) supplies, with the digital circuits (of minimum geometry) running from 0 V and +3 V, and the analogue circuits using 3 V. This split-supply approach also has the major advantage that the input signals can swing either side of 0 V and so can be DC coupled. The digital power consumption is also reduced in accordance with the reduction in the effective digital logic supply voltage and this could give a significant reduction in total power consumption.
Smaller geometry processes can permit an increase in maximum clock rate though not if this is limited by analogue power consumption. The main advantage of split power supplies is therefore increased digital speed and reduced power consumption which would increase the maximum speed of operation of the ADC.
0

Claims (18)

  1. A voltage storage circuit including: a storage capacitor, one plate of which is connected to an input terminal of the circuit by way of an input switch element and the other plate of which is connected to a common terminal of the circuit, an input signal to be stored being applied between the said input and common terminals when the circuit is in use; and an amplifier element, having an input connected to the said one plate and an output connected to an output terminal of the circuit, for providing an output signal, between the said output and common terminals, dependent upon the voltage stored in the said storage capacitor, which amplifier element includes an electronic input device having a controllable current path provided between respective first and second current-path electrodes of the device and also having a control electrode to which a potential is applied to control the magnitude of current in the said current path, the said control electrode being connected to the said one plate, and the said first and second currentpath electrodes being connected with potential tracking means such that both the first current-path electrode potential and the second current-path electrode potential track the control electrode potential, whilst current flows in the said controllable current path, so that the respective potentials of the first and second current-path electrodes are kept substantially fixed in relation to the potential of the said one plate; the voltage storage circuit being formed on a single substrate, and the said input switch element and the said input device of the amplifier element being located within one or more wells of the conductivity type opposite to that of the surrounding material of said substrate, there being means for causing the or 0 each well potential to track the potential of the said one plate.
  2. 2. A voltage storage circuit as claimed in claim 1, wherein the said storage capacitor is also located 5 within such a well.
  3. 3. A voltage storage circuit as claimed in claim 1 or 2, having one or more conductive shields extending over the area of the or each well, and also having means for causing the or each shield potential to track the potential of the said one plate.
  4. 4. A voltage storage circuit as claimed in any preceding claim, wherein the potential tracking means include a current source, connected to the said first current-path electrode for causing the first currentpath electrode potential to track the control electrode potential, and active follower means connected operatively between the said first and second currentpath electrodes for causing the second current-path electrode potential to track the first current-path electrode potential.
  5. 5. A voltage storage circuit as claimed in claim 4, wherein the said electronic input device is an FET input transistor and the said control electrode is the gate electrode of the FET input transistor, the first current-path electrode is the source electrode of the FET input transistor, the said second currentpath electrode is the drain electrode of the FET input transistor, and the said controllable current path is provided by the drain-source channel of the FET input transistor.
  6. 6. A voltage storage circuit as claimed in claim 5, wherein the said active follower means comprise a cascoding FET transistor connected with its drainsource channel in series with the drain-source channel of the said FET input transistor so that the source electrode potential of the cascoding transistor tracks 0 the gate electrode potential thereof and also comprise a bias generator connected operatively between the source electrode of the FET input transistor and the gate electrode of the cascoding transistor for maintaining therebetween a substantially constant potential difference.
  7. 7. A voltage storage circuit as claimed in any one of claims 4 to 6, wherein the said amplifier element is made up of first and second substantially identical circuit portions, the first portion including the said input device and the said active follower means (34,35) and the second portion including the said current source.
  8. 8. A voltage storage circuit as claimed in claim 7, wherein the said first portion of the amplifier element is located within the said one or more wells, and the said second portion of the amplifier element is formed within one or more further wells, each of the conductivity type opposite to that of the surrounding areas of the substrate, the or each further well potential being substantially fixed in relation to the potential of a supply line of the circuit.
  9. 9. A voltage storage circuit as claimed in any preceding claim, wherein the said input switch element is an electronic input switch element, operative in dependence upon the potential at a switching electrode thereof, the circuit further including switch driving means connected to cause the switching electrode potential to track the input terminal potential when the element is in its ON condition, thereby maintaining the switching electrode potential substantially fixed in relation to the input terminal potential, and operable to cause the switching electrode potential to change, relative to the input terminal potential, such that the element is changed from its ON condition to its OFF condition.
    c
  10. 10. A voltage storage circuit as claimed in claim 9, wherein the said switching electrode potential is derived from the said output signal.
  11. 11. A voltage storage circuit as claimed in claim 10, wherein the said switch driving means are connected operatively with the said output terminal and are operable, in dependence upon a switching signal received thereby, to apply to the said switching electrode either an ON potential, for maintaining the said input switch element in its ON condition, or an OFF potential, for maintaining the said input switch element in its OFF condition, the said ON and OFF potentials being each substantially fixed in relation to the said output terminal potential but differing from one another by a predetermined amount.
  12. 12. A voltage storage circuit as claimed in claim 11, having respective first and second biassing lines connected operatively to the said output terminal so as to be at potentials that are respectively fixed in relation to the output terminal potential, the second biassing line potential being equal to one of the said ON and OFF potentials and the potential difference between the said first and second biassing lines being greater than or equal to the said predetermined amount, wherein the said switch driving means include a bootstrap capacitor one plate of which is connected to the said switching electrode for providing the said switching electrode potential and also include connecting means connected with both plates of the bootstrap capacitor and with the said biassing lines and switchable, when the switching electrode potential is to be changed from the said one of its ON and OFF potentials to the other of those potentials, from a charging configuration, serving to connect the said one plate of the bootstrap capacitor to the said second biassing line whilst connecting the other plate thereof 0 to the said first biassing line to a floating configuration serving to isolate the said one plate from the second biassing line whilst connecting the said other plate to the said second biassing line thereby to cause the potential at the said one plate to be changed from the second biassing line potential to a potential differing therefrom by the said predetermined amount.
  13. 13. A voltage storage circuit as claimed in claim 11, having respective first, second and third biassing lines connected operatively to the said output terminal so as to be at potentials that are respectively fixed in relation to the output terminal potential, the third biassing line potential being equal to one of the said ON and OFF potentials and the potential difference between the said first and second biassing lines being greater than or equal to the said predetermined amount, wherein the said switch driving means include a bootstrap capacitor one plate of which is connected to the said switching electrode for providing the said switching electrode potential and also include connecting means connected with both plates of the bootstrap capacitor and with the said biassing lines and switchable, when the switching electrode potential is to be changed from the said one of its ON and OFF potentials to the other of those potentials, from a charging configuration, serving to connect the said one plate of the bootstrap capacitor to the said third biassing line whilst connecting the other plate thereof to the said first biassing line, to a floating configuration serving to isolate the said one plate from the third biassing line whilst connecting the said other plate to the said second biassing line, thereby to cause the potential at the said one plate to be changed from the third biassing line potential to a potential differing therefrom by the said predetermined fl U amount.
  14. 14. A voltage storage circuit as claimed in claim 11, 12 or 13, wherein the said electronic input switch element is a MOSFET transistor and one of the said ON and OFF potentials is substantially the same as the said output terminal potential.
  15. 15. A voltage storage circuit as claimed in any preceding claim, wherein the said amplifier element has a gain of substantially unity.
  16. 16. An analogue-to-digital converter, operable alternately in first and second clock phases, including:
    first and second input nodes between which an analogue input voltage to be digitised can be applied when the converter is in use; first and second voltage storage circuits, each including respective first and second storage capacitors and a unity- gain amplifier element having respective input and output terminals, which element includes an electronic input device having a controllable current path provided between respective first and second current-path electrodes of the device and also having a control electrode to which a potential is applied to control the magnitude of current in the said current path, the said control electrode being connected to the said input terminal of the amplifier element, and the said first and second current-path electrodes being connected with potential tracking means such that both the first current-path electrode potential and the second current-Path electrode potential track the control electrode potential, whilst current flows in the said controllable current path, so that the respective potentials of the first and second current-path electrodes are kept substantially fixed in relation to the potential of the said input terminal; input sampling means operable during an initial one of the clock phases to connect the said inDut terminal of the first voltage storage circuit to the said first input node and to connect the said input terminal of the second voltage storage circuit to the said second input node; first and second output nodes connected respectively with the amplifier element output terminals of the said first and second voltage storage circuits; comparator means connected to the said first and second output nodes and also connected for receiving a comparison potential and operable in each clock phase to perform a comparison between the potential difference between the first and second output nodes and the said comparison potential and to provide digital data indicative of the result of the comparison; voltage adjustment means having a pair of connection terminals and operable in each clock phase to apply between those terminals an offset voltage having a value selected, by the said digital data provided by the said comparator means in the immediately- preceding clock phase, from a plurality of preset possible values; switching means operable in the first clock phase to connect the two first storage capacitors and the said connection terminals in series between the respective input terminals of the amplifier elements, whilst connecting the said second storage capacitors in parallel with one another between the first and second output nodes, and operable in the second clock phase to connect the two second storage capacitors and L-he said connection terminals in series between the respective input terminals of the amplifier elements, whilst connecting the said first storage capacitors in C parallel with one another between the first and second output nodes; and data processing means connected for receiving the said digital data provided by the said comparator means over a predetermined number of the said clock phases and operative to derive therefrom a digital output word representative of the applied analogue input voltage; each said storage capacitor having a first plate which is the plate.thereof that is connectible, by the said switching means, to the said input terminal of the amplifier element in the voltage storage circuit to which that storage capacitor belongs; and for each voltage storage circuit, a switch element of the input sampling means that is connected to the amplifier element input terminal, and switch elements of the said switching means that are connected to the said first plates of the storage capacitors, being formed in one or more wells of the opposite conductivity type to that of the surrounding material of a substrate in which the voltage storage circuit concerned is formed, there being means for causing the or each well potential to be substantially fixed in relation to the output terminal potential of the amplifier element in the voltage storage circuit concerned.
  17. 17. A voltage storage circuit substantially as hereinbefore described with reference to Figures 8W and 8 (B), or to Figures 9 (A) and 9 (B), of the accompanying drawings.
  18. 18. An analogue-to-digital converter having switch elements formed in one or more wells substantially as hereinbefore described with reference to Figure 13 of the accompanying drawings.
GB9608980A 1992-09-08 1993-09-06 Voltage storage circuits Expired - Fee Related GB2298980B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB929218987A GB9218987D0 (en) 1992-09-08 1992-09-08 Voltage storage circuits
GB9318451A GB2270431B (en) 1992-09-08 1993-09-06 Voltage summation circuitry, voltage doubling circuitry and analog-to-digital converters employing such circuitry

Publications (3)

Publication Number Publication Date
GB9608980D0 GB9608980D0 (en) 1996-07-03
GB2298980A true GB2298980A (en) 1996-09-18
GB2298980B GB2298980B (en) 1997-03-26

Family

ID=26301575

Family Applications (3)

Application Number Title Priority Date Filing Date
GB9608982A Expired - Fee Related GB2298979B (en) 1992-09-08 1993-09-06 Analog-to-digital converters
GB9608981A Expired - Fee Related GB2298981B (en) 1992-09-08 1993-09-06 Voltage storage circuits
GB9608980A Expired - Fee Related GB2298980B (en) 1992-09-08 1993-09-06 Voltage storage circuits

Family Applications Before (2)

Application Number Title Priority Date Filing Date
GB9608982A Expired - Fee Related GB2298979B (en) 1992-09-08 1993-09-06 Analog-to-digital converters
GB9608981A Expired - Fee Related GB2298981B (en) 1992-09-08 1993-09-06 Voltage storage circuits

Country Status (1)

Country Link
GB (3) GB2298979B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049007B4 (en) * 1999-10-08 2008-07-03 Verigy (Singapore) Pte. Ltd. Following and holding circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101554369B1 (en) * 2007-01-19 2015-09-18 인터실 아메리카스 엘엘씨 Charge-domain pipelined analog-to-digital converter
TW200935751A (en) 2008-02-04 2009-08-16 Mediatek Inc Sample-and-hold amplifiers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435600A2 (en) * 1989-12-29 1991-07-03 Xerox Corporation Integrated sample and hold circuits
GB2249233A (en) * 1990-10-24 1992-04-29 Burr Brown Corp Sampling circuit
GB2264011A (en) * 1992-01-17 1993-08-11 Burr Brown Corp Bootstrapped sampling mos switch

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521141A (en) * 1967-10-30 1970-07-21 Ibm Leakage controlled electric charge switching and storing circuitry
US4570121A (en) * 1983-06-16 1986-02-11 At&T Bell Laboratories Video wave codec
JPS61105929A (en) * 1984-10-30 1986-05-24 Nec Corp Analog-digital converter
US4922130A (en) * 1988-05-26 1990-05-01 Hewlett-Packard Company High performance track/hold for a digital multimeter
JPH04371025A (en) * 1991-06-19 1992-12-24 Nec Corp A/d converting circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435600A2 (en) * 1989-12-29 1991-07-03 Xerox Corporation Integrated sample and hold circuits
GB2249233A (en) * 1990-10-24 1992-04-29 Burr Brown Corp Sampling circuit
GB2264011A (en) * 1992-01-17 1993-08-11 Burr Brown Corp Bootstrapped sampling mos switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049007B4 (en) * 1999-10-08 2008-07-03 Verigy (Singapore) Pte. Ltd. Following and holding circuit

Also Published As

Publication number Publication date
GB9608981D0 (en) 1996-07-03
GB9608982D0 (en) 1996-07-03
GB2298981A (en) 1996-09-18
GB2298979B (en) 1997-03-26
GB2298979A (en) 1996-09-18
GB2298980B (en) 1997-03-26
GB9608980D0 (en) 1996-07-03
GB2298981B (en) 1997-03-26

Similar Documents

Publication Publication Date Title
USRE36014E (en) Voltage storage circuits
Stafford et al. A complete monolithic sample/hold amplifier
US4539551A (en) Differential voltage amplifier
US5659261A (en) Analog-to-digital converter and output driver
US6072355A (en) Bootstrapped CMOS sample and hold circuitry and method
US4471341A (en) Pipe-lined CCD analog-to-digital converter
US6150851A (en) Charge transfer amplifier circuit, voltage comparator, and sense amplifier
CN102204097A (en) Comparator and analog/digital converter
US8830095B2 (en) Track and hold circuit and method
JP2952786B2 (en) AD converter
Haller et al. A 700-MHz switched-capacitor analog waveform sampling circuit
Lee et al. A 1.5-V 50-MHz pseudodifferential CMOS sample-and-hold circuit with low hold pedestal
Bienstman et al. An eight-channel 8 bit microprocessor compatible NMOS D/A converter with programmable scaling
Milgrome et al. A 12 bit analog to digital converter for VLSI applications in nuclear science
JP4020515B2 (en) Track hold circuit and buffer circuit for track hold circuit
Qin et al. Bootstrapped Complementary Switches for High-Precision Sampling
GB2298980A (en) Voltage storage circuit with tracking substrate potentials
Haller et al. Performance Report for Stanford/SLAC Multi-Channel Sample-and-Hold Device
Chen et al. Design techniques for 1.5-V low-power CMOS current-mode cyclic analog-to-digital converters
EP0914717A2 (en) Digital to analogue and analogue to digital converters
JP3869468B2 (en) Current memory
Koçak A LOW-POWER SUCCESIVE APPROXIMATION REGISTER ANALOG-TO-DIGITAL CONVERTER INTEGRATED CIRCUIT FOR IMAGING SENSORS
Haller High-speed, high-resolution analog waveform sampling in VLSI technology
JPH0766727A (en) Analog signal sampling circuit constituted of field effect transistor
US11979151B2 (en) Integrated circuit (IC) having an analog multiplexer (MUX)

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20090906