GB2260743A - Improved automatic packaging equipment - Google Patents

Improved automatic packaging equipment Download PDF

Info

Publication number
GB2260743A
GB2260743A GB9219894A GB9219894A GB2260743A GB 2260743 A GB2260743 A GB 2260743A GB 9219894 A GB9219894 A GB 9219894A GB 9219894 A GB9219894 A GB 9219894A GB 2260743 A GB2260743 A GB 2260743A
Authority
GB
United Kingdom
Prior art keywords
mandrel
pair
conveyor
mandrels
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9219894A
Other versions
GB2260743B (en
GB9219894D0 (en
Inventor
Stevan Tisma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tisma Machinery Corp
Original Assignee
Tisma Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/762,497 external-priority patent/US5170610A/en
Priority claimed from US07/858,888 external-priority patent/US5185984A/en
Application filed by Tisma Machinery Corp filed Critical Tisma Machinery Corp
Publication of GB9219894D0 publication Critical patent/GB9219894D0/en
Publication of GB2260743A publication Critical patent/GB2260743A/en
Application granted granted Critical
Publication of GB2260743B publication Critical patent/GB2260743B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B35/00Supplying, feeding, arranging or orientating articles to be packaged
    • B65B35/10Feeding, e.g. conveying, single articles
    • B65B35/20Feeding, e.g. conveying, single articles by reciprocating or oscillatory pushers
    • B65B35/205Feeding, e.g. conveying, single articles by reciprocating or oscillatory pushers linked to endless conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B59/00Arrangements to enable machines to handle articles of different sizes, to produce packages of different sizes, to vary the contents of packages, to handle different types of packaging material, or to give access for cleaning or maintenance purposes
    • B65B59/005Adjustable conveying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/30Details; Auxiliary devices
    • B65G17/32Individual load-carriers
    • B65G17/36Individual load-carriers having concave surfaces, e.g. buckets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • B65B43/12Feeding flexible bags or carton blanks in flat or collapsed state; Feeding flat bags connected to form a series or chain
    • B65B43/14Feeding individual bags or carton blanks from piles or magazines
    • B65B43/145Feeding carton blanks from piles or magazines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B5/00Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B5/06Packaging groups of articles, the groups being treated as single articles
    • B65B5/061Filled bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B5/00Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B5/06Packaging groups of articles, the groups being treated as single articles
    • B65B5/064Potato chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Specific Conveyance Elements (AREA)
  • Making Paper Articles (AREA)

Abstract

An automatic packaging machine comprises a spaced parallel pair of conveyor chains (60) for transporting a plurality of mandrels (14a, b). A pair of guide rails (50) are connected between the conveyor chains for slidably carrying each mandrel, so that a mandrel may be moved in a product transport position to a loading station. At the loading station, the mandrel is thrust forward to confront a box so that the product may be pushed into a box. The mandrel may be made wider to accept product without a precise alignment between mandrel and product or more narrow to fit the product into a box at the loading station. Two cam slots are provided to independently control the thrust position and the width of the mandrel. A stabilization support provides enough play to dissipate centrifugal force and thereby enable the machine to operate at a higher speed. <IMAGE>

Description

IMPTOVED AUTOMATIC PACKAGING EQUIPMENT This invention relates to automatic packaging equipment and more particularly to simplified equipment which uses less parts and which is subject to fewer jams and other malfunctions.
References is made to my following patents which show some of the predecessors of equipment shown and described herein: 4,491,267; 4,578,929; 4,713,928; 4,716,714; 4,738,081; 4,745,732; 4,829,751; 4,856,566; 4,982,556; 5,010,929; 5,058,634; and 5,072,573.
These aforementioned patents have taught several principles which are combined and enlarged by the present invention. A first of the principles (U.S. Patent 5,072,573) involves a product carrying mandrel which may be made wider to receive product so that it may be dropped less accurately or may be a randomly sized or shaped product. For, example, a bag of potato chips may vary greatly from thick to thin in one direction and front wide to narrow in another direction. Thus, the mandrel may be made wide enough to receive every bag of potato chips regardless of how misshapen it may be, hen the mandrel may be made narrow to shape the product to fit within a box.
Another principle shown in the foregoing patents involves thrusting the mandrel forward in order to position it near a box or other receptacle. (U.S.
Patents 4,829,751; 4,982,556; and 5,072,573).
Thereafter, a pusher pushes the product from the forwardly positioned mandrel into the box. Without the forward thrust an extra conveyor was required to bridge a gap between the mandrel and the box. With or without the forward thrust this transfer feature has sometimes led to a misalignment between product and box which caused the machine to jam.
Still another principle shown in these patents involved a stabilization bar which provided a mount that absorbed centrifugal forces as the mandrel circled a sprocket wheel powering a chain link conveyor. When the packaging machine is run at the high speeds which are now possible, the mandrel had sometimes slalomed into the link chain as it rounded the sprocket. The stabilization bar has smoothed the circular excursion of the mandrel and dissipated the centrifugal forces so that the slashing no longer occurs.
Each of these features offered great improvements over previously available automatic packaging machines; however, there were problems when efforts were made to combine them. Sometimes the mandrel with an adjustable width tended to lose its width adjustment if an effort was made to thrust it forward. If the stabilization bar was added, the width adjustment may become even more difficult. To prevent the jam at the point of loading product into the carton, it is desirable to make the mandrel narrow enough to fit into and be encompassed by the open end of a box.However, this need for jam elimination required an even closer control over the mandrel width while the forward thrust and stabilization bar tended to reduce the ability of this packaging machine to closely control the mandrel width, Accordingly an object of the invention is to provide new and improved automatic packaging machines. Here, an object is to provide mandrels having a variable width which may be more accurately controlled while the mandrel is being moved from one position to another position.
Still another object is to accomplish these objects while enabling the packaging machine to be operated at higher speeds.
In keeping with an aspect of the invention, these and other objects are accomplished by providing an adjustable width mandrel mounted on two sets of orthogonally related guide bars so that the mandrel, or parts thereof, has freedom to slide in both X and Y directions relative to a plane passing through a pair of substantially parallel conveyor chains that are carrying the mandrels as they are being moved by the conveyor chains. At least a pair of cam tracks are located between the conveyor chains and under the path followed by the mandrel. One of these cam tracks controls the position of the mandrel, thrusting it forward at the location or loading station where product is transferred from a mandrel to a box.The second of the cam tracks cooperates with the first cam track and continuously controls the width of the mandrel as a function of the instantaneous position of the mandrel, as it is thrust forward. The stabilization bar is used in conjunction with one pair of the orthogonal bars in order to dissipate the centrifugal force acting on the mandrel while it circles the sprocket wheel.
A preferred embodiment of the invention is shown in the attached drawings, in which: FIG. 1 is a plan view of a packaging machine incorporating the present invention; PXG. 2 is a frontal elevational view of the machine shown in FIG. 1; FIG. 3 is a partially exploded schematic perspective view of one of the cam tracks, referred to above, showing the movement of a mandrel width control cam follower at various positions along the track as the mandrel is moved from a position where it is at its widest to a position where it is at its narrowest and where it is thrust into proximity of a box at a loading station; FIG. 3A is a perspective view of one form of expanded mandrel having interdigitating fingers; FIG. 3B is a perspective view of the form of a contracted mandrel shown in FIG. 3A;; FIG. 4 is an exploded schematic perspective view showing the operation of pushers for moving product from the forwardly thrusted mandrel into the box; FIG. 5 is an enlarged schematic perspective view showing a plurality of the stabilization bars for supporting mandrels as the conveyor chain moves the mandrels in the direction of the arrow "A"; FIG. 6 is a partially exploded perspective view of an adjustable mandrel of the type contemplated, shown in a spaced relation to the orthogonally disposed bars and the cam follower mechanism; FIG. 7 is an exploded perspective view of the parts making up the cam follower mechanism and width adjustable mandrel, including the orthogonally disposed support rods, the stabilization bar, and the cam follower translation mechanism;; Fig. 7A is a schematic plan view of a prior art device that illustrates the problem that may be caused by centrifugal force acting on the mandrels, if a stabilization bar of the type contemplated by the present invention is not utilized; FIG. 8 is an exploded schematic perspective view showing a plurality of the cam follower mechanism of FIGS. 6 and 7, mounted in relation to a pair of parallel endless link chains forming a conveyor with the mandrel support mechanism shown in positions that would be followed around end sprockets for the chains, and with one mandrel in an exploded view relation to the conveyor and omitted for sake of clarity from the other support mechanisms; FIG. 9 is an underside perspective view of an adjustable mandrel combined with its cam follower mechanism, and showing the depending cam follower rod; ; FIG. 10 is an inverted perspective view of the bottom side of an adjustable mandrel with the orthogonal disposition of the guide rods and stabilization bar, and showing the axially extending cam follower connected through its crank arm and the centrally located operating shaft leading to the adjusting mechanism; FIG. 11 is a bottom plan view of the device shown in Figs 6, and 8-10; and FIG. 12 and 13 are end and side elevational views, respectively, of the device shown in Figs. 9-11.
Briefly, FIGS. 1 and 2 are plan and front elevational views of a high speed packaging machine 10 that utilizes the teachings of the present invention.
The machine 10 includes an elongated conveyor 12 carrying adjustable width product mandrels 14 past a plurality of work stations having a thruster section 16 where the mandrels 14 are thrust forwardly at a loading station into juxtaposed relation to confronting boxes, such as box 18. The conveyors carry the mandrels 14 through a transport area 27 where they carry product to a loading station or forward thrust area 29 where product is loaded into boxes. A pusher rod 20 pushes the product from the forwardly thrust mandrel 16 into a box la. The machine may include any other work stations having suitable modules such as a carton or box feeder 22, glue unit 24, product loaders 26, power drive units 28, discharge units 30, and miscellaneous controls 32 and adjustment means 34.
The main objects of the present invention relate to the adjustable product mandrels 16, the substantially rigid orthogonal arrangement of the slide bars supporting the mandrel and its adjusting means, the conveyor cam mechanism for controlling the narrowing and widening of the mandrels in response to the work station positions which the mandrels are in. In the loading station or thrust section, the width of the mandrels is maintained independently as it is moved into juxtaposition with the boxes for packaging the product.
In FIGS. 3 and 4, a plurality of mandrels 14 are shown in various dispositions as to their width. The mandrels 14 are generally two overlapping, L-shaped, sheet metal members 14a and 14b which divergently or convergently slide over one another to provide a product receiving wide mandrel, as indicated at 15, or a product loading narrow mandrel, as shown at 17. A product (not shown) can be properly shaped and located by being squeezed toward the center of the mandrel by an inward movement of the upright lipped sides 19, until the opposite sides 19 are spaced a distance which is complimentary to the lateral limits of the box 18.
When properly positioned, the front end of this mandrel may fit into and be encompassed by this open end of the box. The mandrels 14 are carried on a pair of spaced parallel link chain conveyors. The cam slot means 40 is positioned between the conveyors and adapted to accept and guide the cam followers 42 which control the mandrel width, the operation of which is amplified hereinbelow. A second cam slot 41 engages each mandrel as it passes a loading station or thrust area and causes the mandrel to move outwardly toward the boxes 18, to a loading position. The two cam slots remain a predetermined distance from each other in the forward thrust area so that a cam follower 43, 43 (FIGS. 5, 11, 13) riding in slot 41 always retains the same (or a predetermined) spatial relationship with respect to the position of the cam follower riding in slot 40.
While one form of mandrel 14 is described as being two L- shaped slidable, sheet metal, members, it is also possible to provide the conf igaration shown in FIGS. 3A and 3B. This mandrel 14d includes a pair of side rails 14e, each with an outwardly extending lip 14f. Extending inwardly from each of side rails 14e are a plurality of spaced, interdigitating, rigid fingers or rods 14g. The side rails are moveable together or apart in the directions indicated by the opposite disposed arrows in these Figs, in order to vary the width of the mandrel.
FIGS. 6-8 show the structure and operation of the present invention which can be largely attributed to the substantially rigid orthogonally disposed pairs of parallel guide or slide rods. Rods 50, 50 extend between and are attached to the spaced parallel chain link conveyors 60, 60 that are trained over and ride on the vertically arranged sprockets 62, 62 disposed on a horizontal axis 64. For purposes of discussion, the rods 50, 50 may be described as the X-axis of the orthogonal array. They have flattened end portions 52 that are fastened by any suitable means 54 (Fig. 7), e.g. screw threaded means, onto a supporting clip 56 (Fig. 8) carried by the chains 60, 60.
A problem addressed by my co-pending application, Serial No. 07/612,419, filed November 13, 1990, now patent ~~~~~~~~~~~~~, relates to centrifugal force which causes a mandrel to try to swing outwardly in direction D1 (Fig. 7A) and slam back and forth in direction D2, D3 as the mandrel goes around the circle defined by sprocket wheels at the opposite ends of the long oval transport track. The problem becomes severe if the conveyor is driven at high speeds.
As here shown, the mandrels travel without problems along the straight sections S1, S2 oe the conveyor chain 60. However, when the mandrel enters upon the circular end section at Ml, there is a strong centrifugal force tending to rotate the mandrel in direction Dl. There may be a jerkiness as the mandrel at M2 swings back and forth in directions D2, D3, when it circles the sprocket wheel.
when the mandrel at M3 returns to the straight section at S2, the swinging mandrel may slam into the conveyor at point P, with a hard blow. with this kind of action, the mandrel may soon hammer itself out of shape and greatly damage the conveyor chain, especially when the mandrel is carrying heavy loads such as five or ten pounds, for example.
Heretofore, this hammering has limited the speed of the automatic packaging machine to relatively slow levels which cause a smooth transit of the circular regions of the sprocket wheel.
The invention provides means for increasing the speed of the packaging machine by a factor which may be in the order of 100%, for example, by coping with the centrifugal forces acting upon the mandrel. The invention uses a stabilizing bar with a slot which is long enough to provide travel for a guide bar carrying the mandrel in order to dissipate centrifugal forces as the mandrel traverses the circular path around a sprocket.
The slot is on a trailing edge of the mandrel support to enable the conveyor chain to pull the mandrel at a pivot point. U.Si Patent 3,608, 701 shows a similar slot, but it is on a leading end of the mandrel support and only provides relief from binding, which does not do much for relief from centrifugal forces which may slas the mandrels.
In this invention, as a solution to the aforementioned problem (Fig. 7), a stabilizing bar 70 is provided which is generally U-shaped in configuration.
The U has a base 72 including a through bore 74 forming bearing means riding on a leading one of the slide rods 50. Thus, base 72 may move back and forth (directions X, X) between the two conveyors. A pair of arms 76, 76 extend outwardly from opposite ends of base 72 and include enclosed slot means 78, 78 for slidable acceptance of the other spaced parallel slide rod 50.
A rigid transverse platform means 80 extends between and is mounted on the arms 76, 76 with a centrally disposed aperture 82 intermediate the arms and with a pair of blocks 84 having through bores 86 which are on arms 76. The blocks 84 accept and retain the second pair of slide rods 53, 53 which are orthogonally disposed relative the first slide rods 50, 50. The rods 53, 53 provide for back and forth sliding motion in directions ?, Y. A pair of carrier means 90, each provided with spaced bearing blocks 92, are slidably carried by slide rods 53, 53 on opposite sides of platform means 80. The oppositely disposed two halves, 14a and 14b, forming the mandrel 14 are each mounted by suitable fastener means 94 onto one of the slidable carrier means 90.
A shaft 100 is carried by a lever plate 102 which is concavely embossed at 104. The convex portion 104 of plate 102 rests within segmental bearing means 88 surrounding the central aperture 82 in the platform means 80. The shaft 100 extends downwardly through aperture 82. The cam follower 42 is carried by a crank arm 106 mounted on shaft 100. Arm 106 has an aperture 108 at the end opposite to follower 42 for acceptance of the shaft 100, The plate 102 includes oppositely disposed bearing apertures 110 that are each connected to an apertured crank 112 bearing 114. The aperture 116 at the opposite end of each crank arm 112 is suitably fastened to one of the carrier means 90 intermediate its length, as at 116a.
Thus, as it travels in the cam slot 40, the movement of the cam follower 42 causes a rotation of the shaft 100 and its attached plate 102, resulting in a convergent or divergent movement of each carrier means 90 as it slides along the slide rods 53, 53 causing the mandrel halves 14a and 14b to move inwardly or outwardly relative to the instantaneous position they are in along the cam track 40. Similarly, the platform means 80 is subject to the forces exerted by the cam follower 42 and, when directed, move along the rods 50, 50. Hence, the orthogonal relationship of the slidable movement along the X-axis and Y axis maintains the desired width of the mandrel 14 during its progression along the conveyor. These movements result in the desired thrust position of a selected mandrel width for introduction of product into a box.
In operation, the conveyor chains 60, 60 circle endlessly (Fig. 4) around longitudinally displaced sprocket wheels, two of which are shown in detail at 62, 62 (Fig. 5). As they circle the sprockets, the length, weight and motion of the mandrel might cause it to rock back and forth, striking the chain unless restrained.
According to an aspect of the invention, the leading end of the mandrel is carried on a rod 50a while the trailing end of the mandrel is carried by rod Sob which is free to slide in the slots 78, 78, and thereby dissipate centrifugal forces. At the start of the excursion around the sprocket wheel, rod 50b is in the back or trailing end of the slot 78, as shown at A. At the center of the sprocket, point B, the rod Sob advances to the front or leading end of slot 78. By the tire that the mandrel leaves the sprocket, point C, the rod Sob returns to the trailing end of the slot. Thus, there is no whipping back and forth responsive to centrifugal forces.
The mandrel carrying U-shaped base 72 is free to slide back and forth (directions X-X) along the bars 50, 50. Therefore, as a mandrel on the conveyor approaches the loading station or forward thrust position b (Fig.
3), cam followers (Wheels) 43, 43 (Figs. 11, 13) affixed to U-shaped platform 70 engages cam 41 causing the mandrel to approach the boxes 18 (Figs. 3, 4) thereby defining the loading station area.
Meanwhile, as the mandrels are carried by the conveyor, the cam followers 42 follow the cam slot 40 (Fig. 3). At the position of follower 42a, the crank arm 106 is turned to rotate shaft 100 (Fig. 7), plate 102 and lever arms 112, 112, which push apart (directions Y-Y) the mandrel sides 19, 19 that slide divergently on rods 53, 53 to make the mandrel wider, as shown at E (rig. 3).
Product is loaded into the mandrel at this wide mandrel location. Because the mandrel is wide, there does not have to be a too accurate drop of product into the mandrel, regardless of whether the product is well shaped or misshapen.
The conveyors carry the mandrels to a location shown by the exm follower 42D where the crank arm 106 is turned. Shaft 100 (Fig. 2) rotates under the driving force of the crank arm 106. This, in turn, rotates 102 and pulls arms 112, 112 to convergently draw in the members 90, 90 and therefore the mandrel sides 14a, 14b.
At this location, the mandrel is narrow, as shown at F.
If the product is misshapen, the closing Of the mandrel shapes it to fit into a box. Also, the final width of the mandrel at F is suitable to fit into and be encompassed by an opening in a box, as shown at G (rig.
4).
In the area between the positions of cam followers 42b, 42c (Fig. 3), the shapes of the two cam tracks 40, 41 are such that cam followers 42, 43 (Figs. 11, 13) maintain a predetermined relationship with respect to each other. As here shown, the two cam followers do not move relative to each other so that the width of the mandrel does not change during the forward thrust thereof.
If some other mandrel width behavior is desirable during the forward thrust, the contours of slots 40, 41 may be given any suitable, mutual shape. For example, it could be desirable for the mandrel shape to change at the moment when it is thrust into the box.
Once the mandrel is properly positioned relative to a box, a pusher 44 (Fig. 4) pushes product from the mandrel and into the box 18. The operation of the pushers is controlled by cam followers 45 which ride in another cam track (not shown).
While a specific embodiment has been shown and described, it should be understood that modifications will occur to those who are skilled in the art.
Therefore, the appended claims should be construed to cover all reasonable equivalents.

Claims (15)

The claimed invention is:
1. In an automatic packaging machine, the combination comprising a pair of spaced parallel vertical conveyor means mounted to turn about horizontal axes, said conveyor means establishing a path through said packaging machine, support means comprising a first pair of spaced parallel horizontal guide bars suspended between and traveling with said vertical conveyor means, platform means slidingly mounted on said horizontal guide bars for moving between transport and forward thrust positions along said established path, a second pair of guide bars carried by said platform means, said first and second pairs of guide bars being orthogonally related, a width adjustable transport mandrel comprising two side members mounted to slide toward and away from each other on said second pair of guide bars, whereby said mandrel has two axial motions along said orthogonal guide bars while being carried by said conveyors, and means for maintaining a predetermined adjustment of said width of said mandrel during said movement of said platform between said transport and forward thrust positions.
2. The combination of claim 1 wherein said conveyor means are link chains trained around spaced sprocket wheels mounted to turn on said horizontal axes, whereby said mandrel experiences centrifugal forces while circling said sprocket wheels, and stabilizing bar leans associated with said support means, said stabilizing bar being pivotally associated with a leading one of said first pair of guide bars and being slidingly associated with a trailing one of said first pair of guide bars whereby said centrifugal forces are dissipated by motion of said trailing bar in said sliding association with said stabilizing bar.
3. The combination of claim 1 and means controlled by a crank arm for sliding said two side members of said mandrel toward and away frost each other in order to make said width adjustment of said mandrel in response to a position of said crank arm.
4. The combination of any one of the claims 1-3 and at least one cam track associated with said conveyor means and extending along at least part of said established path, means associated with said mandrel for moving said mandrel between said transport and forward thrust position responsive to said conveyor moving said mandrel means along said at least one cam track, said crank arm moving along said at least one cam track in order to control the position thereof, whereby said at least one cam track adjusts the width of said mandrel responsive to said conveyor moving said mandrel along said cam track.
5. The combination of claim 4 wherein said one cam track is a first of a pair of cam tracks extending along at least part of said established path, a second at said cam tracks controlling said transport and forward thrust position of said mandrel, said pair of cam tracks being mutually contoured to synchronize the width of said mandrel with the transport and forward thrust positions thereof, whereby this width of said mandrel may be controlled independently of this transport or thrust positions of said mandrel.
6. The combination of claim 5 and packaging means for receiving product from said mandrels, means comprising said conveyor for carrying said packaging means in synchronization with said mandrels, said mandrels and packaging means coming into confrontation during at least part of an excursion of said mandrels along said established path followed by said conveyors, said two cam tracks having contours which adjust the width of said mandrel to fit into said packaging means during the part of said excursion where said confrontation occurs.
7. The combination of claim 6 wherein said second cam track is contoured to make said mandrel wide while in a product receiving position along said established path and narrow when in a position of said established path where said confrontation occurs.
8. A high speed automatic packaging machine including a conveyor means for transporting mandrels in a given direction, orthogonally disposed rigid slide bar means having a pair of spaced parallel bars disposed parallel to an X-axis and perpendicular to said given direction, with said X-axis slide bar means being oriented relative to said conveyor means to thrust said mandrels forward to a loading position in at least part of a transportation excursion of said mandrels, a sliding stabilizer means supported on and slidably moveable along both of said X- axis bar means, said stabilizer means supporting a second pair of spaced parallel Y-axis bar means, a pair of carrier means slidably carried by said second pair of bar means, and a two piece width adjustable mandrel, each one of said mandrel pieces being carried on individually associated ones of said pair of carrier means, movement of said carrier means along said second pair of bar means causes said mandrel to divergently or convergently move between wide and narrow configurations.
9. A machine as claimed in claim 8 wherein a pair of cam tracks are associated with said conveyor means at least in said forward thrust loading position, a first cam follower means operatively connected to said carrier means and adapted to follow one of said cam tracks, a second cam follower means associated with the mandrel and adapted to follow the other of said cam tracks, said pair of cam tracks being mutually contoured to cause said carrier means carrying said mandrels to ride on said conveyor in a transport position for a substantial portion of its journey on said conveyor and in said forward thrust position for a limited portion of its said journey, said mutual contour enabling this width configuration of said mandrel to be controlled independently of the transport or forward thrust position of said mandrel.
10. A machine as claimed in claim 8 wherein said mutual contour enables said mandrel to be thrust forward without changing the width of said mandrel.
11. A machine as claimed in claim 9 wherein said second cam follower means comprises a crank arm mounted at one end of a rotatable shaft having a rotatable leverage head at the opposite end of said shaft, actuator means extending from and being connected at one thereof to opposite ends of said leverage head and being connected at the opposite end of said actuator means to said carrier means, whereby movement of said cam follower causes rotation of said leverage head which results in force being applied to said carrier means by said actuator means for causing the carrier means and their attached mandrel pieces to move toward and away from each other.
12. An automatic packaging machine comprising means for transporting a plurality of mandrels around an endless path including at least a product receiving work station and a loading work station, means for moving said mandrels in directions transverse to said path in response to said mandrel being at particular work stations, means for adjusting a width of said mandrel in response to said mandrel being at particular stations, and means for independently operating said moving and adjusting means.
13. The machine of claim 12 wherein said work stations include at least a product receiving work station and a package load work station, said moving means thrusting said mandrel into either a product receiving position or a product loading position, and said adjusting means adapting said mandrel to receive or deposit a product.
14. The machine of claim 13 and means extending along at least part of said path for operating said moving and adjusting means independently of each other.
15. An automatic packaging machine substantially as described herein with reference to and as illustrated in Figures 1 to 3, 3A, 3B and 4 to 13 of the accompanying drawings.
GB9219894A 1991-09-19 1992-09-21 Improved automatic packaging equipment Expired - Fee Related GB2260743B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/762,497 US5170610A (en) 1990-01-12 1991-09-19 Means for and methods of loading irregularly shaped objects into automatic packaging machines
US07/858,888 US5185984A (en) 1990-01-12 1992-03-27 Automatic packaging equipment

Publications (3)

Publication Number Publication Date
GB9219894D0 GB9219894D0 (en) 1992-11-04
GB2260743A true GB2260743A (en) 1993-04-28
GB2260743B GB2260743B (en) 1995-01-18

Family

ID=27117130

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9219894A Expired - Fee Related GB2260743B (en) 1991-09-19 1992-09-21 Improved automatic packaging equipment

Country Status (2)

Country Link
CA (1) CA2078757C (en)
GB (1) GB2260743B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875454A1 (en) * 1997-04-28 1998-11-04 Tisma Machinery Corporation Automatic packaging machine for multiple small items with desired orientation
WO2000038993A1 (en) * 1998-12-29 2000-07-06 Karl Zeh Method of packaging a preshaped piece
GB2384477A (en) * 2002-01-29 2003-07-30 Bradman Lake Ltd Apparatus for pushing objects into tubular cartons
US7134258B2 (en) * 2001-12-05 2006-11-14 R.A. Jones & Co. Inc. Packaging apparatus and methods
CN102826244A (en) * 2012-09-29 2012-12-19 浙江希望机械有限公司 Continuous high-speed boxing machine of block type material
CN103057753A (en) * 2012-12-15 2013-04-24 李军 Circulating type push broach carton-pulling mechanism on carton packing machine
CN103964016A (en) * 2014-04-22 2014-08-06 江苏凯特莉包装科技有限公司 Device for packing drug plate in box of automatic packaging machine
US8967051B2 (en) 2009-01-23 2015-03-03 Magnemotion, Inc. Transport system powered by short block linear synchronous motors and switching mechanism
US9032880B2 (en) 2009-01-23 2015-05-19 Magnemotion, Inc. Transport system powered by short block linear synchronous motors and switching mechanism
CN105059596A (en) * 2015-08-10 2015-11-18 桐乡市红旗塑料包装袋厂 Packing bag boxing mechanism
CN105438540A (en) * 2015-12-22 2016-03-30 温州瑞达机械有限公司 Splitting and merging conveying mechanism of packing machine
US9346371B2 (en) 2009-01-23 2016-05-24 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
US9802507B2 (en) 2013-09-21 2017-10-31 Magnemotion, Inc. Linear motor transport for packaging and other uses
EP4332026A1 (en) * 2022-08-29 2024-03-06 Cyborgline Sa Handling apparatus for packages of pasta, granular products and the like, with adjustable retaining elements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716107A (en) * 2021-09-07 2021-11-30 上海星派自动化股份有限公司 Bagging machine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875454A1 (en) * 1997-04-28 1998-11-04 Tisma Machinery Corporation Automatic packaging machine for multiple small items with desired orientation
WO2000038993A1 (en) * 1998-12-29 2000-07-06 Karl Zeh Method of packaging a preshaped piece
US7134258B2 (en) * 2001-12-05 2006-11-14 R.A. Jones & Co. Inc. Packaging apparatus and methods
GB2384477A (en) * 2002-01-29 2003-07-30 Bradman Lake Ltd Apparatus for pushing objects into tubular cartons
US6854244B2 (en) 2002-01-29 2005-02-15 Bradman Lake Limited Carton filling apparatus
GB2384477B (en) * 2002-01-29 2005-06-15 Bradman Lake Ltd Improvements relating to carton filling apparatus
US8967051B2 (en) 2009-01-23 2015-03-03 Magnemotion, Inc. Transport system powered by short block linear synchronous motors and switching mechanism
US9771000B2 (en) 2009-01-23 2017-09-26 Magnemotion, Inc. Short block linear synchronous motors and switching mechanisms
US9032880B2 (en) 2009-01-23 2015-05-19 Magnemotion, Inc. Transport system powered by short block linear synchronous motors and switching mechanism
US10112777B2 (en) 2009-01-23 2018-10-30 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
US9346371B2 (en) 2009-01-23 2016-05-24 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
CN102826244A (en) * 2012-09-29 2012-12-19 浙江希望机械有限公司 Continuous high-speed boxing machine of block type material
CN103057753A (en) * 2012-12-15 2013-04-24 李军 Circulating type push broach carton-pulling mechanism on carton packing machine
CN103057753B (en) * 2012-12-15 2015-08-19 李军 Circulating push broach pulling box mechanism on a kind of carton packaging machine
US9802507B2 (en) 2013-09-21 2017-10-31 Magnemotion, Inc. Linear motor transport for packaging and other uses
CN103964016A (en) * 2014-04-22 2014-08-06 江苏凯特莉包装科技有限公司 Device for packing drug plate in box of automatic packaging machine
CN105059596A (en) * 2015-08-10 2015-11-18 桐乡市红旗塑料包装袋厂 Packing bag boxing mechanism
CN105438540A (en) * 2015-12-22 2016-03-30 温州瑞达机械有限公司 Splitting and merging conveying mechanism of packing machine
EP4332026A1 (en) * 2022-08-29 2024-03-06 Cyborgline Sa Handling apparatus for packages of pasta, granular products and the like, with adjustable retaining elements

Also Published As

Publication number Publication date
CA2078757C (en) 2001-12-18
GB2260743B (en) 1995-01-18
CA2078757A1 (en) 1993-03-20
GB9219894D0 (en) 1992-11-04

Similar Documents

Publication Publication Date Title
US5185984A (en) Automatic packaging equipment
US5388389A (en) Automatic packaging equipment
GB2260743A (en) Improved automatic packaging equipment
US5072573A (en) Apparatus with adjustable width trays for automatic packaging machines
EP0631555B1 (en) Continuous motion cartoner assembly
KR100444887B1 (en) Packing machine for multi-packs
NZ262690A (en) Cartoning apparatus; stacked article groups are loaded into carton sleeves using an article group transfer mechanism
JPH11500984A (en) Packaging machine
JP3385051B2 (en) Method and apparatus for opening a self-closing gripper on a gripper conveyor
US5675963A (en) Mechanism for accumulating a stack of articles and for then dropping the stack
US5291720A (en) Article rotating assembly
US5452568A (en) Automatic packaging equipment
US5692361A (en) Stacked article packaging method
CA2249346C (en) Apparatus for loading stacked article groups into cartons
US5371995A (en) Hesitating carton loading machine
EP0686118B1 (en) Stacked article packaging method
JP3347731B2 (en) Cross direction stuffing device in carton stuffing device
AU696341B2 (en) Stacked article packaging method
NL9200741A (en) TRANSPORTATION DEVICE WITH SLIDES.
MXPA98007663A (en) Apparatus for loading stacked articles groups in ca
MXPA96006160A (en) Packaging machine

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20060921