GB2278451A - Measuring devices exposed to fluid flow - Google Patents

Measuring devices exposed to fluid flow Download PDF

Info

Publication number
GB2278451A
GB2278451A GB9410722A GB9410722A GB2278451A GB 2278451 A GB2278451 A GB 2278451A GB 9410722 A GB9410722 A GB 9410722A GB 9410722 A GB9410722 A GB 9410722A GB 2278451 A GB2278451 A GB 2278451A
Authority
GB
United Kingdom
Prior art keywords
resistance means
obstacle
measuring
electrical connectors
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9410722A
Other versions
GB2278451B (en
GB9410722D0 (en
Inventor
Andreas Wildgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of GB9410722D0 publication Critical patent/GB9410722D0/en
Publication of GB2278451A publication Critical patent/GB2278451A/en
Application granted granted Critical
Publication of GB2278451B publication Critical patent/GB2278451B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/48Arrangement of air sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Description

2278451 Y MEASURING DEVICES EXPOSED TO FLUID FLOW The present invention
relates to measuring devices exposed to fluid flow.
When an electrical measuring device, for example a resistance layer disposed on a substrate, is exposed to a fluid medium such as air, for example to measure the temperature of a flow of air, a deposit in the form of a layer of dirt may gradually form on the measuring device and may result in displacement (drift) of a characteristic curve of the device. Since air pollution, particularly in internal combustion engines, consists mostly of electrically conductive soot, deposits of this kind can result in parallel resistances being formed which are particularly troublesome if the measuring device employs high- impedance components. For this reason, it is desirable to attempt to prevent a deposit in the form of a complete layer of dirt from forming on such a measuring device. 20 For example, a body facing the direction of flow could be disposed in front of an air mass meter, disposed in a measuring channel, so as to shield the measuring region of the air mass meter somewhat and prevent the flow striking it directly. A deposit of dirt may be prevented or at least reduced by this means.
A dirt deposit that provides a parallel resistance as mentioned above can cause a change in the effective resistance between two connectors (anode and cathode) of the measuring device. This effect may be increased by air humidity. After long operation or high contamination, for example by soot from a diesel engine, the dirt combined with the air humidity can result in electrolysis occurring between the connecting contacts (anode and cathode) so that, particularly in the case of platinum resistors between the connecting contacts, they come loose from a supporting substrate and consequently render the measuring device unreliable.
To obtain a highly sensitive response, for example in air mass meters for internal combustion engines, the measuring device may be exposed directly to the fluid medium. One previously-considered method for preventing electrolysis consists of at least partial application of a protective layer of lacquer. This method cannot readily be automated and is therefore expensive and subject to error. Drift may be reduced only if the lacquer extends to the nearest insulator, which may require special construction. However, tests have now shown that, in the case of fluid flow having a clearly preferred direction of motion, drift can be prevented if the layer of dirt is interrupted at just one place. The interruption can be made easily and at minimal expense by means of an obstacle disposed in front of a support portion of a measuring device.
According to the present invention, there is provided a device for use in measuring a parameter of a medium flowing in a predetermined direction through a predetermined location, which device comprises temperature-dependent electrical resistance means, connected between two electrical connectors and extending across the said location, and an obstacle mounted so as to extend adjacent to the electrical resistance means, upstream thereof, and dimensioned so as to shield a relatively small part of the length of the said resistance means, between the two electrical connectors, from the flowing medium, thereby to ensure the presence of a gap in a layer of dirt formed, by deposition from the flowing medium, between the two electrical connectors when the device is in use.
An embodiment of the present invention can effectively reduce the danger that distortion of measured results may occur, as a result of drift of the resistance values, and also the danger that components of the device may become detached from a support portion thereof. 5 Reference will now be made, by way of example, to the accompanying drawings, in which: Fig. 1 is a diagrammatic side view of parts of an air mass meter embodying the present invention; and Fig. 2 is a plan view of the parts shown in Fig.
1.
An air mass meter, as shown In Fig. 1 and 2, includes holder means 1, which can be made of a poor thermal conductor, for example a plastics material or glass. A support 2 is connected to the holder 1 and 15---maybe made of a ceramic material.
A temperature-dependent precision measurement resistance (not shown) is mounted on the support 2 and comprises a plurality of resistance elements, which are connected, for example by wires, to electrical connectors (not shown) arranged on the holder means 1.
An obstacle 3 formed by a narrow metal strip is positioned, near a holder 1, adjacent to and upstream (in front) of the support 2, bearing the temperaturedependent precision measurement resistance, and projects beyond the support 2 at least on the side of the measuring region and is narrow compared with its length. The longitudinal axis of the strip 3 extends transversely with respect to the adjacent longitudinal side edge of the support 2, and the strip is arranged edgewise on to that side edge.
A fluid medium striking the air mass meter is denoted by arrows L showing the direction of flow. As shown in Fig. 2, the obstacle 3 is disposed to the upstream side of the support 2.
After prolonged operation of the air mass meter, layers of dirt 4 and 5 become deposited on the support 1 2 and the obstacle 3 respectively, as a result of impurities in the fluid medium. As Fig. 2 shows, the layer of dirt 4 on the support 2 is interrupted by a relatively small gap in the vicinity of the obstacle 3.
Thus the obstacle 3 shields a small part of the length of the support 2 (and the measurement resistance thereon) from the fluid flow so as to prevent a complete parallel resistance from being formed on the substrate between the electrical connectors. In this way drift due to such parallel resistance can be effectively prevented.

Claims (8)

CLAIMS:
1. A device for use in measuring a parameter of a medium flowing in a predetermined direction through a predetermined location, which device comprises temperature-dependent electrical resistance means, connected between two electrical connectors and extending across the said location, and an obstacle mounted so as to extend adjacent to the electrical resistance means, upstream thereof, and dimensioned so as to shield a relatively small part of the length of the said resistance means, between the two electrical connectors, from the flowing medium, thereby to ensure the presence of a gap in a layer of dirt formed, by deposition from the flowing medium, between the two electrical connectors when the device is in use.
2. A device as claimed in claim 1, wherein the said obstacle is elongate in form and extends transversely with respect to a longitudinal side edge of the resistance means, which side edge is opposed to the said predetermined direction.
3 A device as claimed in claim 1 or 2, wherein the said obstacle is a metal strip.
4. A device as claimed in claim 3, wherein the said metal strip is arranged edgewise on to the said resistance means.
5. A device as claimed in any preceding claim, wherein the said device is part of an air mass meter for use in an internal combustion engine.
6. A device as claimed in any preceding claim, wherein the said electrical resistance means comprise an electrically resistive layer on a supporting substrate.
7. A device as claimed in claim 1, substantially as hereinbefore described with reference to the accompanying drawings.
8. An internal combustion engine fitted with a v device, as claimed in any preceding claim, arranged for use in measuring a parameter of a medium flowing In the engine when it is in use.
GB9410722A 1993-05-28 1994-05-27 Measuring devices exposed to fluid flow Expired - Fee Related GB2278451B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19934317952 DE4317952C1 (en) 1993-05-28 1993-05-28 Device for reducing drift in an electrical measuring device

Publications (3)

Publication Number Publication Date
GB9410722D0 GB9410722D0 (en) 1994-07-13
GB2278451A true GB2278451A (en) 1994-11-30
GB2278451B GB2278451B (en) 1996-10-09

Family

ID=6489224

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9410722A Expired - Fee Related GB2278451B (en) 1993-05-28 1994-05-27 Measuring devices exposed to fluid flow

Country Status (4)

Country Link
JP (1) JPH07117437B2 (en)
DE (1) DE4317952C1 (en)
FR (1) FR2705777B1 (en)
GB (1) GB2278451B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785662A (en) * 1984-04-26 1988-11-22 Nippon Soken, Inc. Direct-heated gas-flow measuring apparatus
US4944182A (en) * 1988-01-16 1990-07-31 Robert Bosch Gmbh Air flow rate meter and method for producing an air flow rate meter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3124960A1 (en) * 1981-06-25 1983-01-20 Robert Bosch Gmbh, 7000 Stuttgart "DEVICE FOR MEASURING THE DIMENSION OF A FLOWING MEDIUM"
JPS59190624A (en) * 1983-04-13 1984-10-29 Hitachi Ltd Intake air flowmeter
DE3818385A1 (en) * 1987-06-04 1988-12-22 Mazda Motor HOT WIRE FLOW QUANTITY SENSOR
US4981035A (en) * 1989-08-07 1991-01-01 Siemens Automotive L.P. Dust defelector for silicon mass airflow sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785662A (en) * 1984-04-26 1988-11-22 Nippon Soken, Inc. Direct-heated gas-flow measuring apparatus
US4944182A (en) * 1988-01-16 1990-07-31 Robert Bosch Gmbh Air flow rate meter and method for producing an air flow rate meter

Also Published As

Publication number Publication date
DE4317952C1 (en) 1994-08-04
JPH07117437B2 (en) 1995-12-18
FR2705777A1 (en) 1994-12-02
JPH06347302A (en) 1994-12-22
GB2278451B (en) 1996-10-09
FR2705777B1 (en) 1996-03-08
GB9410722D0 (en) 1994-07-13

Similar Documents

Publication Publication Date Title
KR960005639B1 (en) Apparatus for determining the mass flow of a flowing medium
DE2954739C2 (en) Arrangement for throughput measurement of the intake air of an internal combustion engine
US6209402B1 (en) Measuring element, mass air flow meter therewith and compensating method for accurately measuring air flow
US7543477B2 (en) Sensor for detecting particles
EP0106455B1 (en) Mass airflow sensor
US6708560B2 (en) Measurement apparatus for measuring physical quantity such as fluid flow
US5823680A (en) Temperature sensor
US4393697A (en) Air flow rate measuring apparatus
US4245502A (en) Apparatus for measuring the velocity of gases
DE102006030786A1 (en) Flow sensor element and its self-cleaning
US5977782A (en) Fluid abrasion and/or corrosion sensors and method of sensing abrasion and/or corrosion
KR0160600B1 (en) Platinum temperature sensor
US6886402B2 (en) Gas flow rate and temperature measuring element
JP3331814B2 (en) Thermal flow detector
US4936145A (en) Heatable electric resistor for flow meters
EP0069253B2 (en) Thermal flow rate sensor
GB2278451A (en) Measuring devices exposed to fluid flow
US5060511A (en) Intake air quantity measuring apparatus
JPH04230003A (en) Resistor device
JPS62263417A (en) Thermal flow rate sensor
US5224378A (en) Thermal flowmeter with detecting element supported by supports having engaging portions
US5559287A (en) Device for reducing drift in measuring instruments
EP0447596B1 (en) Temperature detector
GB2120453A (en) Temperature sensor
JPH11295122A (en) Structure of intake air temperature sensor and control component for internal combustion engine

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19980527