GB2292248A - An apparatus for displaying an image - Google Patents

An apparatus for displaying an image Download PDF

Info

Publication number
GB2292248A
GB2292248A GB9515392A GB9515392A GB2292248A GB 2292248 A GB2292248 A GB 2292248A GB 9515392 A GB9515392 A GB 9515392A GB 9515392 A GB9515392 A GB 9515392A GB 2292248 A GB2292248 A GB 2292248A
Authority
GB
Grant status
Application
Patent type
Prior art keywords
splitter
beam
apparatus
light
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9515392A
Other versions
GB9515392D0 (en )
GB2292248B (en )
Inventor
Christoph Dobrusskin
John Holden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CENTRAL RESEARCH LAB Ltd
Central Research Laboratories Ltd
Original Assignee
CENTRAL RESEARCH LAB LTD
Central Research Laboratories Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Miscellaneous advertising or display means not provided for elsewhere
    • G09F19/12Miscellaneous advertising or display means not provided for elsewhere using special optical effects
    • G09F19/16Miscellaneous advertising or display means not provided for elsewhere using special optical effects involving the use of mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/22Other optical systems; Other optical apparatus for producing stereoscopic or other three dimensional effects
    • G02B27/2271Other optical systems; Other optical apparatus for producing stereoscopic or other three dimensional effects the image being built up from image elements distributed over a three dimensional volume, e.g. by scanning the volume with modulated beams of radiation
    • G02B27/2292Other optical systems; Other optical apparatus for producing stereoscopic or other three dimensional effects the image being built up from image elements distributed over a three dimensional volume, e.g. by scanning the volume with modulated beams of radiation involving projecting an aerial or floating image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Abstract

An apparatus for displaying an image comprises a) a retroreflective screen 4, b) a polarising beam-splitter 3 making an oblique angle with the screen, c) means for projecting light 2 from an object toward the screen through the beam-splitter, and d) a partially reflective light-transmissive sheet 5 being provided at an oblique angle to the beam splitter such that the sheet may be viewed through the beam-splitter. The apparatus may be used as a head up display in which real 7 and virtual 8 images in respective positions may be viewed. The partially reflective sheet may be replaced by a mirror. The beam splitter may be a polarisation splitter. Means may be provided to change the circular polarisation of light travelling towards the splitter. This change may be varied in synchrony with a variation in the image being projected. <IMAGE>

Description

AN APPARATUS FOR DISPLAYING AN IMAGE This invention relates to an apparatus for displaying an image of an object, comprising a beam-splitter positioned in a path of light from the object, and a direction selective screen positioned in a path of light from the object which has been transmitted or reflected by the beam-splitter.

In a known apparatus for displaying a real image disclosed in PCT patent application number WO 82/00911, an illuminated object is positioned at the top of a three sided rectangular box. The side of the box towards the observer is open, the side away from the observer is opaque, and the base is a direction-selective screen in the form of a layer of retroreflective material. A beam-splitter is positioned at a 45-degree angle to all three sides such that it makes an oblique angle with the layer of retroreflective material. The beam-splitter is thus positioned in a path of light from the object, and the retroreflective screen is positioned in a path of light from the object which has been reflected by the beam-splitter. A real image (which may be 3-dimensional) appears to the observer to be suspended in space in front of the beam-splitter.A disadvantage of this prior art device is that virtual and/or multiple images are not displayed. The image is also not displayed superimposed upon a scene viewed by an observer and therefore can not be used in applications such as head-up displays or methods of aiming.

According to a first aspect of the invention there is provided apparatus as defined in the first paragraph above, characterized in that it further comprises a partially reflective light-transmissive sheet positioned in a path of light from the object which has been transmitted or reflected by the beam-splitter such that a plurality of viewable images are formed of the object.

This apparatus gives the ability to display a virtual image in addition to the real image. The virtual image is in general in a different plane to that of the real image.

Preferably, the beam-splitter is a polarizing beam-splitter. This can give the advantage of a greater image brightness. This is most apparent when polarized light is used.

Advantageously, the apparatus further comprises means to change the sense of the circular polarization of the light travelling towards the beam-splitter from one handedness to the other in synchronism with a change in the image being projected. This gives the advantage that two different images may be displayed apparently simultaneously.

According to a second aspect of the invention, the above apparatus is modified by replacing the partially reflective light transmissive sheet by a mirror.

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying diagrammatic drawings, in which Figure 1 shows a first embodiment of apparatus according to the invention, Figure 2 shows a second embodiment, and Figure 3 shows a third embodiment In the above Figures, similar elements have been labelled with the same numeral where possible.

In Figure 1, apparatus for displaying an image of an object (1) to an observer (8), comprises a direction-selective screen (4) made from a sheet of corner-cube retroreflectors which is arranged to face the image. A beam-splitter (3) consisting of a layer of molecularly aligned cholesteric liquid crystal material (in the present case Wacker LC-Silicones CC4053L (Green) AB292 supplied by Consortium fur Electrochemische Industrie GmbH, Munich) is positioned at a 45" angle to the retroreflective screen (4) and the light from the image (1). Display means (2) in the form of a CRT screen is used for providing the object (1), in the present case itself an image, and light travels from the object (1) towards the screen (4) through the beam-splitter (3).

Thus the beam-splitter is positioned in a path of light from the object, and the direction selective screen is positioned in a path of light which has been transmitted by the beamsplitter. A partially reflective light-transmissive sheet (5), in the form of a half-silvered mirror is positioned at an oblique angle (45 ) to the beam-splitter (3), in a path of light from the object which has been reflected by the beam-splitter, and is placed perpendicular to the direction-selective screen (4). In this arrangement the half-silvered mirror may be viewed through the beam splitter by the observer (8). In this embodiment the observer sees a real image (7) and a virtual image (6). As the beam-splitter (3) and half-silvered mirror (5) are both partially transparent, the observer will also see any other objects or images (10) present in the background behind the apparatus.Thus the apparatus may be used as a head-up display. In general, each image lies in a different plane.

In a second embodiment, shown schematically in Figure 2, the only difference is that the beam-splitter (3) has been rotated by a quarter turn about an axis perpendicular to the page. This gives a real image (9) and a virtual image (6), with a greater spacing between them than images 6 and 7 in Figure 1. In all other respects the apparatus in the two examples is identical. Note however that in this example the handedness of the images 6 and 9 is reversed with respect to those observed in the first example above.

In both figures the real and virtual images point in the same direction.

A third embodiment is shown in Figure 3. In this embodiment, polarising means is provided to change the polarization state of the light projected towards the beamsplitter (3). In the present embodiment this comprises an electrically switchable retardation plate 12 consisting of a ferroelectric liquid crystal cell between two electrodes.

The liquid crystal has a birefringence An and thickness d which satisfy the equation dAnI= 1/2 where X preferably corresponds to the peak reflectance wavelength for the aligned cholesteric liquid crystal incorporated in the polarizing beam-splitter 3 (in the present case d is about 1.4 microns and the peak reflection wavelength is about 550 nm). The apparatus also comprises a circular polariser 14 to circularly polarise the light emitted from the image 1 on the CRT screen 2.

In this example it is possible to switch the handedness of the polarisation state of the light impinging upon the CLC beam-splitter 3. This light is substantially reflected in the present embodiment when it is left hand circularly polarised and substantially transmitted by the beam-splitter when it is right hand circularly polarised. Right hand circularly polarised light which is transmitted by the beam-splitter 3 travels towards the retroreflector array 4. On reflection it is transformed into left hand circularly polarised light which travels back towards the beam-splitter and is then substantially reflected by the beam-splitter to form the real image 9. If the retardation plate is then switched such that left hand circularly polarised light travels towards the beam-splitter, it is reflected towards the partially light-transmissive reflective sheet 5. This light will be partially reflected by the sheet 5, and is transformed on reflection into right-hand polarised light, which travels back towards the beam-splitter and is this time transmitted to form a virtual image 6 visible to an observer 8.

If two different images are displayed one after the other on the CRT 2 and the retardation plate is switched in synchrony with the change from one to the other, light from the first image will always exhibit the same handedness of circular polarisation, and this will be a different handedness to light from the second image. Thus one image will always be retroreflected and appear as a real image 9 in front of the beam-splitter, whilst the other image will always be simply reflected by the sheet S and form a virtual image 6 behind the beam-splitter at a different apparent distance from the observer 8 to that of the first image.If the CRT image and half-wave retardation plate are both switched in synchrony at a frequency above a critical fusion frequency for the observer 8 (say for example 100 Hz), then the observer will see two images (which may be different or the same if the CRT is in fact not switched or is switched to show the same image) at different distances continuously and simultaneously.

Although in the above examples, a sheet of corner-cube retroreflector has been used as the direction-selective screen, other retroreflective or autocollimating screens such as lenticular screens or microlens arrays may be used.

Although a beam-splitter in the form of a sheet of molecularly aligned cholesteric liquid crystal has been described, other polarisation splitters or other beam-splitters, such as for example a half-silvered mirror may be used as an alternative in the above examples shown in Figures 1 and 2. Only polarisation splitters will work however in the example shown in Figure 3.

The use of a half silvered mirror will however substantially reduce the apparent brightness of the images in Figure 1 and in Figure 2.

Although in the above examples, the object has been provided by a CRT screen, any illuminated object or means for displaying images such as LCD displays or rearprojection systems may be used.

In a modification of the above embodiments, the partially reflective lighttransmissive sheet may be replaced by a mirror. This embodiment may not be used as a head up display as it is not light-transmissive. A dichroic mirror could also be used as an alternative as this will reflect in only a narrow wavelength range and therefore may be considered to be partially reflective. Fresnel reflection from a transparent sheet such as the windscreen of an aircraft or car may also be used as an alternative. The partially reflective light-transmissive sheet need not be planar.

In the above examples, the distance from the object (1) to the beam-splitter determines the position of the images. The direction selective screen can be moved without altering the position of the images. In Figure 1, reducing the distance between the object (1) and the beam-splitter (3) will make images 6 and 7 both move closer to the light transmissive sheet (5).

In Figure 1, moving the partially reflective light transmissive sheet 5 towards the observer 8 will result in the real image 7 moving closer to the observer, but the other image will not move. In Figure 2, moving the sheet 5 towards the observer 8 will result in the real image staying in the same place and the virtual image 6 moving closer to the observer.

In all the above examples, angling either sheet 5 or sheet 3 or both will result in the images changing their apparent positions. This effect enables the apparatus to be used for aiming or alignment.

Claims (11)

1. An apparatus for displaying an image of an object, comprising a beam-splitter positioned in a path of light from the object, and a direction selective screen positioned in a path of light from the object which has been transmitted or reflected by the beam-splitter, characterized in that the apparatus further comprises a partially reflective light-transmissive sheet positioned in a path of light from the object which has been transmitted or reflected by the beam-splitter such that a plurality of viewable images are formed of the object.
2. A modification of the apparatus according to claim 1 in which the partially reflective light transmissive sheet is replaced by a mirror.
3. An apparatus as claimed in claim 1 in which the viewable images are superimposed upon a scene viewed by an observer through the beam-splitter and/or partially light transmissive sheet.
4. An apparatus as claimed in claim 1 comprising a head-up or head-down display.
5. An apparatus as claimed in claim 2 comprising a head-down display.
6. An apparatus according to claim 1 or claim 2 in which the direction-selective screen comprises a retroreflective material.
7. An apparatus according to claim 1 or claim 2 in which the beam-splitter is a polarisation splitter.
8. An apparatus as claimed in claim 7 further comprising means to change the sense of circular polarisation of the light travelling towards the beam-splitter from one handedness to the other.
9. An apparatus as claimed in claim 8 in which the polarization state of the light is varied in synchrony with a variation in the image being projected.
10. An apparatus as claimed in claim 9 in which the polarization state of the light is varied at a frequency above a critical fusion frequency for the observer.
11. An apparatus as claimed in claim 1 in which each of the plurality of images lies in a respective plane.
GB9515392A 1994-08-05 1995-07-27 An apparatus for displaying an image Expired - Fee Related GB2292248B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB9415894A GB9415894D0 (en) 1994-08-05 1994-08-05 An apparatus for displaying an image
GB9515392A GB2292248B (en) 1994-08-05 1995-07-27 An apparatus for displaying an image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9515392A GB2292248B (en) 1994-08-05 1995-07-27 An apparatus for displaying an image

Publications (3)

Publication Number Publication Date
GB9515392D0 GB9515392D0 (en) 1995-09-27
GB2292248A true true GB2292248A (en) 1996-02-14
GB2292248B GB2292248B (en) 1996-07-03

Family

ID=26305414

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9515392A Expired - Fee Related GB2292248B (en) 1994-08-05 1995-07-27 An apparatus for displaying an image

Country Status (1)

Country Link
GB (1) GB2292248B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766278A1 (en) * 1997-07-16 1999-01-22 Gilbert Werquin Pulsed light output system
WO2000055834A1 (en) * 1999-03-17 2000-09-21 Central Research Laboratories Limited Apparatus for displaying a real image in space
WO2002063373A2 (en) * 2000-12-29 2002-08-15 Honeywell International Inc. Beam folding with polarizing splitters
DE102005042624A1 (en) * 2005-09-07 2007-03-08 Johnson Controls Gmbh A vehicle display system having a partially reflecting element and method for operating a vehicle display system
WO2010028065A2 (en) * 2008-09-04 2010-03-11 Innovega Inc. Method and apparatus to process display and non-display information
US8142016B2 (en) 2008-09-04 2012-03-27 Innovega, Inc. Method and apparatus for constructing a contact lens with optics
US8441731B2 (en) 2008-09-04 2013-05-14 Innovega, Inc. System and apparatus for pixel matrix see-through display panels
US8482858B2 (en) 2008-09-04 2013-07-09 Innovega Inc. System and apparatus for deflection optics
US8786520B2 (en) 2008-09-04 2014-07-22 Innovega, Inc. System and apparatus for display panels
US8922898B2 (en) 2008-09-04 2014-12-30 Innovega Inc. Molded lens with nanofilaments and related methods
WO2015130868A1 (en) * 2014-02-28 2015-09-03 Microsoft Technology Licensing, Llc Control of polarization and diffractive artifact resolution in retro-imaging systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983003019A1 (en) * 1982-02-12 1983-09-01 Michiel Kassies Real image projection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983003019A1 (en) * 1982-02-12 1983-09-01 Michiel Kassies Real image projection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
New Scientist , published 24 Sept. 1994 , page 18 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766278A1 (en) * 1997-07-16 1999-01-22 Gilbert Werquin Pulsed light output system
WO2000055834A1 (en) * 1999-03-17 2000-09-21 Central Research Laboratories Limited Apparatus for displaying a real image in space
WO2002063373A2 (en) * 2000-12-29 2002-08-15 Honeywell International Inc. Beam folding with polarizing splitters
US6597504B2 (en) 2000-12-29 2003-07-22 Honeywell International Inc. Optical devices employing beam folding with polarizing splitters
WO2002063373A3 (en) * 2000-12-29 2003-12-31 Honeywell Int Inc Beam folding with polarizing splitters
DE102005042624A1 (en) * 2005-09-07 2007-03-08 Johnson Controls Gmbh A vehicle display system having a partially reflecting element and method for operating a vehicle display system
DE102005042624B4 (en) * 2005-09-07 2015-03-26 Johnson Controls Gmbh A vehicle display system having a partially reflecting element and method for operating a vehicle display system
US8520309B2 (en) 2008-09-04 2013-08-27 Innovega Inc. Method and apparatus to process display and non-display information
US8142016B2 (en) 2008-09-04 2012-03-27 Innovega, Inc. Method and apparatus for constructing a contact lens with optics
US8441731B2 (en) 2008-09-04 2013-05-14 Innovega, Inc. System and apparatus for pixel matrix see-through display panels
US8482858B2 (en) 2008-09-04 2013-07-09 Innovega Inc. System and apparatus for deflection optics
WO2010028065A3 (en) * 2008-09-04 2010-12-16 Innovega Inc. Method and apparatus to process display and non-display information
US8786520B2 (en) 2008-09-04 2014-07-22 Innovega, Inc. System and apparatus for display panels
US8888279B2 (en) 2008-09-04 2014-11-18 Innovega, Inc. Method and apparatus for constructing a contact lens with optics
US8922898B2 (en) 2008-09-04 2014-12-30 Innovega Inc. Molded lens with nanofilaments and related methods
US8922897B2 (en) 2008-09-04 2014-12-30 Innovega Inc. System and apparatus for see-through display panels
WO2010028065A2 (en) * 2008-09-04 2010-03-11 Innovega Inc. Method and apparatus to process display and non-display information
US9348151B2 (en) 2008-09-04 2016-05-24 Innovaga Inc. Molded lens with nanofilaments and related methods
US9251745B2 (en) 2008-09-04 2016-02-02 Innovega, Inc. System and apparatus for see-through display panels
US9874765B2 (en) 2008-09-04 2018-01-23 Innovega, Inc. Method and apparatus for constructing a contact lens with optics
WO2015130868A1 (en) * 2014-02-28 2015-09-03 Microsoft Technology Licensing, Llc Control of polarization and diffractive artifact resolution in retro-imaging systems
US9798154B2 (en) 2014-02-28 2017-10-24 Microsoft Technology Licensing, Llc Control of polarization and diffractive artifact resolution in retro-imaging systems

Also Published As

Publication number Publication date Type
GB9515392D0 (en) 1995-09-27 grant
GB2292248B (en) 1996-07-03 grant

Similar Documents

Publication Publication Date Title
US7058252B2 (en) Optical switching apparatus
US6055103A (en) Passive polarisation modulating optical element and method of making such an element
US6016173A (en) Optics arrangement including a compensator cell and static wave plate for use in a continuously viewable, reflection mode, ferroelectric liquid crystal spatial light modulating system
US6351280B1 (en) Autostereoscopic display system
US5596451A (en) Miniature image generator including optics arrangement
US5943171A (en) Head mounted displays utilizing reflection light valves
US4670744A (en) Light reflecting three-dimensional display system
US5500765A (en) Convertible 2D/3D autostereoscopic display
US20060098281A1 (en) Parallax barrier element, method of producing the same, and display device
US6853491B1 (en) Collimating optical member for real world simulation
US6046849A (en) Parallax barrier, display, passive polarisation modulating optical element and method of making such an element
US7619585B2 (en) Depth fused display
US6262841B1 (en) Apparatus for projecting a real image in space
US6929369B2 (en) Autostereoscopic display
US5912650A (en) Dichoptic display utilizing a single display device
Woodgate et al. Flat-panel autostereoscopic displays: characterization and enhancement
US8477261B2 (en) Shadow elimination in the backlight for a 3-D display
US3858001A (en) Stereoscopic display system
US20050111101A1 (en) Optical system for forming a real image in space
US5629806A (en) Retro-reflector based private viewing system
US4021846A (en) Liquid crystal stereoscopic viewer
EP0602934A2 (en) Autostereoscopic directional display apparatus
US7742124B2 (en) Optical retarder
US6078423A (en) Stereoscopic display device
US20030020879A1 (en) Stereoscopic display and projection-type stereoscopic display

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20040727