GB2265376A - Human steroid hormone receptor (nuci) - Google Patents

Human steroid hormone receptor (nuci) Download PDF

Info

Publication number
GB2265376A
GB2265376A GB9306043A GB9306043A GB2265376A GB 2265376 A GB2265376 A GB 2265376A GB 9306043 A GB9306043 A GB 9306043A GB 9306043 A GB9306043 A GB 9306043A GB 2265376 A GB2265376 A GB 2265376A
Authority
GB
United Kingdom
Prior art keywords
leu
ala
glu
lys
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB9306043A
Other versions
GB9306043D0 (en
Inventor
Azriel Schmidt
Gideon A Rodan
Su Jane Rutledge
Robert L Vogel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck and Co Inc
Original Assignee
Merck and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck and Co Inc filed Critical Merck and Co Inc
Publication of GB9306043D0 publication Critical patent/GB9306043D0/en
Publication of GB2265376A publication Critical patent/GB2265376A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/72Receptors; Cell surface antigens; Cell surface determinants for hormones
    • C07K14/721Steroid/thyroid hormone superfamily, e.g. GR, EcR, androgen receptor, oestrogen receptor

Abstract

A member of the steroid hormone receptor superfamily (hereinafter identified as NUCI) is disclosed which has been prepared by cDNA cloning from a human osteosarcoma SAOS-2/BiO cell library. Also disclosed is the complete sequence of human NUCI complementary DNA; expression systems, including a COS stable expression system; and an assay using the COS expression system. NUCI can be used in an assay to identify and evaluate chemical entities that bind to this receptor.

Description

TITLE OF THE INVENTION HUMAN STEROID HORMONE RECEPTOR NUCI SUMMARY OF THE INVENTION The present invention relates generally to ligand-responsive regulatory proteins and genes encoding them. In particular, a novel recombinant human steroid hormone receptor (hereinafter identified as NUCI) is disclosed which has been prepared by polymerase chain reaction techniques.
Also disclosed is the complete sequence of human NUCI complementary DNA; expression systems, including a COS stable expression system; and an assay using the Cos expression system. In addition, the invention relates to a method for identifying functional ligands of the NUCI receptor.
BACKGROUND OF THE INVENTION Retinoids, steroid and thyroid hormones and possibly other molecules produce their biological effects by binding to proteins of the steroid receptor superfamily. These receptors interact with specific DNA.sequences and modulate gene expression (for reviews see JM Berg, Cell 57:1065-1068 (19890 ; RM Evans, Science 240:899-895 (1988); M Beato, Cell 56:335-344 (1989)). Sequence analysis and functional studies of these receptors revealed two important regions which exhibit a high degree of amino acid residue conservation.The highest level of similarity among the receptors is found in a region which contains nine cystein residues that bind zinc atoms to form two "zinc fingers," which interact with the cognate steroid response elements of DNA (J Miller, et al., EMBO J 4:1609-1614 (1985) ; RM Evans, Cell 52:1-3 (1988)). The second region, which is less conserved, is the ligand binding domain responsible for the interaction with the hormone (J Carlstedt-Duke, et al., Proc Natl Acad Sci USA 79:4260-4264 (1982). J. Caristedt-Duke, et al., Proc Natl Acad sci USA 84:4437-4440 (1987)).
Recent studies have attributed additional functions to other domains of these receptors, such as protein protein interaction that participates in transcriptional regulation (R Scule, et al., Cell 62:1217-1226 (1990); HF Tang, Cell 62:1205-1215 (1990) ; JM Holloway et al., Proc Natl Acad Sci USA 87:8160-8164 (1990)). The amino acid conservation in the DNA binding domain has led to the identification of new members of the steroid receptor superfamily.
For example, hER1 and hER2 have been cloned by low stringency hybridization of cDNA libraries with a DNA probe coding for the DNA binding domain of the estrogen receptor (V Giguere, et al., Nature 331:91-94 (1988)). Similar approaches have led to the discovery of the retinoic acid receptors and the peroxisome proliferator activator receptor (PPAR)(i Issemann, et al., Nature 347:645-650 (1990) ; DJ Mangelsdorf, et al., Nature 345:224-229 (1990)).
Recently, three novel members of the Xenopus nuclear hormone receptor superfamily have been disclosed (C Dreyer, Cell 68:879-887 (1992)), In addition, U.S.
Patent No. 4,981,784 to Evans, . discloses the identification of a retinoic acid receptor and the use of chimeric constructs to produce hybrid receptors for the identification qf novel ligands.
The above references, however, neither disclose nor suggest the instant invention.
DETAILED DESCRIPTION OF THE INVENTION One embodiment of the invention concerns human steroid hormone receptor NUCI, said receptor being free of other human receptor proteins.
In one class this embodiment concerns human steroid hormone receptor NUCI, said receptor being free of other human proteins.
Within this class, this embodiment concerns human steroid hormone receptor NUCI from human cells such as osteosarcoma, said receptor being free of other human proteins.
In a second class* this embodiment concerns a protein comprising the following 441 amino acid sequence (SEQ ID NO: depicted from the.amino to the carboxy terminus: Met Glu Glu Pro Gln Glu Glu Ala Pro Glu Val Arg Golu Glu Glu Glu 1 5 10 15 Lys Glu Glu Val Ala Glu Ala Glu Gly Ala Pro Glu Leu Asn Gly Gly 20 25 30 Pro Gln His Ala Leu Pro Ser Ser Ser Tyr Thr Asp Leu Ser Arg Ser 35 40 45 Ser Ser Pro Pro Ser Leu Leu Asp Gin Leu Gin Met Gly Cys Asp Gly 50 55 60 Ala Ser Cys Gly Ser Leu Asn Met Glu Cys Arg Val Cys Gly Asp lays 65 70 75 80 Ala Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly 85 90 95 Phe Phe Arg Arg Thr Ile Arg Met Lys Leu Glu Tyr Glu Lys Cys Glu 100 105 110 Arg Ser Cye Lys Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys 115 120 125 Arg Phe Gin Lys Cys teu Ala Leu Gly Met Ser His Asn Ala Ile Arg 130 135 140 Phe Gly Arg Met Pro Glu Ala Glu lays Arg Lys Leu Val Ala Gly Leu 145 150 155 160 Thr Ala Asn Glu Gly Ser Gln Tyr Asn Pro Gln Val Ala Asp Leu Lys 165 170 175 Ala Phe Ser Lys His Ile Tyr Asn Ala Tyr Leu Lys Asn Phe Asn Met 180 185 190 Thr Lys Lys Lys Als Arg Ser Ile Leu Thr Gly Lys Ala Ser His Thr 195 200 205 Ala Pro Phe Val lie His Asp Ile Glu Thr Leu Trp Gln Ala Glu Lys 210 215 220 Gly Leu Val Trp Lys Gln Leu Val Asn Gly Leu Pro Pro Tyr Lys Glu 225 230 235 240 Ile Ser Val His Val Phe Tyr Arg Cys Gln Cys Thr Thr Val Glu Thr 245 250 255 Val Arg Glu Leu Thr Glu Phe Ala Lys Ser Ile Pro Ser Phe Ser Ser 260 265 270 Leu Phe Leu Asn Asp Gln Vat Thr Leu Leu Lys Tyr Gly Val His Gin 275 280 285 Ala Ile Phe Ala Met Leu Ala Ser Ile Val Asn Lys Asp Gly Leu Lue 290 295 300 Val Ala Asn Gly Ser Gly Phe Val Thr Arg Glu Phe Leu Arg Ser Leu 305 310 315 320 Arg lays Pro Phe Ser Asp Ile Ile Glu Pro Lys Phe Glu Phe Ala Val 325 330 335 lays Phe Asn Ala Leu Glu Leu Asp Asp Ser Asp Leu Ala Leu Phe Ile 340 345 350 Ala Ala Ile Ile Leu Cys Gly Asp Arg Pro Gly Leu Met Asn Val Pro 355 360 365 Arg Val Glu Ala Ile Gln Asp Thr Ile Leu Arg Ala Leu Glu Phe His 370 375 380 Leu Gin Ala Asn His Pro Asp Ala Gln Tyr ten Phe Pro Lys Leu Leu 385 390 395 400 Gln Lys Met Ala Asp Leu Arg Gln Leu Val Thr Glu His Ala Gln Met 405 410 415 Met Gln Arg Ile Lys Lys Thr Glu Thr Glu Thr Ser Leu His Pro Leu 420 425 430 Leu Cln Glu Ile Tyr Lys Asp Met Tyr 435 440 the protein being free of other human receptor proteins.
Within the second class, this embodiment concerns a protein consisting of the foregoing 441 amino acid sequence (SEQ ID No : 5 :).
A second embodiment concerns a DNA sequence encoding human steroid hormone receptor NUCI complementary DNA, said DNA, said sequence being free of other human DNA sequences.
As will be appreciated by those of skill in the art, there is a substantial amount af redundancy in the set of codons which translate specific amino acids. Accordingly, the invention also includes alternative base sequences wherein a codon (or codons) are replaced with another codon, such that the amino acid sequence translated by the DNA sequence remains unchanged. For purposes of this specification, a sequence bearing one or more such replaced codons will be defined as a degenerate variation. Also included are mutations (exchange of individual amino acids) which one of skill in the art would expect to have no effect on functionality, such as valine for leucine, arginine fox lysine and asparagine for glutamine.
One class of the second embodiment of the invention concerns the following nucleotide sequence (SEQ ID NO:I:) of complementary DNA depicted from the 5 to the 3' terminus: GAATTCTGCG GAGCCTGCGG GACCGCGGCG GGTTGGCCCG TAGGCAGCCG GGACAGTGTT 60 GTACAGTGTT TTGGGCATGC ACGTGATACT CACACAGTGG CTTCTGCTCA CCAACAGATG 120 AAGACAGATG CACCAACGAG GGTCTGGAAT GGTCTGGAGT GGTCTGGAAA GCAGGGTCAG 180 ATACCCCTGG AAAACTGAAG CCCOTGGAGC AATGATCTQT ACAGGACTGC TTQAAGGCTG 240 ATGGGAACCA CCCTGTAGAG GTCCATCTGC GTTCAGACCC AGACGATGCC AGAGCTATGA 300 CTGGGCCTGC AGGTGTGGCG CQGAGGGGAG ATCAGCOATG GAGCAGCCAC AGGAGGAAGC 360 CCCTCAGGTC CGGGAAGAGG AGGAGAAAGA GGAAGTGGCA GAGGCACAAG GAGCCCCAGA 420 GCTCAATGGG GGACCACAGC ATGCACTTCC TTCCAGCAGC TACACAGACC TCTCCCGGAG 480 CTCCTCGCCA CCCTCACTGC TGGACCAACT GCAGATGGGC TGTGACGGGG CCTCATGCGG 540 CAGCCTCAAC ATGGAGTGCC GGGTGTGCGG GGACAAGGCA TCGGGCTTCC ACTACGGTGT 600 TCATGCATGT GAGGGGTGCA AGGGCTTCTT CCGTCGTACG ATCCGCATGA AGCTGGAGTA 660 CGAGAAGTGT GAGCGCAGCT GCAAGATTCA GAAGAAGAAC CGCAACAAGT GCCAGTACTG 720 CCGCTTCCAG AAGTGCCTGG CACTGGGCAT GTCACACAAC GCTATCCGTT TTGGTGGGAT 780 GCCGGAGGCT GAGAAGAGGA AGCTGGTGGC AGGGCTGACT GCAAACGAGG GGAGCCAGTA 840 CAACCCACAG GTGGCCGACC TGAAGGCCTT CTCCAAGCAC ATCTACAATG CCTACCTGAA 900 AAACTTCAAC ATGACCAAAA AGAAGGCCCG CAGCATCCTC ACCGGCAAAG CCAGCCACAC 960 GGCGCCCTTT GTGATCCACG ACATCGAGAC ATTGTGGCAG GCAGAGAAGG GGCTGGTGTG 1020 GAAGCAGTTG GTGAATGGCC TGCCTCCCTA CAAGGAGATC AGCGTGCACG TCTTCTACCG 1080 CTGCCAGTGC ACCACAGTGG AGACCGTGCG GGAGCTCACT GAGTTCGCCA AGAGCATCCC 1140 CAGCTTCAGC AGCCTCTTCC TCAACGACCA GGTTACCCTT CTCAAGTATG GCGTGCACGA 1200 GGCCATCTTC GCCATGCTGG CCTCTATCGT CAACAAGGAC GGGCTGCTGG TAGCCAACGG 1260 CAGTGGCTTT GTCACCCGTG AGTTCCTGCG CAGCCTCCGC AAACCCTTCA GTGATATCAT 1320 TGAGCCTAAG TTTGAATTTG CTGTCAAGTT CAACGCCCTG GAACTTGATG ACAGTGACCT 1380 GGCCCTATTC ATTGCGGCCA TCATTCTGTG TGGAGACCGG CCAGGCCTCA TGAACGTTCC 1440 ACGGGTGGAG GCTATCCAGG ACACCATCCT GCGTGCCCTC GAATTCCACC TGCAGGCCAA 1500 CCACCCTGAT GCCCAGTACC TCTTCCCCAA GCTGCTGCAG AAGATGGCTG ACCTGCGGCA 1560 ACTGGTCACC GAGCACGCCC AGATGATGCA GCGGATCAAG AAGACCGAAA CCGAGACCTC 1620 GCTGCACCCT CTGCTCCAGG AGATCTACAA GGACATGTAC TAACGGCGGC ACCCAGGCCT 1680 CCCTGCAGAC TCCAATGGGG CCAGCACTGG AGGGGCCCAC CCACATGACT TTTCCATTGA 1740 CCAGCTCTCT TCCTGTCTTT GTTGTCTCCC TCTTTCTCAG TTCCTCTTTC TTTTCTAATT 1800 CCTGTTGCTG TGTTTCTTCC TTTCTGTAGG TTTCTCTCTT CCCTTCTCCC TTCTCCCTTG 1860 CCCTCCCTTT CTCTCTCCTA TCCCCACGTC TGTCCTCCTT TCTTATTCTG TGAGATGTTT 1920 TGTATTATTT CACCAGCAGG ATAGAACAGG ACCTCTGCTT TTGCACACCT TTTCCCCAGG 1980 AGCAGAAGAG AGTGGGCCTG CCCTCTGCCC CATCATTGCA CCTGCAGGCT TAGGTCCTCA 2040 CTTCTGTCTC CTGTCTTCAG AGCAAAAGAC TTGAGCCATC CAAAGAAACA CTAAGCTCTC 2100 TGGGCCTGGG TTCCAGGGAA GGCTAAGCAT GGCCTGGACT GACTGCAGCC CCCTATAGTC 2160 ATGGGGTCCC TGCTGCAAAG GACAGTGGCA GACCCCGGCA GTAGAGCCGA GATGCCTCCC 2220 CAAGACTGTC ATTGCCCCTG CGATGGTGAG GCCACCCACT GACCCAATGA TCCTCTCCAG 2280 CAGCACACCT CAGCCCCACT GACACCCAGT GTCCTTCCAT CTTCACACTG GTTTGCCAGG 2340 CCAATGTTGC TGATGGCCCC TCCAGCACAC ACACATAAGC ACTGAAATCA CTTTACCTGC 2400 AGGCACCATG CACCTCCCTT CCCTCCCTGA GGCAGGTGAG AACCCAGAGA GAGGGGCCTG 2460 CAGGTGAGCA GGCAGGGCTG GGCCAGGTCT CCGGGGAGGC AGGGGTCCTG CAGGTCCTGG 2520 TGGGTCAGCC CAGCACCTCG CCCAGTGGGA GCTTCCCGGG ATAAACTGAG CCTGTTCATT 2580 CTGATGTCCA TTTGTGGCAA TAGCTCTACT GCCCTCCCCT TCCCCTTTAC TCAGCCCAGC 2640 TGGCCACCTA GAAGTCTCCC TGCACAGCCT CTAGTGTCCG GGGACCTTGT GGGACCAGTC 2700 CCACACCGCT GGTCCCTGCC CTCCCCTGCT CCCAGGTTGA GGTGCGCTCA CCTCAGAGCA 2760 GGGCCAAAGC ACAGCTGGGC ATGCCATGTC TGAGCGGCGC AGAGCCCTCC AGGCCTGCAG 2820 GGGCAAGGGG CTGGCTGGAG TCTCAGAGCA CAGAGGTAGG AGAACTGGGG TTCAAGCCCA 2880 GGCTTCCTGG GTCCTGCCTG GTCCTCCCTC CCAAGGAGCC ATTCTATGTG ACTCTGGGTG 2940 GAAGTGCCCA GCCCCTGCCT GACGGGATCA CTCTCTGCTG GCAGGATTCT TCCCGCTCCC 3000 CACCTACCCA GCTGATGGGG GTTGGGGTGC TTCTTTCAGC CAAGGCTATG AAGGGACAGC 3060 TGCTGGGACC CACCTCCCCC CTTCCCGGGC CACATGCCGC GTCCCTGCCC CCACCCGGGT 3120 CTGGTGCTGA GGATACAGCT CTTCTCAGTG TCTGAACAAT CTCCAAAATT GAAATGTATA 3180 TTTTTGCTAG GAGCCCCAGC TTCCTGTGTT TTTAATATAA ATAGTGTACA CAGACTGACG 3240 AAACTTTAAA TAAATGGGAA TTAAATATTT AAAAAAAAAA GCGGCCGCGA ATTC 3294 or a degenerate variation thereof.
A second class of the second embodiment of the invention concerns the following nucleotide sequence (SEQ ID NO:2:) of complementary DNA depicted from the 5' to the 3' terminus: ATG GAGCAGCCAC AGGAGGAAGC 360 CCCTGAGGTC CGGGAAGAGG AGGAGAAAGA GGAAGTGGCA GAGGCAGAAG GAGCCCCAGA 420 GCTCAATGGG GGACCACAGC ATGCACTTCC TTCCAGCAGC TACACAGACC TCTCCCGGAG 480 CTCCTCGCCA CCCTCACTGC TGGACCAACT GCAGATGGGC TGTGACGGGG CCTCATGCGG 540 CAGCCTCAAC ATGGAGTGCC GGGTGTGCGG GGACAAGGCA TCGGGCTTCC ACTACGGTGT 600 TCATGCATGT GAGGGGTGCA AGGGCTTCTT CCGTCGTACG ATCCGCATGA AGCTGGAGTA 660 CGAGAAGTGT GAGCGCAGCT GCAAGATTCA GAAGAAGAAC CCCAACAAGT GCCAGTACTG 720 CCGCTTCCAG AAGTGCCTGG GACTGGGCAT GTCACACAAC GCTATCCGTT TTGGTCGGAT 780 GCCGGAGGCT GAGAAGAGGA AGCTGGTGGC AGGGCTGACT GCAAACGAGG GGAGCCAGTA 840 CAACCCACAG GTGGCCGACC TGAAGGCCTT CTCCAAGCAC ATCTACAATG CCTACCTGAA 900 AAACTTCAAC ATGACCAAAA AGAAGGCCCG CAGCATCCTC ACCGGCAAAG CCAGCCACAC 960 GGCGCCCTTT GTGATCCACG ACATCGAGAC ATTGTGGCAG GCAGAGAAGG GGCTGGTGTG 1020 GAAGCAGTTG GTGAATGGCC TGCCTCCCTA CAAGGAGATC AGCGTGCACG TCTTCTACCG 1080 CTGCCAGTGC ACCACAGTGG AGACCGTGCG GGAGCTCACT GAGTTCGCCA AGAGCATCCC 1140 CAGCTTCAGC AGCCTCTTCC TCAACGACCA GGTTACCCTT CTCAAGTATG GCGTGCACGA 1200 GGCCATCTTC GCCATGCTGG CCTCTATCGT CAACAAGGAC GGGCTGCTGG TAGCCAACGG 1260 CAGTGGCTTT GTCACCCGTG AGTTCCTGCG CAGCCTCCGC AAACCCTTCA GTGATATCAT 1320 TGAGCCTAAG TTTGAATTTG CTGTCAAGTT CAACGCCCTG GAACTTGATG ACAGTGACCT 1380 GGCCCTATTC ATTGCGGCCA TCATTCTGTG TGGAGACCGG CCAGGCCTCA TGAACGTTCC 1440 ACGGGTGGAG GCTATCCAGG ACACCATCCT GCGTGCCCTC GAATTCCACC TGCAGGCCAA 1500 CCACCCTGAT GCCCAGTACC TCTTCCCCAA GCTGCTGCAG AAGATGGCTG ACCTGCGGCA 1560 ACTGGTCACC GAGCACGCCC AGATGATGCA GCGGATCAAG AAGACCGAAA CCGAGACCTC 1620 GCTGCACCCT CTGCTCCAGG AGATCTACAA GGACATGTA 1659 or a degenerate variation thereof.
Also within this second class of the second embodiment of the invention is the foregoing DNA sequence (SEQ ID NO:2:) further comprising the following nucleotide sequence (SEQ tD NO:3:) of complementary DNA depicted from the 5' to the 32 terminus: GAATTCTGCG GAGCCTGCGG GACGGCGGCG GGTTGGCCCG TAGGCAGCCG GGACAGTGTT 60 GTACAGTGTT TTGGGCATGC ACGTGATACT CACACAGTGG CTTCTGCTCA CCAACAGATG 120 AAGACAGATG CACCAACGAG GGTCTGGAAT GGTCTGGAGT GGTCTGGAAA GCAGGGTCAG 180 ATACCCCTGG AAAACTGAAG CCCGTGGAGC AATGATCTCT ACAGGACTGC TTCAAGGCTG 240 ATGGGAACCA CCCTGTAGAG GTCCATCTGC GTTCAGACCC AGACGATGCC AGAGCTATGA 300 CTGGGCCTGC AGGTGTGGCG CCGAGGGGAG ATCAGCC 337 or a degenerate variation thereof.
Further within this second class of the second embodiment of the invention is the foregoing DNA sequence (SEQ ID NO:2:) further comprising the following nucleotide sequence (SEQ ID NO:4:) of complementary DNA depicted from the 5' to the 3' terminus:: C TAACGGCGGC ACCCAGGCCT 1680 CCCTGCAGAC TCCAATGGGG CCACCACTGG AGGGGCCCAC CCACATGACT TTTOCATTGA 1740 CCAGCTCTCT TCCTGTCTTT GTTGTCTCCC TCTTTCTGAG TTCCTCTTTC TTTTCTAATT 1800 CCTGTTGCTC TGTTTCTTCC TTTCTGTAGG TTTCTCTCTT CCCTTCTCCC TTCTCCCTTG 1860 CCCTCCCTTT CTCTCTCCTA TCCCCACGTC TGTCCTCCTT TCTTATTCTG TGAGATGTTT 1920 TCTATTATTT CACCAGCAGC ATAGAACAGG ACCTCTGCTT TTGCACACCT TTTCCCCAGG 1980 AGCAGAAGAG AGTGGGCCTG CCCTCTGCCC CATCATTGCA CCTGCAGGCT TAGGTCCTCA 2040 CTTCTGTCTC CTGTCTTCAG AGCAAAAGAC TTGAGCCATC CAAAGAAACA CTAAGCTCTC 2100 TGGGCCTGGG TTCCAGGGAA GGCTAAGCAT GGCCTGGACT GACTGCAGCC CCCTATAGTC 2160 ATGGGGTCCC TGCTGCAAAG GACAGTGGCA GACCCCGGCA GTAGAGCCGA GATGCCTCCC 2220 CAAGACTGTC ATTGCCCCTC COATCGTGAG GCCACCCACT GACCCAATGA TCCTCTCCAG 2280 CAGCACACCT CAGCCCCACT GACACCCAGT GTCCTTCCAT CTTCACACTG GTTTGCCAGG 2340 CCAATGTTGC TGATGGCCCC TCCAGCACAC ACACATAAGC ACTGAAATCA CTTTACCTGC 2400 AGGCACCATG CACCTCCCTT CCCTCCCTGA GGCAGGTGAG AACCCAGAGA GAGGGGCCTG 2460 CAGGTGAGCA GGCAGGGCTG GGCCAGGTCT CCGGGGAGGC AGGGGTCCTG CAGGTCCTGG 2520 TGGGTCAGCC CAGCACCTCG CCCAGTGGGA GCTTCCCGGG ATAAACTGAG CCTGTTCATT 2580 CTGATGTCCA TTTGTCCCAA TAGCTCTACT GCCCTCCCCT TCCCCTTTAC TCAGCCCAGC 2640 TGGCCACCTA GAAGTCTCCC TGCACAGCCT CTAGTGTCCG GGGACCTTGT GGGACCAGTC 2700 CCACACCGCT GGTCCCTGCG CTCCCCTGCT CCCAGGTTGA GGTGCGCTCA CCTCAGAGCA 2760 GGGCCAAAGC ACAGCTGGGC ATGCCATGTC TGAGCGGCGC AGAGCCCTCC AGGCCTGCAG 2820 GGGCAAGGGG CTGGCTGGAG TCTCAGAGCA CAGAGGTAGG AGAACTGGGO TTCAAGCCCA 2880 GGCTTCCTGG GTCCTGCCTG GTCCTCCCTC CCAAGGAGCC ATTCTATGTG ACTCTGGGTG 2940 GAAGTGCCCA GCCCCTGCCT GACGGGATCA CTCTCTGCTG GCAGGATTCT TCCCGCTCCC 3000 CACCTACCCA GCTGATGGGG GTTGGGGTGC TTCTTTCAGC CAAGGCTATG AAGGGACAGC 3060 TGCTGGGACC CACCTCCCCC CTTCCCCGGC CACATGCCGC GTCCCTGCCC CCACCCGGGT 3120 CTGGTGCTGA GGATACAGCT CTTCTCAGTG TCTGAACAAT CTCCAAAATT GAAATGTATA 3180 TTTTTGCTAG GAGCCCCAGC TTCCTGTGTT TTTAATATAA ATAGTGTACA CAGACTGACG 3240 AAACTTTMA TAAATGGGAA TTAAATATTT AAAAAAAAAA GCGGCCGCGA ATTC 3294 or a degenerate variation thereof.
A third embodiment of this invention concerns systems for expressing all or part of the human steroid hormone receptor NUCf.
One class of this third embodiment of the invention comprises: An expression construct, such as a plasmid which comprises: a) an expression vector, such as PJ3NUCI, and b) a base sequence encoding human steroid hormone receptor NUCI protein.
Within this class of the third embodiment, the steroid hormone receptor NUCI comprises the nucleotide sequence (SEQ ID NO:1:) of complementary DNA as shown above.
A second class of this third embodiment of the invention concerns a system for the transientexpression of human steroid hormone receptor NUCI in a suitable host cell, such as a monkey kidney cell line (COS), the system comprised of a vector which expresses human steroid hormone receptor NUCI cDNA.
It is understood, and is readily apparent to those skilled in the art that a wide variety of commonly used cell lines are suitable for use in the present invention. Suitable cell lines derived from various species include, but are not limited to, cell lines of human, bovine, porcine, monkey, and rodent origin, or from yeast and bacterial strains.
A fourth embodiment of the invention concerns a method of using any of the above eukaryote or prokaryote expression systems for determining the binding affinity of a test sample for steroid hormone receptor NUCI.
hollowing the isolation of a DNA sequence encoding human steroid hormone receptor NUCI cDNA, a chimeric gene can be created by substituting the DNA-binding domain region in the DNA sequence encoding NUCt cDNA with a DNA-binding domain region taken from a DNA sequence coding for another steroid hormone receptor protein, e.g., glucocorticoid receptor protein, thyroid receptor protein, mineralocorticoid receptor protein or retinoic acid receptor protein. Next, a suitable xeceptor-defifient host cell is transfected with: (1) the chimeric receptor gene, which is preferably carried on an expression plasmid, and (2) a reporter gene, such as the CAT gene or the firefly luciferase gene, which is also preferably carried on a plasmid.
In any cases the reporter gene is functionally linked to an operative hormone response element (ERE) (either wild-type or engineered) wherein the hormone response element is capable of being activated by the DNA-binding domain used to make the chimeric receptor gene. (For example, if the chimeric receptor gene contains the DNA-binding domain region from NUCI receptor coding DNA, then the .HRE should be a wild-type, an engineered, or a synthetic GRE, i.e., one that can be activated by the operative portion of the DNA-binding region of a NUCI receptor protein.) Next, the transfected host cell is challenged with a test sample which contains one or more ligand(s) which can potentially bind with the ligand-binding domain region of the chimeric protein coded for by the chimeric gene.To determine the extent that ligands can functionally complex with the chimeric receptor protein, induction of the reporter gene is monitored by monitoring changes in the protein levels of the protein coded for by the reporter gene. (For example, if luciferase is the reporter gene, the production of luciferase is indicative of receptor-regulated gene transcription.) Finally, when a ligand(s) is found that can induce transcription of the reporter gene, It is concluded that this ligand(s) can bind to the receptor protein coded for by the initial sample DNA sequence. This conclusion can be further verified by testing the binding properties of the receptor protein, coded for by the initial sample DNA sequences, vis-a-vis the ligand{s) that induce expression of the reporter gene.
The fourth embodiment further concerns a method for determining the affinity of a test sample for activation of a steroid hormone receptor NUCI, the method cotprDsing: (a) constructing a chimeric gene by substituting portions of a DNA-binding domain region of a DNA sequence encoding human steroid hormone receptor NUCT cDNA with operative portions of a DRA-binding domain region from a known ligand-responsive receptor protein; (b) introducing into a suitable receptor-deficient host cell:: (i) the chimeric gene from step (a), and (ii) a reporter gene functionally linked to an operative hormone response element wherein the hormone response element is capable of being activated by the DNA-binding domain region of the receptor protein encoded by the chimeric gene of step (a); (c) challenging the transfected host cell from step (b) with the test sample to be evaluated for ligand-binding activity with the chimeric receptor protein encoded by the chimeric gene of step (a); (d) assaying induction of the reporter gene by monitoring changes in the protein levels of the protein coded for by the reporter gene.
One class of this embodiment concerns a method of using a monkey kidney cell line (COS) as the suitable receptor-deficient host cell. In addition tbe COS host cell line may be transfected with a plasmid, the plasmid comprising: (a) an expression vector, such as PJ3NUCI, and (b) the base sequence encoding human steroid hormone receptor NUCI protein.
The aforementioned fourth embodiment is further useful for identifying compounds which may be peroxisome proliferators and, hence, are potentially hepatocarcinogens. This embodiment is also useful in identifying ligands for new hormone systems which regulate bodily function.
In overview, the present invention describes methods to isolate the human steroid hormone receptor NUCI complementary DRA (cDNA) without prior knowledge of its protein sequence or gene sequence. Polymerase chain reaction (PCR) technique was utilized for the isolation of human steroid hormone receptor NUCI cDNA.
The complete sequence of the human steroid hormone receptor NUCI cDNA was determined, and its encoded protein sequence was deduced. Among other things, such Sequence information is useful in the process of developing novel steroid hormone antagonists.
An expression system was used to express the cloned human steroid hormone receptor NUCI cDNA. The COS (a monkey kidney cell line) expression system can be used to measure the ligand binding properties of human steroid hormone receptor NUCI.
Assay protocols use the heterologously expressed human steroid hormone receptor NUCI for determination of the activation of steroid hormone receptor NUCI by antagonists.
The present invent ion generally relates to a new member of the steroid hormone receptor superfamily. The amino.9cid sequence deduced from the DNA sequence (Bases'338 to~l659) shows the characteristic features of both the DNA and the ligand binding domains of this family of receptors.
Sequence analysis predicted a protein of 451 amino acids which includes the conserved amino acrid residues characteristic of the DNA and ligand-binding domains of nuclear receptors. The putative DNA binding domain of NUCI contains the conserved nine cystein.residues, which are found in all the members of this receptor superfamily. Interestingly, two additional cystein residues (cys62 and cys67) are located in proximity to the 9 conserved Cyetein residues. The presence of additional cystein residues in this region could lead to the formation of alternative structures for the DNA binding domain.
Sequence comparison to the different receptors of this superfamily indicates that NUCI is closely related to the peroxisome proliferator activator receptor (I Issemann, et al., Nature 347:645-650 (1990)) with which it shares an overall homology of 62%, in particular, homology of 86% of the amino acids In the DNA binding domain and 72% of the amino acids in the ligand-binding domain.
Hybridization experiments revealed that the distribution of YUCS receptor is different from that of the PPAR. Northern blot analysis showed that in mature rats the receptor is highly expressed in heart. kidney and lungs as a transcript of approximately 3500 nucleotides. In human cells the size of the mRNA is approximately 4000 nucleotides.
NUCT is highly expressed in heart, kidney, lung.
spleen and ovaries and has very low expression in liver. In contrast, PPAR was reported to show highest expression in liver. This suggests that although the two receptors seem to be related. they may have regulatory roles in different target tissues.
Various peroxisome proliferators have been identified as being hepatocarcinogens. Because NUCI has some homology with PPAR, it is useful for identification of compounds which may have activity as peroxisome proliferators and accordingly allow screening of compounds for potential hepatocarcinogenicity.
Consistent with the sequence similarity, the chimeric NUCI receptor was activated by peroxisome proliferator W -14643 at a concentration of 10 Lower concentrations did not activate the chimeric NUCI receptor. The lower sensitivity of NUCI receptor to the peroxisome proliferator, in spite of the similarity in the ligand binding domain, could be attributed either to differences in key amino acids in the ligand binding domain or possibly to some unknown technical aspects of the assay.Since W-14643 and other peroxisome proliferators are similar synthetic molecules, it is not known if they are the only ligands for these receptors or merely structurally related to the '!real" physiological ligand(s). The structure of NUCI and its related receptor PPAR suggest that they belong to a subgroup of the steroid receptor superfamily.
As used herein, "steroid hormone receptor superfamily" refers to the class of related receptors comprised of giucocorticoid, mineralocorticoid.
progesterone, estrogen, estrogen-related, vitamin D3, thyroid, v-erb-A, retinoic acid and E75 (Drosophilia) receptors. As used herein steroid hormone receptor" refers to members within the steroid hormone receptor superfamily.
As used herein, "ligand" means an inducer, such as a hormone or growth substance. Inside a cell the ligand binds to a receptor protein, thereby creating a ligand-receptor complex, which in turn can bind to an appropriate hormone response element.
Single ligands may have multiple receptors.
As used herein, "expression construct" refers to a plasmid or vector comprising a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein.
and (3) appropriate transcription initiation and termination sequences. "Recombinant expression system" means a combination of. an expression construct and a suitable host microorganism.
The following examples are given for the purpose of illustrating the present invention and shall not be construed as being limitations on the scope or spirit of the instant invention EXAflPLl PCR Amplification To use the polymerase chain reaction (PCR) method, degenerate oligonucleotides were synthesized according to the amino acid sequence of two conserved segments shared by members of the nuclear receptor superfamily (RM Evans, Sciene 240:899-895 (1988)).
The 5'end primers, ES11 and ES 12, were designed according to a segment of the DNA binding domain.
The primer at the 3' end, ES 15, was prepared according to a conserved amino acid sequence in the ligand binding domain of the retinoid receptor subfamily and the vitamin D receptor. Since this conserved region contains two nonconserved amino acid residues, inosine nucleotides were used as part of this primer. Human cDNA prepared from mRNA of osteosarcoma cells SAOS-2/310, amplified with the primers ES11 and ES15, yielded multiple DNA fragments with various sizes after the first round of amplification. A portion of the reaction was subjected to a second round of amplification using the nested primer ESI2 and the same 3 end primer ES15.
A random primed cDNA library was prepared from 2 mg total RNA isolated from the Osteosarcoma SAOS-2/B10 cells by the Moloney reverse transcriptase enzyme RTH according to the manufacturer recommendations (Bethesda Research Laboratoies).
The cDNA reaction (25 ml) was diluted into 300 ml water and heat denatured at 95 C for 5 minutes and quickly chilled on ice. The cDNA (2.5 ml) and the first primer pair, ES11 and ES15 (0.5 mM each) were employed in the amplification reaction with the amplitaq kit and the DNA thermal cycler (Perkin-Elmer-Cetus).
Primer ESlt has the following sequence (SEQ ID NO:6:): CGAATTCTGT GAGGGCTGGA ARGSC 25 wherein: R represents A or G; and S represents C or G; and Primer E515 has the following sequence (SBQ ID NO:7:): GGAATTCRAA NCCNGGNANN NNYTTNOCRA A 31 wherein: N (at the 11, 14 & 26 positions) represents A or C or G or T; N (at the 17. 19, 20, 21 & BR< .22 positions) represent inosine; R represents A or G; S represents C or G; and Y represents C or T.
The following amplification cycles were conducted: denaturation at 94 C. 1.S minutes; annealing at 650C, 3 minutes; extension at 72 C, 5 minutes for 3 cycles; denaturing at 94 C, 1 minute; annealing at 600C, 3 minutes; extension at 72 C, 5 minutes for 15 cycles; and denaturing at 940C, 1 minute; annealing at 57 C, 3 minutes; extension at 720C, 5 minutes for 20 cycles.
After completion of the first round of amplification, 5 ml of the reaction was added to an amplification reaction buffer containing a second set of primers: a partially nested oligomer ES12 and the same 3' end primer ES15 (O.S mX each).
Primer ES 12 has the following sequence (SEQ ID NO:8:): CGAATTCTGT GAGGGCTGCA ARGSCTTCTT C 31 wherein: R represents A or G; and S represents Cor G.
The second round of amplification was performed with the same program used for the first amplification cycles. The amplification products were separated on 5% polyacrylamide gel and stained by ethidium bromide. The DNA products were isolated from the gel, phosphorylated by T4 polynucleotide kinase and cloned into PUC 18 vector by blunt end ligation. Clones were identified by digestion of mini-prep plasmid DNA with PvuII enzyme. The DNA insert was analyzed by double-stranded DNA sequencing by the dideoxy termination method using sequenase enzyme kit (United States Biohemicals).
This amplification produced two major DNA fragments of 270 bp and 320, respectively, EXAMPLE 2 Cloning and Sequencing of cDNA A human oligo-dT cDNA library was constructed from osteosarcoma SAOS-2/BlO cells in ggtll using the Lambda Librarian cloning kit (Invitrogen Corp.). Several positive clones were identified by plaque screening with the [32P] labeled DNA 'probe of the cloned amplified product (NUCI). The hybridization conditions were as described by A Schmidt, et al., J Biol Chem 259:7411-7415 (1984). The cDNA inserts were cloned into EcoRI site of the cloning vector PUCKS. The complete DNA sequence of both strands was determined by the dideoxy sequencing method using a series of oligonucleotides synthesized as the DNA sequence data became available.
The fragments from PCR amplification were cloned into plasmids and sequenced. The amino acid residues predicted by the DNA sequences, indicated that both DNA fragments may code for genuine and novel receptors belonging to the steroid hormone superfamily. To obtain the complete cDNA clone the amplified cDNA fragment of 320 bp NUCI was used for the screening of a human osteosarcoma SAOS-2/B10 cells cDNA library. All the highly positive clones were identical and matched the sequence for the amplified NUCI DNA fragment.
EXAMPLE 3 Northern Blot analysis RNA from various tissues or the listed cell lines were prepared by using guanidine thiocyanate or by the guanidine hydrochloride method (GGA Nemeth, et al., Anal Biochem 183:301-304 (1989) ; JM Chirgwin, et al., Biochemistry, 18:5294-5299 (1979)), RNA samples were analyzed by formaldehyde agarose gel electrophoresis as described by (KM Rosen, et Focus 12:23-24 (1990)). The RNA was transferred by blotting to N-Hybond (Amersham Corp.). and hybridized with 32P-labeled eDNA of NUCI as deacribed by (A Schmidt, et al., J Biol Chem 259 : 7411-7415 (1984) ; KM Rosen, et al., Focus 12:23-24 (1990)).
Analysis of the deduced amino acid sequence revealed a long open reading frame, which starts at the putative initiation methionine codon, at nucleotide 338 and codes for a protein of 441 amino acid residues. The putative protein contains a cystein-rich region at the amino terminus, which mostprobably represents the conserved DNA-binding domain of this receptor. The carboxyl terminus of the protein.contains conserved amino acid residues, which may be part of a ligand binding domain (JM Berg, et al., Cell 57:1065-1068 ; RM Evans Science 240:899-895 et al., M Beato, Cell S6;335-344 (1989)).The DNA binding region containS eleven cystein residues, compared to nine residues in other steroid receptors, suggesting the potential formation of an alternative Zn±dependent "finger" structure(s). As in the peroxisome proliferator activator receptor (I Issemann et L., Nature 347:645-650) (1990)), the conserved loop structure of the second Zn+ "finger" (cys to cys 115) contains only three amino acid residues, compared to five in other members of the receptor family.
Comparison of the amino acid sequence of NUCI with that of other members of the nuclear receptor family revealed best overall similarity (627.) to the peroxisome proliferator activator receptor (I Issemann, Nature 347:645-650 (1990)).
The highest similarity is in the putative DNA binding domain, where 86% of the 66 amino acid residues are identical. The ligand binding domain of NUCI also exhibits close similarity with the corresponding region of the peroxisome proliferator activator receptor. These domains share 71% of the amino acid residues. Outside these two regions, the similarity between NUCI and the peroxisome proliferator activator receptor is lower. While 57% of the amino acid residues in the region between the DNA and the ligand binding domains are identical, in the N-turminal portion only 27% are the same. Although the similarity between NUCI and the peroxisome proliferator activator receptor it substantial, it is much lower than the similarity among members of the retinoic acid receptor family (RM Evans, Science 240:899-895 (1988). NUCI showed the next best similarity with members of this subfamily, the retinoic acid/thyroid roceptors including RARa, RXRa, thyroid hormone receptor or vitamin D receptor (DJ mangelsdorf, Nature 345:224-229 (1990).
M Petkovich, et al., Nature 330: 444-450 (1987) ; V Giuere, et al., Nature 330 : 624-629 (1987) ; C Weinberger, ., Nature 324: 642-646 (1985); AR Baker, et al., Proc. Natal. Acad. Sci, USA 85;3294-3298 (1988)). The DNA binding domains are 58-627. identical and the ligand binding domains exhibit a similarity in the range of 29-31%.
Regarding the PCR procedure, it is of interest that sequence analysis of the amplified DNA products revealed that the primer ES12 was incorporated at both the 5' and the 3' ends. At the 3' end the primer only partially matched the actual cDNA sequence. Thus, the amplification was the product of a single primer. Surprisingly, the nucleotide at the 3' end of primer ES12 did not match at all the cDNA sequence. It is not clear whether primer ES12 was incorporated into the DNA fragments at the the 3' end at the beginning of the amplification process or only during late amplification cycles.
Expression of NUCI mRN Northern analysis with a NUCt cDNA probe revealed that NUCI receptor mRNA is expressed as a 4.0 Kb transcript in the human osteosarcoma SAOS-2/B10 cells. In mice and rats the transcript for NUCI is about 500 nucleotides shorter than that observed in human cells and baboon tissues. In mature rats we found high levels of NUCI expression in heart, lung and kidney. About five-fold lower levels were found in skin and bone RNA prepared from tibia. High expression levels were observed also in spleen and ovaries.
EXAMPLE 4 Ligand Screeing Assay The hybrid receptor GR-NUCI was prepared by inserting a shot site into the NUCI DNA sequence by the polymerase chain reaction method (I Issemann, et. al., Nature 347:645-650 (1990)). In NUCI receptor, introducing the Xho T site resulted in a substitution of residues ser139 and his 140 to leu139 and glu140. The DNA binding domain of the mouse glucocorticoid receptor, which has a kho I site at the amino acid residues leu495 and glu496 was obtained. The chimeric receptor pJ3GR/NUCl was prepared by ligation of the DNA coding. for amino terminal of the glucocorticoid receptor to the DNA coding for the ligand binding region-of NUCI at the Xho I site.The cDNA molecules of the human NUCI receptor (pJ3NUCI) and the native mouse glucocorticoid receptor (pSV2wrec) cloned by Ringold (M Danielsen, et al., EMBO J 5:2513-2525 (1985)) were expressed under the control of SV40 base expression vectors (R. White, et al., Mol Endo 1:735-745 (1987)). The reporter gene was pJA358 plasmid in which the expression of the firefly luciferase cDNA was controlled by a modified MMTV promoter. This promoter is regulated by the dimer form of the GRE hormone response element.
Transient transfection assays of COS cells were based on described protocols (t Issemann, et al., Nature 347:645-650 (1990); DJ Nangelsdorf, et al., Nature 345:224-229 (1990) ; CM Gorman, et al., flol Cell Biol 2:2044-1051 (1982)). Cells were plated (l.5xlO 5 in 1 ml) into 12 well dishes in phenols red-free medium supplemented with activated charcoal treated fetal calf' serum. The next day 0.1 ml of DNA (a mixture of S mg receptor DNA and 5 mg reporter plasmid), as a calcium phosphate precipitate, was added to each well of cells.
Ligands were added to the cells 30 minutes after transfection. The next day (18 hours), the cells were washed and fresh ligands were added. Twenty-four hours later cell extracts were prepared and assayed for the luciferase enzyme activity according to the instructions supplied in the luciferase assay system (Promega,). The samples were read in the Auto Clinilumat, Berthold. Each transfection was performed in triplicates and each sample was read three times.
The values varied by less than 5%.
Receptor activation To search for a putative ligand for the NUCI receptor, the fact that the ligand binding domains of the various -recept,ors of the steroid superfamily can be interchanged to form chimeric receptors was employed. These hybrid receptors are capable of exhibiting ligand-dependent transcription activation of a heterologous responsive DNA sequence (I Issemann, et al., Nature 347:645-650 (1990); S Greene, et al., Nature 325:75-78 (1987) ; NJG Wbster, et al., Cell 54:199-207 (1988)).
A chimeric receptor for NUCI (pJ3GR/NUCI) was prepared. The amino acid terminal, which included the DNA binding domain of the mouse glucocorticoid receptor (mGR) (M Danielsen, EMBO J 5:2513-2525 1986),.was fused to the ligand binding domain of NUCI in the manner described for PPAR (I issemann, et al., Nature 347:645-650 (1990)). The plasmid pJA358 that contains the luciferase gene under the control of the modified MNTV promoter was used as the reporter of the transcription unit.The screening assay was performed by transient tranfection of COS cells as previously described (I Issemann, al., Nat 347:645-650 (1990); DJ Mangelsdorf et al., Nature 345:224-229 (1990); CM Gorman, et Mol Cell Biol 2:20440-1051 (1982)). Based on the similarity of NUCI receptor to the PPAR, we tested if the Wy-14643 molecule could activate the NUCI hybrid receptor. We found that this compound, at a concentration of 100 mM, stimulates luciferase levels about four-fold. No-increase of luciferase activity was observed when the WY-14643 was added to either cells expressing the unaltered mGR or NUCI receptors. The low activation level may be attributed to the fact that the chimeric receptor was constitutively activated in the absence of exogenous ligands. We observed a five-fold higher level of luciferase enzyme in cells transfected with the hybrid receptor than in cells expressing the NUCI receptor itself or the native mGR. Similar observations were found in experiments where the ligand binding domain of NUCI was fused to the estrogen receptor or RXR. No transcription activation mediated by the hybrid receptor was found with any of the other ligands tested,- including 1,25-vitamin D3, 24,25-(OH2) vitamin D3, tyroxine, estrogen, vitamin E, retinoic acid, dexamethasone, progesterone, androgen and other putative commercially available ligands at concentrations of 1-10 mM.
While the foregoing specifications teaches the principles of the present invention, with examples provided for the purpose of illustration, it will be understood that the practice of the invention encompasses all of the casual variations, adaptations, modifications, deletions, or additions of procedures and protocols described herein, as come within the scope of the following claims and it equivalents.
SEQUENCE LISTING (1) GENERAL INFORMATION: (i) APPLICANT: Schmidt, A.
Rodan, G.A.
Rutledge, s.J.
Vogel, R. L.
(ii) TITLE OF INVENTION : HUMAN STEROID HORMONE RECEPTOR NUCI (iii) UMBER OF SEQUENCES 8 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Merck & Co., Inc.
(B) STREET: P.O. Box 2000 (C) CITY: Rahway (D) STATE: New Jersey (E) COUNTRY : US (F) ZIP: 07065-Q907 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE : PatentIn Release &num;1.0, Version &num;1.25 (vi) CURRENT APPLICATION DATA : (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION : (viii) ATTORNE?/AGENT INFORMATION: (A) NAME: Thies, J.Eric (B) REGISTRATION NUMBER: p-35,382 (C) REFERENCE/DOCKET NUMBER: 18574 (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE': (908)594-3904 (B) TELEFAX : (908)594-4720 (C) TELEX : 138825 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTIOS : (A) LENGTH : 3294 base pains (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D).TOPOLOGY : linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: GAATTCTGCG GAGCCTGCGG GACGGCGGCG GGTTGGCCCG TAGGCAGCCG GGACAGTGTT 60 GTACAGTGTT TTGGGCATGC ACGTGATACT CAC4CAGTGG CTTCTGCTCA CCAACAGATG .120 AAGACAGATG CACCAACGAG GGTCTGGAAT GGTCTGGAGT GGTCTGGAAA GCAGGGTCAG 180 ATACCCCTGG AAAACTGAAG CCCGTGGAGC AATGATCTCT ACAGGACTGC TTCAAGGCTG 240 ATGGGAACCA CCCTGTAGAG GTCCATCTGC GTTCAGACCC AGACGATGCC AGAGCTATGA 300 CTGGGCCTGC AGGTGTGGCG CCGAGGGGAG ATCAGCCATG GAGCAGCCAC AGGAGGAAGC 360 CCCTGAGGTC CGGGAAGAGG AGGAGAAAGA GGAAGTGGCA GAGGCAGAAG GAGCCCCAGA 420 GCTCAATGGG GGACCACAGC ATGCACTTCC TTCCAGCAGC TACACAGACC TCTCCCGGAG 480 CTCCTCGCCA CCCTCACTGC TGGACCAACT GCAGATGGGC TGTGACGGGG CCTCATGCGG 540 CAGCCTCAAC ATGGAGTGCC GGGTGTGCGG GGACAAGGCA TCGGGCTTCC ACTACGGTGT 600 TCATGCATGT GAGGGGTGCA AGGGCTTCTT CCGTCGTACG ATCCGCATGA AGCTGGAGTA 660 CGAGAAGTGT GAGCGCAGCT GCAAGATTCA GAAGAAGAAC CGCAACAAGT GCCAGTACTG 720 CCGCTTCCAG AAGTGCCTGG CACTGGGCAT GTCACACAAC GCTATCCGTT TTGGTCGGAT 780 GCCGGAGGCT GAGAAGAGGA AGCTGGTGGC AGGGCTGACT GCAAACGAGG GGAGCCAGTA 840 CAACCCACAG GTGGCCGACC TGAAGGCCTT CTCCAAGCAC ATCTACAATG CCTACCTGAA 900 AAACTTCAAC ATGACCAAAA AGAAGGCCCG CAGCATCCTC ACCGGCAAAG CCAGCCACAC 960 GGCGCCCTTT GTGATCCACG ACATCGAGAC ATTGTGGCAG GCAGAGAAGG GGCTGGTGTG 1020 GAAGCAGTTG GTGAATGGCC TGCCTCCCTA CAAGGAGATC AGCGTGCACG TCTTCTACCG 1080 CTGCCAGTGC ACCACAGTGG AGACCGTGCG GGAGCTCACT GAGTTCGCCA AGAGCATCCC 1140 CAGCTTCAGC AGCCTCTTCC TCAACGACCA GGTTACCCTT CTCAAGTATC CCGTGCACGA 1200 GGCCATCTTC GCCATGCTGG CCTCTATCGT CAACAAGGAC GGGCTGCTGG TAGCCAACGG 1260 CAGTGGCTTT GTCACCCGTG AGTTCCTGCG CAGCCTCCGC AAACCCTTCA GTGATATCAT 1320 TGAGCCTAAG TTTGAATTTG CTGTCAAGTT CAACGCCCTG GAACTTGATG ACAGTGACCT 1380 GGCCCTATTC ATTGCGGCCA TCATTCTGTG TGGAGACCGG CCAGGCCTCA TGAACGTTCC 1440 ACGGGTGCAG GCTATCCAGG ACACCATCCT GCGTGCCCTC GAATTCCACC TGCAGGCCAA 1500 CCACCCTGAT GCCCAGTACC TCTTCCCCAA GCTGCTGCAG AAGATGGCTG ACCTGCGGCA 1560 ACTGGTCACC GAGCACGCCC AGATGATGCA GCGGATCAAG AAGACCGAAA CCGAGACCTC 1620 GCTGCACCCT CTGCTCCAGG AGATCTACAA GGACATGTAC TAACGGCGGC ACCCAGGCCT 1680 CCCTGCAGAC TCCAATGGGG CCAGCACTGG AGGGGCCCAC CCACATGACT TTTCCATTGA 1740 CCAGCTCTCT TCCTGTCTTT GTTGTCTCCC TCTTTCTCAG TTCCTCTTTC TTTTCTAATT 1800 CCTGTTGCTC TGTTTCTTCC TTTCTGTAGG TTTCTCTCTT CCCTTCTCCC TTCTCCCTTG 1860 CCCTCCCTTT CTCTCTCCTA TCCCCACGTC TGTCCTCCTT TCTTATTCTG TGAGATGTTT 1920 TGTATTATTT CACCAGCAGC ATAGAACAGG ACCTCTGCTT TTGCACACCT TTTCCCCAGG 1980 AGCAGAAGAG AGTGGGCCTG CCCTCTGCCC CATCATTGCA CCTGCAGGCT TAGGTCCTCA 2040 CTTCTGTCTC CTGTCTTCAG AGCAAAAGAC TTGAGCCATC CAAAGAAACA CTAAGCTCTC 2100 TGGGCCTGGG TTCCAGGGAA GGCTAAGCAT GGCCTGGACT GACTGCAGCC CCCTATAGTC 2160 ATGGGGTCCC TGCTGCAAAG GACAGTGGCA GACCCCGGCA GTAGAGCCGA GATGCCTCCC 2220 CAAGACTGTC ATTGCCCCTC CGATCGTGAG GCCACCCACT GACCCAATGA TCCTCTCCAG 2280 CAGCACACCT CAGCCCCACT GACACCCAGT GTCCTTCCAT CTTCACACTG GTTTGCCAGG 2340 CCAATGTTGC TGATGGCCCC TCCAGCACAC ACACATAAGC ACTGAAATCA CTTTACCTGC 2400 AGGCACCATG CACCTCCCTT CCCTCCCTGA GGCAGGTGAG AACCCAGAGA GAGGGGCCTG 2460 CAGGTGAGCA GGCAGGGCTG GGCCAGGTCT CCGGGGAGGC AGGGGTCCTG CAGGTCCTGG 2520 TGGGTCAGCC CAGCACCTCG CCCAGTGGGA GCTTCCCGGG ATAAACTGAG CCTGTTCATT 2580 CTGATGTCCA TTTGTCCCAA TAGCTCTACT GCCCTCCCCT TCCCCTTTAC TCAGCCCAGC 2640 TGGCCACCTA GAAGTCTCCC TGCACAGCCT CTAGTGTCCG GGGACCTTGT GGGACCAGTC 2700 CCACACCGCT GGTCCCTGCC CTCCCCTGCT CCCAGGTTGA GGTGCGCTCA CCTCAGAGCA 2760 GGGCCAAAGC ACAGCTGGGC ATGCCATGTC TGAGCGGCGC AGAGCCCTCC AGGCCTGCAG 2820 GGGCAAGGGG CTGGCTGGAG TCTCAGAGCA CAGAGGTAGG AGAACTGGGG TTCAAGCCCA 2880 GGCTTCCTGG GTCCTGCCTG GTCCTCCCTC CCAAGGAGCC ATTCTATGTG ACTCTGGGTG 2940 GAAGTGCCCA GCCCCTGCCT GACGGGATCA CTCTCTGCTG GCAGGATTCT TCCCGCTCCC 3000 CACCTACCCA GCTGATGGGG GTTGGGGTGC TTCTTTCAGC CAAGGCTATG AAGGGACAGC 3060 TGCTGGGACC CACCTCCCCC CTTCCCCGGC CACATGCCGC GTCCCTGCCC CCACCCGGGT 3120 CTGGTGCTGA GGATACAGCT CTTCTCAGTG TCTGAACAAT CTCCAAAATT GAAATGTATA 3180 TTTTTGCTAG GAGCCCCAGC TTCCTGTGTT TTTAATATAA ATAGTGTACA CAGACTGACG 3240 AAACTTTAAA TAAATGGGAA TTAAATATTT AAAAAAAAAA GCGGCCGCGA ATTC 3294 (2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS : (A) LENGTH: 1322 base pairs (B) T?PE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION:SEQ In NO:2 : ATGGAGCAGC CACAGGAGGA AGCCCCTGAG GTCCGGGAAG AGGAGGAGAA AGAGGAAGTG 60 GCAGAGGCAG AAGGAGCCCC AGAGCTCAAT GGGGGACCAC AGCATGCACT TCCTTCCAGC 120 AGCTACACAG ACCTCTCCCG GAGCTCCTCG CCACCCTCAC TGCTGGACCA ACTGCAGATG 180 GGCTGTGACG GGGCCTCATG CGGCAGCCTC AACATGGAGT GCCGGGTGTG CGGGGACAAC 240 GCATCGGGCT TCCACTACGG TGTTCATGCA TGTGAGGGGT GCAAGGGCTT CTTCCGTCGT 300 ACGATCCGCA TGAAGCTGGA GTACGAGAAG TGTGAGCGCA GCTGCAAGAT TCAGAAGAAG 360 AACCGCAACA AGTGCCAGTA CTGCCGCTTC CAGAAGTGCC TGGCACTGGG CATGTCACAC 420 AACGCTATCC GTTTTGGTCG GATGCCGGAG GCTGAGAAGA GGAAGCTGGT GGCAGGGCTG 480 ACTGCAAACG AGGGGAGCCA GTACAACCCA CAGGTGGCCG ACCTGAAGGC CTTCTCCAAG 540 CACATCTACA ATGCCTACCT GAAAAACTTC AACATGACCA AAAAGAAGGC CCGCAGCATC 600 CTCACCGGCA AAGCCAGCCA CACGGCGCCC TTTGTGATCC ACGACATCGA GACATTGTGG 660 CAGGCAGAGA AGGGGCTGGT GTGGAAGCAG TTGGTGAATG GCCTGCCTCC CTACAAGGAG 720 ATCAGCGTGC ACGTCTTCTA CCGCTGCCAG TGCACCACAG TGGAGACCGT GCGGGAGCTC 780 ACTGAGTTCG CCAAGAGCAT CCCCAGCTTC AGCAGCCTCT TCCTCAACGA CCAGGTTACC 840 CTTCTCAAGT ATGGGGTGCA CGAGGCCATC TTCGCCATGC TGGCCTCTAT CGTCAACAAG 900 GACGGGCTGC TGGTAGCCAA CGGCAGTGGC TTTGTCACCC GTGAGTTCCT GCGCAGCCTC 960 CGCAAACCCT TCAGTGATAT CATTGAGCCT AAGTTTGAAT TTGCTGTCAA GTTCAACGCC 1020 CTGGAACTTG ATGACAGTGA CCTGGCCCTA TTCATTGCGG CCATCATTCT GTGTGGAGAC 1080 CGGCCAGGCC TCATGAACGT TCCACGGGTG GAGGCTATCC AGGACACCAT CCTGCGTGCC 1140 CTCGAATTCC ACCTGCAGGC CAACCACCCT GATGCCCAGT ACCTCTTCCC CAAGCTGCTG 1200 CAGAAGATGG CTGACCTGCG GCAACTGGTC AOCGAGCACG CCCAGATGAT GCAGCGGATC 1260 AAGAAGACCG AAACCGAGAC CTCGCTGCAC CCTCTGCTCC AGGAGATCTA CAAGGACATG 1320 TA 1322 (2) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CKAtACTERISTICS: (A) LENGTH : 337 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY : linear (ii) MOLECULE TYPE : cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: GAATTCTGCG GAGCCTGCGG GACGGCGGCG GGTTGGCCCG TAGGCAGCCG GGACAGTGTT 60 GTACAGTGTT TTGGGCATGC ACGTGATACT CACACAGTGG CTTCTGCTCA CCAACAGATG 120 AAGACAGATG CACCAACGAG GGTCTGGAAT GGTCTGGAGT GGTCTGGAAA GCAGGGTCAG 180 ATACCCCTGG AAAACTGAAG CCCGTGGAGC AATGATCTCT ACAGGACTGC TTCAAGGCTG 240 ATGGGAACCA CCCTGTAGAC OTCOATCTGC GTTCAGACCC AGACGATGCC AGAGCTATGA 300 CTGGGCCTGC AGGTOTCCCC CCGAGGGGAG ATCAGCC 337 (2) INFORMATION FOR SEQ ID NO:4 : (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1635 base pairs (B) TYPE? nucleic acid (C) STRANDEDNESS : single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION SEQ ID NO:4: CTAACGGCGG CACCCAGGCC TCCCTGCAGA CTCCAATGGG GCCAGCACTG GAGGGGCCCA 60 CCCACATGAC TTTTCCATTG ACCAGCTCTC TTCCTGTCTT TGTTGTCTCC CTCTTTCTCA 120 GTTCCTCTTT CTTTTCTAAT TCCTGTTGCT CTGTTTCTTC CTTTCTGTAG GTTTCTCTCT 180 TCCCTTCTCC CTTCTCCCTT GCCCTCCCTT TCTCTCTCCT ATCCCCACGT CTOTCCTCCT 240 TTCTTATTCT GTGAGATGTT TTGTATTATT TCACCAGCAG CATAGAACAG GACCTCTGCT 300 TTTGCACACC TTTTCCCCAG GAGCAGAAGA GAGTGGGCCT GCCCTCTGCC CCATCATTGC 360 ACCTGCAGGC TTAGGTCCTC ACTTCTGTCT CCTGTCTTCA GAGCAAAAGA CTTGAGCCAT 420 CCAAAGAAAC ACTAAGCTCT CTGGGCCTGG GTTCCAGGGA AGGCTAAGCA TGGCCTGGAC 480 TGACTGCAGC CCCCTATAGT CATGGGGTCC CTGCTGCAAA GGACAGTGGC AGACCCCGGC 540 AGTAGAGCCG AGATGCCTCC CCAAGACTGT CATTGCCCCT CCGATCGTGA GGCCACCCAC 600 TGACCCAATG ATCCTCTCCA GCAGCACACC TCAGCCCCAC TGACACCCAG TGTCCTTCCA 660 TCTTCACAGT GGTTTGCCAG GCCAATGTTG CTGATGGCCC CTCCAGCACA CACACATAAG 720 CACTGAAATC ACTTTACCTG CAGGCACCAT GCACCTCCCT TCCCTCCCTG AGGCAGGTGA 780 GAACCCAGAG AGAGGGGCCT GCAGGTGAGC AGGCAGGGCT GGGCCAGGTC TCCGGGGAGG 840 CAGGGGTCCT GCAGGTCCTG GTGGGTCAGC CCAGCACCTC GCCCAGTGGG AGCTTCCCGG 900 GATAAACTGA GCCTGTTCAT TCTGATGTCC ATTTGTCCCA ATAGCTCTAC TGCCCTCCCC 960 TTCCCCTTTA CTCAGCCCAG CTGGCCACCT AGAACTCTCC CTGCACAGCC TCTAGTGTCC 1020 GGGGACCTTG TGGGACCAGT CCCACACGGC TGGTCCCTGC CCTCCCCTGC TCCCAGGTTG 1080 AGGTGCGCTC ACCTCAGAGC AGGGCCAAAG CACAGCTGGG CATGCCATGT CTGAGCGGCG 1140 CAGAGCCCTC CAGGCCTGCA GGGGCAAGGG GCTGGCTGGA GTCTCAGAGC ACAGAGGTAG 1200 GAGAACTGGG GTTCAAGCCC AGGCTTCCTG GGTCCTGCCT GGTCCTCCCT CCCAAGGAGC 1260 CATTCTATGT GACTCTGGGT GGAAGTGCCC AGCCCCTGCC TGACGGGATC ACTCTCTGCT 1320 GGCAGGATTC TTCCCGCTCC CCACCTACCC AGCTGATGGG GGTTGGGGTG CTTCTTTCAG 1380 CCAAGGCTAT GAAGGGACAG CTGCTGGGAC CCACCTCCCC CCTTCCCCGG CCACATGCCG 1440 CGTCCCTGCC CGCACCCGGG TCTGGTGCTG AGGATACAGC TCTTCTCAGT GTCTGAACAA 1500 TCTCCAAAAT TGAAATGTAT ATTTTTGCTA GGAGCCCCAG CTTCCTGTGT TTTTAATATA 1560 AATAGTGTAC ACAGACTGAC GAAACTTTAA ATAAATGGGA ATTAAATATT TAAAAAAAAA 1620 AGCGGCCGCG AATTC 1635 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 441 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION :SEQ ID NO : 5 : Met Glu Gln Pro Gln Glu Glu Ala Pro Glu Val Arg Glu Glu Glu Glu 1 5 10 15 Lys Glu Glu Val Ala Glu Ala Glu Gly Ala Pro Glu Leu Asn Gly Gly 20 25 30 Pro Gln His Ala Leu Pro Ser Ser Ser Tyr Thr Asp Leu Ser Arg Ser 35 40 45 Ser Ser Pro Pro Ser Leu Leu Asp Gln Leu Gln Met Gly Cys Asp Gly 50 55 60 Ala Ser Cys Gly Ser Leu Asn Met Glu Cys Arg Val Cys Cly Asp Lys 65 70 75 80 Ala Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly 85 90 95 Phe Phe Arg Arg Thr Ile Arg Met Lys Leu Glu Tyr Glu Lys Cys Glu '100 105 110 Arg Ser Cys Lys Ile Gin Lys Lys Asn Arg Asn Lys Cys Gin Tyr Cys 115 120 125 Arg Phe Gln Lys Cys Leu Ala Leu Gly Met Ser His Asn Ala Ile Arg 130 135 140 Phe Gly Arg Met Pro Glu Ala Glu Lys Arg Lys Leu Val Ala Gly Leu 145 150 155 160 Thr Ala Asn Glu Gly Ser Gln Tyr Asn Pro Gln Val Ala Asp Leu Lys 165 170 175 Ala Phe Ser Lys His Ile Tyr Asn Ala Tyr Leu Lys Asn Phe Asn Met 180 185 190 Thr Lys Lys Lys Ala Arg Ser Ile Leu Thr Gly Lys Ala Ser His Thr 195 200 205 Ala Pro Phe Val Ile His Asp Ile Glu Thr Leu Trp Gln Ala Glu Lys 210 215 220 Gly Leu Val Trp Lys Gln Leu Val Asn Gly Leu Pro Pro Tyr Lys Glu 225 ' 230 235 240 lie Ser Val His Val Phe Tyr Arg Cys Gln Cys Thr Thr Val Glu Thr 245 250 255 Val Arg Glu Leu Thr Glu Phe Ala Lys Ser Ile Pro Ser Phe Ser Ser 260 265 270 Leu Phe Leu Asn Asp Gin Val Thr Leu Leu Lys Tyr Gly Val His Glu 275 280 285 Ala Ile Phe Ala Met Leu Ala Ser Ile Val Asn Lys Asp Gly Leu Leu 290 295 300 Val Ala Asn Gly Ser Gly Phe Val Thr Arg Glu Phe Leu Arg Ser Leu 305 310 315 320 Arg Lys Pro Phe Ser Asp lie lie Glu Pro Lys Phe Glu Phe Ala Val 325 330 335 Lys Phe Asn Ala Leu Glu Leu Asp Asp Ser Asp Leu Ala Leu Phe Ile 340 345 350 Ala Ala Ile Ile Leu CYs Gly Asp Arg Pro Gly Leo Met Asn Val Pro 355 360 365 Arg Val Glu Ala Ile Gln Asp Thr lie Leu Arg Ala Leu Glu Phe His 370 375 380 Leu Gln Ala Asn His Pro Asp Ala Gin Tyr Leu Phe Pro Lys Len Leu 385 390 395 400 Gin Lys Met Ala Asp Leu Arg Gln Leu Val Thr Glu His Ala Gln Met 405 410 415 Met Gln Arg Ile Lys Lys Thr glu Thr Glu Thr Ser Leu His Pro Leu 420 425 430 Leu Gln Glu Ile Tyr Lys Asp Met Tyr 435 440 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY : linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ XD NO:6:.
CGAATTCTGT GAGGGCTGGA ARGSC 25 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS : (A) LENGTH : 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: CGAATTCTGT GAGGGCTGCA ARGSCTTCTT C 31 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS : (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: GGAATTCRAA NCCNGGNANN NNYTTNGCRA A 31

Claims (20)

WHAT IS CLAIMED IS :
1. A human steroid receptor NUCI, the receptor being substantially free of other human receptor proteins.
2. The human steroid receptor NUCI of Claim 1, the receptor being free of other human proteins.
3. . The human steroid receptor NUCI of Claim 2, the receptor being a recombinantly produced receptor from human cells.
4. A protein corresponding to the amino acid sequence of human steroid receptor NUCT, the protein comprising 441 amino acids.
5. The protein of Claim 4 comprising the amino acid sequence (SEQ ID NO:5:) which is: Met Glu Gln Pro Gln Glu Glu Ala Pro Glu Val Arg Glu Glu Glu Glu 1 5 10 15 Lys Glu Glu Val Ala Gin Ala Glu Gly Ala Pro Glu Leu Asn Gly Gly 20 25 30 Pro Gln His Ala Leu Pro Ser Ser Ser Tyr Thr Asp Leu Ser Arg Ser 35 40 45 Ser Ser Pro Pro Ser Leu Leu Asp Gin Leu Gln Met Gly Cys Asp Gly SO 55 60 Ala Ser Cys Gly Ser Leu Asn Met Glu Cys Arg Vel Cys Gly Asp Lys 65 70 75 80 Ala Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly 85 90 95 Phe Phe Arg Arg Thr Ile ARg Met Lys Leu Glu Tyr Glu Lys Cys Glu 100 105 110 Arg Ser Cys Lys Ile Gin Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys 115 120 125 Arg Phe Gln Lys Cys Leu Ala Leu Gly Met Ser His Asn Ala Ile Arg 130 135 140 Phe Gly Arg Met Pro Glu Ala Glu Lys Arg Lys Leu Val Ala Gly Len 145 150 155 160 Thr Ala Asn Glu Gly Ser Gin Tyr Asn Pro Gln Val Ala Asp Leu Lys 165 170 175 Ala Phe Ser Lys His Ile 5r Asn Ala Tyr Leu Lys Asn Phe Asn Met 180 185 190 Thr Lys Lys Lys Ala Arg Ser Ile Leu Thr Gly Lys Ala Ser His Thr 195 200 205 Ala Pro Phe Val lie His Asp Ile Glu Thr Leu Trp Gln Ala Glu Lys 210 ' 215 220 Gly Leu Val Trp Lys Gln Leu Val Asn Gly Leu Pro Pro Tyr Lys Glu 225 230 235 240 Ile Ser Val His Val Phe Tyr Arg Cys Cin Cys Thr Thr Val Glu Thr 245 250 255 Val Arg Glu Leu Thr Glu Phe Ala tys Ser Ile Pro Ser Phe Ser Ser 260 265 270 Leu Phe Leu Asn Asp Gln Val Thr Leu Leu Lys Tyr Gly Val His Glu 275 280 285 Ala lie Pbe Ala Met Leu Ala Ser lie Val Asn Lys Asp Gly Leu Leu 290 295 300 Val Ala Asn Gly Ser Gly Phe Val Thr Arg Glu Phe Leu Arg Ser Leu 305 310 315 320 Arg Lys Pro Phe Ser Asp Ile Ile Glu Pro Lys Phe Glu Phe Ala Val 325 330 335 Lys Phe Asn Ala Leu Gin Leu Asp Asp Ser Asp Leu Ala Leu Phe Ile 340 345 350 Ala Ala Ile Ile Leu Cys Gly Asp Arg Pro Gly Leu Met Asn Val Pro 355 360 365 Arg Val Glu Ala lie Gln Asp Thr Ile Leu Arg Ala Leu Gin Phe His 370 375 380 Leu Gin Ala Asn His Pro Asp Ala Gin Tyr Leu Phe Pro Lys Leu Leu 385 390 395 400 Gln Lys Met Ala Asp Leu Arg Gin Leu Vai Thr Glu His Ala Gln Met 405 410 415 Met Gin Arg Ile Lys Lys Thr Glu Thr Glu Thr Ser Leu His Pro Leu 420 425 430 Leu Gln Glu Ile Tyr Lys Asp Met Tyr 435 440
6.A DNA sequence encoding human steroid receptor NUCT, the sequence being free of other human DNA sequences.
7. The DNA sequence of Claim 6 comprising the sequence (SEQ ID NO:1:) which is: GAATTCTGCG GAGCCTGCGG GCGGCGGCC GGTTGGCCCG TAGGCAGCCG GGACAGTGTT 60 GTACAGTGTT TTGGGCATGC ACGTGATACT CACACAGTGG CTTCTGCTCA CCAACAGATG 120 AAGACAGATG CACCAACGAG GGTCTGGAAT GGTCTGGAGT GGTCTGGAAA GCAGGGTCAG 180 ATACCCCTGG AAAACTGAAG CCCGTGGAGC AATATCTCT ACAGGACTGC TTCAAGGCTG 240 ATGGGAACCA CCCTGTAGAG GTCCATCTGC GTTCAGACCC AGACGATGCC AGAGCTATGA 300 CTGGGCCTGC AGGTGTGGCG CCGAGGGGAG ATCAGCCATG GAGCAGCCAC AGGAGGAAGC 360 CCCTGAGGTC CGGGAAGAGG AGGAGAAAGA GGAAGTGGCA GAGGCAGAAG GACCCCCAGA 420 GCTCAATGGG GGACCACAGC ATGCACTTCC TTCCAGCAGC TACACAGACC TCTCCCGGAG 480 CTCCTCGCCA CCCTCACTGC TGGACCAACT GCAGATGGGC TGTGACGGGG CCTCATGOGG 540 CAGCCTCAAC ATGGAGTGCC GGGTGTGCGG GGACAAGGCA TCGGGCTTCC ACTACGGTGT 600 TCATGCATGT GAGGGGTGCA AGGGCTTCTT CCGTCGTACG ATCCGCATGA AGCTGGAGTA 660 CGAGAAGTGT GAGCGCAGCT GCAAGATTCA GAAGAAGAAC CGCAACAAGT GCCAGTACTG 720 CCGCTTCCAG AAGTGCCTGG CACTGGGCAT GTCACACAAC GCTATCCGTT TTGGTCGGAT 780 GCCGGAGGCT GAGAAGAGGA AGCTGGTGGC AGGGCTGACT GCAAACCAGG GGAGCCAGTA 840 CAACCCACAG GTGGCCGACC TGAAGGCCTT CTCCAAGCAC ATCTACAATG CCTACCTGAA 900 AAACTTCAAC ATGACCAAAA AGAAGGCCCG CAGCATCCTC ACCGGCAAAG CCAGCCACAC 960 GGCGCCCTTT GTGATCCACG ACATCGAGAC ATTGTGGCAG GCAGAGAAGG GGCTGGTGTG 1020 GAAGCAGTTG GTGAATGGCC TGCCTCCCTA CAAGGAGATC AGCGTGCACG TCTTCTACCG 1080 CTGCCAGTGC ACCACAGTGG AGACCGTGCG GGAGCTCACT GAGTTCGCCA AGAGCATCCC 1140 CAGCTTCAGC AGCCTCTTCC TCAACGACCA GGTTACCCTT CTCAAGTATG GCGTGCACGA 1200 GGCCATCTTC GCCATGCTGG CCTCTATCGT CAACAAGGAC GGGCTGCTGG TAGCCAACGG 1260 CAGTGGCTTT GTCACCCGTG AGTTCCTGCG CAGCCTCCGC AAACCCTTCA GTGATATCAT 1320 TGAGCCTAAG TTTGAATTTG CTGTCAAGTT CAACGCCCTG GAACTTGATG ACAGTGACCT 1380 GGCCCTATTC ATTGCGGCCA TCATTCTGTG TGGAGACCGG CCAGGCCTCA TGAACGTTCC 1440 ACGGGTGGAG GCTATCCAGG ACACCATCCT GCGTGCCCTC GAATTCCACC TGCAGGCCAA 1500 CCACCCTGAT GCCCAGTACC TCTTCCCCAA GCTGCTGCAG AAGATGGCTG ACCTGCGGCA 1560 ACTGGTCACC GAGCACGCCC AGATGATGCA GCGGATCAAG AAGACCGAAA CCGAGACCTC 1620 GCTGCACCCT CTGCTCCAGG AGATCTACAA GGACATGTAC TAACGGCGGC ACCCAGGCCT 1680 CCCTGCAGAC TCCAATGGGG CCAGCACTGG AGGGGCCCAC CCACATGACT TTTCCATTGA 1740 CCAGCTCTCT TCCTGTCTTT GTTGTCTCCC TCTTTCTCAG TTCCTCTTTC TTTTCTAATT 1800 CCTGTTGCTC TGTTTCTTCC TTTCTGTAGG TTTCTCTCTT CCCTTCTCCC TTCTCCCTTG 1860 CCCTCCCTTT CTCTCTCCTA TCCCOACGTC TGTOOTCCTT TCTTATTCTG TGAGATGTTI 1920 TGTATTATTT CACCAGCAGC ATAGAACAGG ACCTCTGCTT TTGCACACCT TTTCCCCAGG 1980 AGCAGAAGAG AGTOGOCCTG CCCTCTGCCC CATCATTGCA CCTGCAGGCT TAGGTCCTCA 2040 CTTCTGTCTC CTGTCTTCAG AGCAAAAGAC TTGAGCCATC CAAAGAAACA CTAAGCTCTC 2100 TGGGCCTGGG TTCCAGGGAA GGCTAAGCAT GGCCTGGACT GACTGCAGCC CCCTATAGTC 2160 ATGGGGTCCC TGCTGCAAAG GACAGTGGCA GACCCCGGCA GTAGAGCCGA GATGCCTCCC 2220 CAAGACTGTC ATTGCCCCTC CGATCGTGAG GCCACCCACT GACCCAATGA TCCTCTCCAG 2280 CAGCACACCT CACOCOCACT CACACCCAGT GTCCTTCCAT CTTCACACTG GTTTGCCAGG 2340 CCAATGTTGC TGATGGCCCC TCCAGCACAC ACACATAAGC ACTGAAATCA CRTTACCTGC 2400 AGGCACCATG CACCTCCCTT CCCTCCCTGA GGCAGGTGAG AACCCAGAGA GAGGGGCCTG 2460 CAGGTGAGCA GGCAGGGCTG GGCCAGGTCT CCGGGGAGGC AGGGGTCCTG GAGGTCCTGG 2520 TGGGTCAGCC CAGCACCTCC CCCAGTGGGA GCTTCCCGGG ATAAACTGAG CCTGTTCATT 2580 CTGATGTCCA TTTGTCOCAA TAGCTCTACT GCCCTCCCCT TCCCCTTTAC TCACCCCACC 2640 TGGCCACCTA GAAGTCTCCC TGCACAGCCT CTAGTGTCCC GGGACCTTGT GGGACCAGTC 2700 CCACACCGCT GGTCCCTGCC CTCCCCTGCT CCCAGGTTGA GGTGCGCTCA CCTCAGAGCA 2760 GGGCCAAAGC ACAGCTGGGC ATGCCATGTC TGAGCGGCGC AGAGCCCTCC AGGGCTGCAG 2820 GGGCAAGGGG CTGGCTGGAG TCTCAGAGCA CAGAGGTAGG AGAACTGGGG TTCAAGCCCA 2880 GGCTTCCTGG GTCCTGCCTG GTCCTCCCTC CCAAGGAGCC ATTCTATGTG ACTCTGGGTG 2940 GAAGTGCCCA GCCCCTGCCT GACGGGATCA CTCTCTGCTG GCAGGATTCT TCCCGCTCCC 3000 CACCTACCCA GCTGATGGGG GTTGGGGTGC TTCTTTCAGC CAAGGCTATG AAGGGACAGC 3060 TGCTGGGACC CACCTCCCCC CTTCCCCGGC CACATGCCGC GTCCCTGCCC CCACCCGGGT 3120 CTGGTGCTGA GGATACAGCT CTTCTCAGTG TCTGAACAAT CTCCAAAATT GAAATGTATA 3180 TTTTTGCTAG GAGCCCCAGC TTCCTGTGTT TTTAATATAA ATAGTGTACA CAGACTGACG 3240 AAACTTTAAA TAAATGGGAA TTAAATATTT AAAAAAAAAA GCGGCCGCGA ATTC 3294 or a degenerate variation thereof.
8. The DNA sequence of Claim 6 comprising the sequence (SEQ ID NO:2:) which is: ATGGAGCAGC CACAGGAGGA AGCCCCTGAG GTCCGGGAAG AGGAGGAGAA AGAGGAAGTG 60 GCAGAGGCAG AAGGAGCCCC AGAGCTCAAT GGGGGACCAC AGCATGCACT TCCTTCCAGC 120 AGCTACACAG ACCTCTCCCG GAGCTCCTCG CCACCCTCAC TGCTGGACCA ACTGCAGATG 180 GGCTGTGACG GGGCCTCATG CGGCAGCCTC AACATGGAGT GCCGGGTGTG CGGGGACAAG 240 GCATCGGGCT TCCACTACGG TGTTCATGCA TCTGAGGGGT GCÁGGGCTT CTTCCGTCGT 300 ACGATCCGCA TGAAGCTGGA GTACGAGAAG TGTGAGCGCA GCTGCAAGAT TCAGAAGAAG 360 AACCGCAACA AGTGCCAGTA CTGCCGCTTC CAGAAGTGCC TGGCACTGGG CATGTCACAC 420 AACGCTATCC GTTTTGGTCG GATGCCGGAG GCTGAGAAGA GGAAGCTGGT GGCAGGGCTG 480 ACTGCAAACG AGGGGAGCCA GTACAACCCA CAGGTGGCCC ACCTGAAGGC CTTCTCCAAG 540 CACATCTACA ATGCCTACCT GAAAAACTTC AACATGACCA AAAAGAAGGC CCGCAGCATC 600 CTCACCGGCA AAGCCAGCCA CACGGCGCCC TTTGTGATCC ACGACATCGA GACATTGTGG 660 CAGGCAGAGA AGGGGCTGGT GTGGAAGCAG TTGGTGAATG GCCTGCCTCC CTACAACGAG 720 ATCAGCGTGC ACGTCTTCTA CCGCTGCCAG TGCACCACAG TGGAGACCGT GCGGGAGCTC 780 ACTGAGTTCG CCAAGAGCAT CCCCAGCTTC AGCAGCCTCT TCCTCAACGA CCAGGTTACC 840 CTTCTCAAGT ATGGCGTGCA CGAGGCCATC TTCGCCATGC TGGCCTCTAT CGTCAACAAG 900 GACGGGCTGC TGGTAGCCAA CGGCAGTGGC TTTGTCACCC GTGAGTTCCT GCGCAGCCTC 960 CGCAAACCCT TCAGTGATAT CATTGAGCCT AAGTTTGAAT TTGCTGTCAA GTTCAACCCC 1020 CTGGAACTTG ATGACAGTGA CCTGGCCCTA TTCATTGCGG CCATCATTCT GTGTGGAGAC 1080 CGGCCAGGCC TCATGAACGT TCCACGGGTG GAGGCTATCC AGGACACCAT CCTGCGTGCC 1140 CTCGAATTCC ACCTGCAGGC CAACCACCCT GATGCCCAGT ACCTCTTCCC CAAGCTGCTG 1200 CAGAAGATGG CTGACCTGCG GCAACTGGTC ACCGAGCACG CCCAGATGAT GCAGCGGATC 1260 AAGAAGACCG AAACCGAGAC CTCGCTGCAC CCTCTGCTCC AGGAGATCTA CAAGGACATG 1320 TA 1322 or a degenerate variation thereof.
9. The DNA sequence of Claim 8 further comprising the sequence (SEQ ID NO:3:) which is; GAATTCTGCG GAGCCTGCGG GACGGCGGCG GGTTGGCCCG TAGGCAGCCG GGACAGTGTT 60 GTACAGTGTT TTGGGCATGC ACGTGATACT CACACAGTGG CTTCTGCTCA CCAACAGATG 120 AAGACAGATG CACCAACGAG GGTCTGGAAT GGTCTGGAGT GGTCTGGAAA GCAGGGTCAG 180 ATACCCCTGG AAAACTGAAG CCCGTGGAGC AATGATCTCT ACAGGACTGC TTCAAGGCTG 240 ATGGGAACCA CCCTGTAGAG GTCCATCTGC GTTCAGACCC AGACGATGCC AGAGCTATGA 300 CTGGGCCTGC AGGTGTGGCG CCGAGGGGAG ATCAGCC 337 or a degenerate variation thereof.
10. The DNA sequence of Claim 9 further comprising the sequence (SEQ ID NO:4:) which is: CTAACGGCGG CACCCAGGCC TCCCTGCAGA CTCCAATGGG GCCAGCACTG GAGGGGCCCA 60 CCCACATGAC TTTTCCATTG ACCAGCTCTC TTCCTGTCTT TGTTGTCTCC CTCTTTCTCA 120 GTTCCTCTTT CTTTTCTAAT TCCTGTTGCT CTGTTTCTTC CTTTCTGTAG GTTTCTCTCT 180 TCCCTTCTCC CTTCTCCCTT GCCCTCCCTT TCTCTCTCCT ATCCCCACGT CTGTCCTCCT 240 TTCTTATTCT GTGAGATGTT TTGTATTATT TCACCAGCAG CATAGAACAG GACCTCTGCT 300 TTTGCACACC TTTTCCCCAG GAGCAGAAGA GAGTGGGCCT GCCCTCTGCC CCATCATTGC 360 ACCTGGAGGC TTAGGTCCTC ACTTCTGTCT CCTGTGTTCA GAGCAAAAGA CTTGAGCCAT 420 CCAAAGAAAC ACTAAGCTCT CTGGGCCTGG GTTCCAGGGA AGGCTAAGCA TGGCCTGGAC 480 TGACTGCAGC CCCCTATAGT CATGGGGTCC CTGCTGCAAA GGACAGTGGC AGACCCCGGC 540 AGTAGAGCCG AGATGCCTCC CCAAGACTGT CATTGCCCCT CCGATCGTGA GGCCACCCAC 600 TGACCCAATG ATCCTCTCCA GCAGCACACC TCAGCCCCAC TGACACCCAG TGTCCTTCCA 660 TCTTCACACT GGTTTGCCAG GCCAATGTTG CTGATGGCCC CTCCAGCACA CACACATAAG 720 CACTGAAATC ACTTTACCTG CAGGCACCAT GCACCTCCCT TCCCTCCCTG AGGCAGGTGA 780 GAACCCAGAG AGAGGGGCCT GCAGGTGAGC AGGCAGGGCT GGGCCAGGTC TCCGGGGAGG 840 CAGGGGTCCT GCAGGTCCTG GTGGGTCAGC CCAGCACCTC GCCCAGTGGG AGCTTCCCGG 900 GATAAACTGA GCCTGTTCAT TCTGATGTCC ATTTGTCCCA ATAGCTCTAC TGCCCTCCCC 960 TTCCCCTTTA CTCAGCCCAG CTGGCCACCT AGAAGTCTCC CTGCACAGCC TCTAGTGTCC 1020 GGGGACCTTG TGGGACCAGT CCCACACCGC TGGTCCCTGC CCTCCCCTGC TCCCAGGTTG 1080 AGGTGCGCTC ACCTCAGAGC AGGGCCAAAG CACACCTGGG CATGCCATGT CTGAGCGGCG 1140 CAGAGCCCTC CAGGCCTGCA GGGGCAAGGG GCTGGCTGGA GTCTCAGAGC ACAGAGGTAG 1200 GAGAACTGGG GTTCAAGCCC AGGCTTCCTG GGTCCTGCCT GGTCCTCCCT CCCAAGGAGC 1260 CATTCTATGT GACTCTGGGT GGAAGTGCCC AGCCCCTGCC TGACGGGATC ACTCTCTGCT 1320 GGCAGGATTC TTCCCGCTCC CCACCTACCC AGCTGATGGG GGTTGGGGTG CTTCTTTCAG 1380 CCAAGGCTAT GAAGGGACAG CTGCTGGGAC CCACCTCCCC CCTTCCCCGG CCACATGCCG 1440 CGTCCCTGCC CCCACCCGGG TCTGGTGCTG AGGATACAGC TCTTCTCAGT GTCTGAACAA 1500 TCTCCAAAAT TGAAATGTAT ATTTTTGCTA GGAGCCCCAG CTTCCTGTGT TTTTAATATA 1560 AATAGTGTAC ACAGACTGAC GAAACTTTAA ATAAATGGGA ATTAAATATT TAAAAAAAAA 1620 AGCGGCCGCG AATTC 1635 or a degenerate variation thereof.
11. An expression construct which comprises: (a) a mammalian cell vector, and (b) a base sequence encoding human steroid receptor NUCI protein.
12. The expression construct of Claim 11 which comprises: (a) vector PUC18, and (b) a base sequence encoding human steroid receptor NUCI protein.
13. The expression construct of Claim 11 wherein the base sequence comprises the sequence (SEQ ID NO:1:) which is: GAATTCTGCC GAGCCTGCGG GACGGCGGCG GGTTGGCCCG TAGGCACCCG GGACAGTCTT 60 GTACAGTGTT TTGGGCATGC ACGTGATACT CACACAGTGG CTTCTGCTGA CCAACAGATG 120 AAGACAGATG CACCAACGAG GGTCTGGAAT GGTCTGGAGT GGTCTGGAAA GCAGGGTCAG 180 ATACCCCTGG AAAACTGAAG CCCGTGGACC AATGATCTCT ACAGGACTGC TTCAAGGCTG 240 ATGOCAACCA CCCTGTAGAG GTCCATCTGC GTTCAGACCC ACACGATGCC AGAGCTATGA 300 CTGGGCCTGC AGGTGTGGGG CCGAGGGGAG ATGAGCCATG GAGCAGCCAC AGGAGGAAGC 360 CCCTGAGGTC CGGGAAGAGG AGGAGAAAGA GGAAGTCCCA GAGGCAGAAG GAGCCCCAGA 420 GCTCAATGGG GGACCACAGC ATGCACTTCC TTCCAGGAGC TACACAGACC TCTCCCGGAG 480 CTCCTCGCCA CCCTCACTGC TGGACCAACT GCAGATGGGC TGTGACGGGG CCTCATGCGG 540 CAGCCTCAAC ATGGAGTGCC GGGTGTGCGG GGACAAGGCA TCGGGCTTCC ACTACGGTGT 600 TCATGCATGT GAGGGGTGCA AGGGCTTCTT CCGTCGTACG ATCCGCATGA AGCTGGAGTA 660 CGAGAAGTGT GAGCGCAGCT GCAAGATTCA GAAGAAGAAC CGCAACAAGT GCCAGTACTG 720 CCGCTTCCAG AAGTGCCTGG CACTGGGCAT GTCACACAAC GCTATCCGTT TTGGTCGGAT 780 GCCGGAGGCT GAGAAGAGGA AGCTGGTGGC AGGGCTGACT GCAAACGAGG GGAGCCAGTA 840 CAACCCACAG GTGGCCGACC TGAAGGCCTT CTCCAAGCAC ATCTACAATG CCTACCTGAA 900 AAACTTCAAC ATGACCAAAA AGAAGGCCCG CAGCATCCTC ACCGGCAAAG CCAGCCACAC 960 GGCGCCCTTT GTGATCCACG ACATCGAGAC ATTGTGGCAG GCAGAGAAGG GGCTGGTGTG 1020 GAAGCAGTTG GTGAATGGCC TGCCTCCCTA CAAGGAGATC AGCGTGCACG TCTTCTACCG tO8O CTGCCAGTGC ACCACAGTGG AGACCGTGCG GGAGCTCACT GAGTTCGCCA AGAGCATCCC 1140 CAGCTTCAGC AGCCTCTTCC TCAACGACCA GGTTACCCTT CTCAAGTATG GCGTGCACGA 1200 GGCCATCTTC GCCATGCTGG CCTCTATCGT CAACAAGGAC GGGCTGCTGG TAGCCAACGG 1260 CAGTGGCTTT CTCACCCGTG AGTTCCTGCG CAGCCTCCGC AAACCCTTCA GTGATATCAT 1320 TGAGCCTAAG TTTGAATTTG CTGTCAAGTT CAACGCCCTG GAACTTGATG ACAGTGACCT 1380 GGCCCTATTC ATTGCGGCCA TCATTCTGTG TGGAGACCGG CCAGGCCTCA TGAACGTTCC 1440 ACGGGTGGAG GCTATCCAGG ACACCATCCT GCGTGCCCTC GAATTCCACC TGCAGGCCAA 1500 CCACCCTGAT GCCCAGTACC TCTTCCCCAA GCTGCTGCAG AAGATGGCTG ACCTGCGGCA 1560 ACTGGTCACC GAGCACGCCC AGATGATGCA GCGGATCAAG AAGACCCAAA CCGAGACCTC 1620 GCTGCACCCT CTGCTCCAGG AGATCTACAA GGACATGTAC TAACGGCGGC ACCCAGGCCT 1680 CCCTGCAGAC TCCAATGGGG CCAGCACTGG AGGGGCCCAC CCACATGACT TTTCCATTGA 1740 CCAGCTCTCT TCCTGTCTTT GTTGTCTCCC TCTTTCTCAG TTCCTCTTTC TTTTCTAATT 1800 CCTGTTGCTC TGTTTCTTCC TTTGTGTAGG TTTCTCTCTT CCCTTCTCCC TTCTCCCTTG 1860 CCCTCCCTTT CTCTCTCCTA TCCCCACGTC TGTCCTCCTT TCTTATTCTG TGAGATGTTT 1920 TGTATTATTT CACCAGCAGC ATAGAACAGG ACCTCTGCTT TTGCACACCT TTTCCCCAGG 1980 AGCAGAAGAG AGTGGGCCTG CCCTCTGCCC CATCATTGCA CCTGCAGGCT TAGGTCCTCA 2040 CTTCTGTCTC CTGTCTTCAG AGCAAAAGAC TTGAGCCATC CAAAGAAACA CTAAGCTCTC 2100 TGGGCCTGGG TTCCAGGGAA GGCTAAGCAT GGCCTGGACT GACTGCAGCC CCCTATAGTC 2160 ATGGGGTCCC TGCTGCAAAG GACAGTGGCA GACCCCGGCA GTAGAGCCGA GATGCCTCCC 2220 CAAGACTGTC ATTGCCCCTC OCATCGTGAG GOCACOCACT GACCCAATGA TCCTCTCOAG 2280 CAGCACACCT CAGCCCCACT GACACCCAGT GTCCTTCCAT CTTCACACTG GTTTGCCAGG 2340 CCAATGTTGC TGATGGCCCC TCCAGCACAC ACACATAAGC ACTGAAATCA CTTTACCTGC 2400 AGGCACCATG CACCTCCCTT CCCTCCCTGA GGCAGGTGAG AACCCAGAGA GAGGGGCCTG 2460 CAGGTGAGCA GGCAGGGCTG GGCCAGGTCT CCGGGGAGGC AGGGGTCCTG CAGGTCCTGG 2520 TGGGTCAGCC CAGCACCTCG CCCAGTGGGA GCTTCCCGGG ATAAACTGAG CCTGTTCATT 2580 CTGATGTCCA TTTGTCCCAA TAGCTCTACT GCCCTCCCCT TCCCCTTTAC TCAGGCCAGC 2640 TGGCCACCTA GAAGTCTCCC TGCACAGCCT CTAGTGTCCG GGGACCTTGT GGGACCAGTC 2700 CCACACCGCT OGTCCCTGCC CTCCCCTGCT CCCAGGTTGA GGTGCGCTCA CCTCAGAGCA 2760 GGGCCAAAGC ACAGCTGGGC ATGCCATGTC TGAGCGGCGC AGAGCCCTCC AGGCCTGCAG 2820 GGGCAAGGGG CTGGCTGGAG TCTCAGAGCA CAGAGGTAGG AGAACTGGGG TTCAAGCCCA 2880 GGCTTCCTGG CTCCTGCCTG GTCCTCCCTC CCAAGGAGCC ATTCTATGTG ACTCTGGGTG 2940 GAAGTGCCCA GCCCCTGCCT GACGGGATCA CTCTCTGCTG GCAGGATTCT TCCCGCTCCC 3000 CACCTACCCA GCTGATGGGG GTTGGGGTGC TTCTTTCAGC CAAGGCTATG AAGGGACAGC 3060 TGCTGGGACC CACCTCCCCC CTTCCCCGGC CACATGCCGC GTCCCTGCCC CCACCCGGGT 3120 CTGGTGCTGA GGATACAGCT CTTCTCAGTG TCTGAACAAT CTCCAAAATT GAAATGTATA 3180 TTTTTGCTAG GAGCCCCAGC TTCCTGTGTT TTTAATATAA ATAGTGTACA CAGACTGACG 3240 AAACTTTAAA TAAATGGGAA TTAAATATTT AAAAAAAAAA GCGGCCGCGA ATTC 3294 or a degenerate variation thereof.
14. COS cells transfected with the expression construct of Claim Ii.
15. COS cells transfected with the expression construct of Claim 12.
16. COS cells transfected with the expression construct of Claim 13.
17. A method for determining the affinity of a test sample for a steroid hormone receptor NUCI, the method comprising: (a) constructing a chimeric gene by substituting portions of a DNA-binding domain region of a DNA sequence encoding human steroid hormone receptor NUCI cDNA with operative portions of a DNA-binding domain region from a known ligand-responsive receptor protein; (b) introducing into a suitable host cell:: (i) the chimeric gene from step (a), and (ii) a reporter gene functionally linked to an operative hormone response element wherein the hormone response element is capable of being activated by the DNA-binding domain region of the receptor protein encoded by the chimeric gene of step (a); (c) challenging the transfected host cell from step (b) with the test sample to be evaluated for ligand-binding-activity with the chimeric receptor protein encoded by the chimeric gene of step (a); (d) assaying induction of the reporter gene by monitoring changes in the protein levels of the protein coded for by the reported gene.
18. The method of Claim 17 wherein the suitablehost cell of step (b) is a COS cell.
19. The method of Claim 17 wherein the reporter gene of step (b)(ii) is a firefly luciferase gene.
20. The method of Claim 17 wherein the DNA sequence encoding human steroid hormone receptor NUCI comprises the sequence (SEQ ID NO:I:) which is: GAATTCTGCG GAGCCTGCGG GACGGCGGCG GGTTGGCCCG TAGGCAGCCG GGACACTGTT 60 GTACAGTGTT TTGGGCATGC ACGTGATACT CACACAGTGG CTTCTGCTCA CCAACAGATG 120 AAGACAGATG CACCAACGAG GGTCTGGAAT GGTCTGGAGT GGTCTGGAAA GCAGGGTCAG ISO ATACCCCTGG AAAACTGAAG CCCGTGGAGC AATGATCTCT ACAGGACTGC TTCAAGGCTG 240 ATGGGAACCA CCCTGTAGAG GTCCATCTGC GTTCAGACCC AGACGATGCC AGAGCTATGA 300 CTGGGCCTGC AGGTGTGGCG CCGAGGGGAG ATCAGCCATG GAGCAGCCAC AGGAGGAAGC 360 CCCTGAGGTC CGGGAAGAGG AGGAGAAAGA GGAAGTGGCA GAGGCAGAAG GAGCCCCAGA 420 GCTCAATGGG GGACCACAGC ATGCACTTCC TTCCAGCAGC TACACAGACC TCTCCCGGAG 480 CTCCTCGCCA CCCTCACTGC TGGACCAACT GCAGATGGGC TGTGACGGGG CCTCATGCGG 540 CAGCCTCAAC ATGGAGTGCC GGGTGTGCGG GGACAAGGCA TCGGGCTTCC ACTACGGTGT 600 TCATGGATGT GAGGGGTGCA AGGGGTTCTT CCGTCGTACG ATCCGCATGA AGCTGGAGTA 660 CGAGAAGTGT GAGCGCAGCT GCAAGATTCA GAAGAAGAAC CGCAACAAGT GCCAGTACTG 720 CCGCTTCCAG AAGTGCCTGG CACTGGGCAT GTCACACAAC GCTATCCGTT TTGGTCGGAT 780 GCCGGAGGCT GAGAAGAGGA AGCTGCTCGC AGGGCTGACT GCAAACGAGG GGAGCCAGTA 840 CAACCCACAG GTGGCCGACC TGAAGGCCTT CTCCAAGCAC ATCTACAATG CCTACCTGAA 900 AAACTTCAAC ATGACCAAAA AGAAGGCCCG CAGCATCCTC ACCGGCAAAG CCAGCCACAC 960 GGCGCCCTTT GTGATCCACG ACATCGAGAC ATTGTGGCAG GCAGAGAAGG GGCTGGTGTG 1020 GAAGCAGTTG GTGAATGGCC TGCCTCCCTA CAAGGAGATC AGCGTGCACG TCTTCTACCG 1080 CTGCCACTCC ACCACAGTGG AGACCGTGCG CCAOCTCACT GAGTTCGCCA AGAGCATCCC 1140 CAGCTTCAGC AGCCTCTTCC TCAACGACCA GGTTACCCTT CTCAAGTATG GCGTGCACGA 1200 GGCCATCTTC GCCATGCTGG CCTCTATCGT CAACAAGGAC GGGCTGCTGG TAGCCAACGG 1260 CAGTGGCTTT GTCACCCGTG AGTTCCTGCG CAGCCTCCGC AAACCCTTCA GTGATATCAT 1320 TGAGCCTAAG TTTGAATTTG CTGTCAAGTT CAACGCCCTG GAACTTGATG ACAGTGACCT 1380 GCCCCTATTC ATTGCGGCCA TCATTCTGTG TGGAGACCGG CCAGGCCTCA TGAACGTTCC 1440 ACGGGTGGAG GCTATCCAGG ACACCATCCT GCGTGCCCTC GAATTCCACC TGCAGGCCAA 1500 CCACCCTGAT GCCCAGTACC TCTTCCCCAA GCTGCTGCAG AAGATGGCTG ACCTGGGGCA 1560 ACTGGTCACC GAGCACGCCC AGATGATGCA GCGGATCAAG AAGACCGAAA CCGAGACCTC 1620 GCTGCACCCT CTGCTCCAGG AGATCTACAA GGACATGTAC TAACGGCGGC ACCCAGGCCT 1680 CCCTCCAGAC TCCAATGGGG CCAGCACTGG AGGGGCCCAC CCACATGACT TTTCCATTGA 1740 CCACCTCTCT TCCTGTCTTT GTTGTCTCCC TCTTTCTCAG TTCCTCTTTC TTTTCTAATT 1800 CCTGTTGCTC TGTTTCTTCC TTTCTGTAGG TTTGTCTCTT CCCTTCTCCC TTCTCCCTTG 1860 CCCTCCCTTT CTCTCTCCTA TCCCCACGTC TGTCCTCCTT TCTTATTCTG TGAGATGTTT 1920 TGTATTATTT CACCAGCAGC ATAGAACAGG ACCTCTGCTT TTGCACACCT TTTCCCCAGG 1980 AGCAGAAGAG AGTGGGCCTG CCCTCTGCCC CATCATTGCA CCTGCAGGCT TAGGTCCTCA 2040 CTTCTGTCTC CTGTCTTCAG AGCAAAAGAC TTGAGCCATC CAAAGAAACA CTAAGCTCTC 2100 TGGGCCTGGG TTCCAGGGAA GGCTAAGCAT GGCCTGGACT GACTGCAGCC CCCTATAGTC 2160 ATGGGGTCCC TGCTGCAAAG GACAGTGGCA GACCCCGGCA GTAGAGCCGA GATGCCTCCC 2220 CAAGACTGTC ATTGCCCCTC CGATCGTGAG GCCACCCACT GACCCAATGA TCCTCTCCAG 2280 CAGCACACCT CAGOCOCACT GACACCCAGT GTCCTTCCAT CTTCACACTG CTTTGCCAGG 2340 CCAATGTTGC TGATGGCCCC TCCAGCACAC ACACATAAGC ACTGAAATCA CTTTACCTGC 2400 AGGCACCATG CACCTCCCTT CCCTCCCTGA GGCACGTGAG AACCCAGAGA GAGGGGCCTG 2460 CAGGTGAGCA GGCAGGGCTG GGCCAGGTCT CCGGGGAGGC AGGGGTCCTG CAGGTCCTGG 2520 TGGGTCAGCC CAGCACCTCG CCCAGTGGGA GCTTCCCGGG ATAAACTGAG CCTGTTCATT 2580 CTGATGTCCA TTTGTCCCAA TAGCTCTACT GCCCTCCCCT TCCCCTTTAC TCAGCCCAGC 2640 TGGGCACCTA GAAGTCTCCC TGCACAGCCT CTAGTGTCCG GGGACCTTGT GGGACCAGTC 2700 CCACACCGGT GGTCCCTGCC CTCCCCTGCT CCCAGGTTGA GGTGCGCTCA CCTCAGAGGA 2760 GGGCCAAAGC ACAGCTGGGC ATGCCATGTC TGAGCGGCGC AGAGCCCTCC AGGCCTGCAG 2820 tGGCAAGGGG CTGGCTGGAG TCTCAGACCA CAGAGCTAGG AGAACTGGGG TTCAACCCCA 2880 GGCTTCCTGG GTCCTGCCTG GTCCTCCCTC CCAAGGAGCC ATTCTATGTG ACTCTGGGTG 2940 GAAGTGCCCA GCCCCTGCCT GACGGGATCA CTCTCTGCTG GCAGGATTCT TCCCCCTCCC 3000 CACCTACCCA GCTGATGGGG GTTGGGGTGC TTCTTTCAGC CAAGGCTATG AAGGGAGAGC 3060 TGCTGGGACC CACCTCCCCC CTTCCCCGGC CACATGCCGC GTCCCTGCCC CCACCCGGGT 3120 CTGGTGCTGA GGATACAGCT CTTCTCAGTG TCTGAACAAT CTCCAAAATT GAAATGTATA 3180 TTTTTGCTAG GAGCCCCAGC TTCCTGTGTT TTTAATATAA ATAGTGTACA CAGACTGACG 3240 AAACTTTAAA TAAATGGGAA TTAAATATTT AAAAAAAAAA GCGGCCGCGA ATTC 3294 or a degenerate variation thereof.
GB9306043A 1992-03-24 1993-03-23 Human steroid hormone receptor (nuci) Withdrawn GB2265376A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85705592A 1992-03-24 1992-03-24

Publications (2)

Publication Number Publication Date
GB9306043D0 GB9306043D0 (en) 1993-05-12
GB2265376A true GB2265376A (en) 1993-09-29

Family

ID=25325082

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9306043A Withdrawn GB2265376A (en) 1992-03-24 1993-03-23 Human steroid hormone receptor (nuci)

Country Status (1)

Country Link
GB (1) GB2265376A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2292885A (en) * 1994-09-08 1996-03-13 Merck & Co Inc Method of treating hyperlipidemia

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemical Abstracts 92:509970 & Mol.Endocrinol.,6(10), (1992)pages 1634-41 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2292885A (en) * 1994-09-08 1996-03-13 Merck & Co Inc Method of treating hyperlipidemia

Also Published As

Publication number Publication date
GB9306043D0 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
Schmidt et al. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids.
US7060490B1 (en) DNA encoding novel estrogen receptor
KR970009951B1 (en) Retinoic acid receptor composition and method
EP0463081B1 (en) Hormone response element compositions and assay
AU685054B2 (en) Mutated steroid hormone receptors, methods for their use and molecular switch for gene therapy
EP0287653B1 (en) Hormone receptor compositions and methods
Miesfeld The Structure and Function of Steroid Receptor Protein
AU640940B2 (en) Gamma retinoic acid receptor
WO1994007916A1 (en) Human steroid hormone receptor neri
US5686574A (en) Constitutive activator of retinoid acid response (car) receptor fusion protien
GB2265376A (en) Human steroid hormone receptor (nuci)
EP1017716A1 (en) Car receptors and related molecules and methods
WO1993022331A9 (en) Human crabp-i and crabp-ii
WO1993022331A1 (en) Human crabp-i and crabp-ii
US5654137A (en) Human CRABP-I and CRABP-II
Chen et al. The hormone-binding role of 2 cysteines near the C terminus of the mouse glucocorticoid receptor.
US5548063A (en) Retinoic acid receptor alpha proteins
Ishiguro et al. The regulation of murine H-2Dd expression by activation transcription factor 1 and cAMP response element binding protein
AU665039B2 (en) Chimeric receptors and methods for identification
CA1341422C (en) Retinoic acid receptor composition and method
US6989242B1 (en) Car receptors and related molecules and methods
Brogan Structure and function of the glucocorticoid receptor in glucocorticoid resistant human small cell lung cancer

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)