GB2260577A - Gas turbine engine starting - Google Patents

Gas turbine engine starting Download PDF

Info

Publication number
GB2260577A
GB2260577A GB9121994A GB9121994A GB2260577A GB 2260577 A GB2260577 A GB 2260577A GB 9121994 A GB9121994 A GB 9121994A GB 9121994 A GB9121994 A GB 9121994A GB 2260577 A GB2260577 A GB 2260577A
Authority
GB
United Kingdom
Prior art keywords
engine
gas turbine
turbine engine
oil
starter unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9121994A
Other versions
GB9121994D0 (en
GB2260577B (en
Inventor
Arnold Charles Newton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Priority to GB9121994A priority Critical patent/GB2260577B/en
Publication of GB9121994D0 publication Critical patent/GB9121994D0/en
Priority to US07/916,669 priority patent/US5253470A/en
Publication of GB2260577A publication Critical patent/GB2260577A/en
Application granted granted Critical
Publication of GB2260577B publication Critical patent/GB2260577B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
    • F02C7/27Fluid drives
    • F02C7/272Fluid drives generated by cartridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating

Abstract

A ducted fan gas turbine engine (10) is provided with an electric motor starter unit (16). The oil lubrication system of the engine (10) is so arranged that during engine starting, the heat generated by the starter unit (16) is used to heat up the oil in the system. This reduces the viscosity of the oil, thereby facilitating easy engine starting under very cold conditions. <IMAGE>

Description

11% n, 1) - ---p" -1 ' 4- C- -.
1 GAS TURBINE ENGINE STARTING This invention relates to gas turbine engine starting and in particular to gas turbine engine starting in cold weather conditions.
When gas turbine engines are required to operate in very cold weather conditions, they can sometimes be difficult to start. This is due mainly to the high viscosity of the oil present in the lubrication systems of the engines and, to a lesser extent, to the low volatility of their fuel. This is true of both aircraft mounted gas turbine engines and those which are used in ground-based installations.
It is an object of the present invention to provide a gas turbine engine which is easier to start in such cold conditions than is the case with existing engines.
According to the present invention, a gas turbine engine is provided with an electric starter unit, said starter unit being adapted to provide rotation by direct drive of at least one of the rotatable parts of said gas turbine engine to facilitate engine starting, said gas turbine engine having an oil-based lubrication system, means being provided to place the oil in said lubrication system in heat exchange relationship with said electric motor starter unit, at least during engine starting, to provide an increase in temperature, and consequent decrease in viscosity, of said lubrication system oil.
The present invention will now be described, by way of example, with reference to the accompanying drawing which is a diagrammatic, partially sectioned side view of a gas turbine engine in accordance with the present invention.
Referring to the drawing, a ducted fan gas turbine engine generally indicated at 10 comprises an air intake 11, a fan 12 contained within a duct 13, the core 14 of the engine 10, and an exhaust nozzle 15.
The engine 10 functions in the conventional manner whereby air entering the engine 10 through the intake 11 is compressed by the fan 12. The air exhausted from the fan 12 0 2 is divided into two flows. The first and major flow passes through the duct 13 around the outside of the core 14 to be exhausted from the downstream end of the duct 13 to provide propulsive thrust. The second flow is directed into the engine core 14. There it is compressed further before being mixed with fuel. The fuel/air mixture is then combusted. The resultant combustion products then expand through the core engines' turbines before being exhausted through the exhaust nozzle 15 to provide additional propulsive thrust. The turbines in the engine core 14 drive the fan 12 as well as the core engine's compressors in the conventional manner by coaxial shafts extending along the longitudinal axis of the engine 10.
The ducted fan gas turbine engine 10 is therefore of conventional construction.
Positioned on the underside of the core 14 of the engine 10 is a combined electrical starter/generator unit 16. The unit 16 is thus capable of functioning both as an electric motor and as an electric generator. However, for the purposes of the present invention it is sufficient only that it functions as an electric starter motor.
The unit 16 is provided with a gearbox 17 having an output/input shaft 18. The shaft 18 extends into the engine core 14 to terminate in a bevel gear 19. The bevel gear 19 meshes with a corresponding bevel gear 20 provided on a shaft 21 which extends along the engine longitudinal axis and interconnects portions of the compressors and turbines of the engine 10.
To start the engine 10, an electric current is applied to the unit 16 to cause it to function as an electric motor. The unit 16 thereby rotates the shaft 18 which in turn causes rotation of the shaft 21 and the compressor and turbine rotary portions attached to it. When the engine 10 has reached the appropriate rotational speed, fuel is directed to the engine's combustion apparatus and combustion is initiated. The engine 10 then proceeds to run and the electric current to the unit 16 is discontinued. At this 3 0 point the unit 16 proceeds to be driven by the engine shaft 21 via the shaft 18 and thereafter functions as an electric generator.
The casing of the unit 16 is essentially of double walled construction so that a space is defined between those walls. That space is fed with oil from the main oil supply system of the engine 10 via an inlet pipe 22. This is to ensure that the oil is placed in heat exchange relationship with the unit. However it will be appreciated that other means, such as a heat exchanger within the unit 16, could be used to achieve this end. The oil having flowed through the space between the walls is exhausted from the unit through an outlet pipe 23 which returns the oil to the engine main oil supply system via a heat exchanger 24. A by-pass pipe 25 having a valve 26 interconnects the oil inlet and outlet pipes 22 and 23 respectively. Thus operation of the valve 26 regulates the amount of oil which flows through the space between the walls of unit 16 casing. If desired, a further valve (not shown) could be provided in the oil inlet pipe 22 downstream of the interconnecting pipe 25. Closure of the further valve when the valve 26 is open would result in a complete diversion of oil flow away from the unit 16.
When it is desired to start the engine 10 in very cold atmospheric conditions, the unit 16 is operated to rotate the engine shaft 21. This results in the unit 16 rapidly increasing in temperature. The resultant heat generated raises the temperature of the cold, viscous oil from the engine's main oil system which by this time is being pumped through the space defined by the double wall of the unit 16. The oil is pumped by the main oil pump (not shown) of the engine 10 which operates upon rotation of the engine shaft 21.
Operation of the unit 16 is continued until the temperature of the oil in the engine's main oil system has been increased to such a level that the oil is of a suitable viscosity for engine starting. At this point fuel is Ignition of supplied to the engine's combustion apparatus.
4 the fuel passing through the engine's combustion apparatus is then initiated which In turn leads to the normal running of the engine.
As previously stated, the oil from the engine's main oil system passes through a heat exchanger 24. The heat exchanger 24 places the oil in heat exchange relationship with fuel passing through a supply pipe 27. The fuel passing through the pipe 27 is that which is subsequently directed to the engine's combustion apparatus. Consequently as the oil passing through the heat exchanger 24 progressively heats up, so does the fuel passing through the pipe 27. Heating up the fuel in this manner increases its volatility which in turn makes the fuel easier to ignite.
When the start sequence has been completed and the engine 10 is running, the oil control valve 26 is operated to ensure that the oil flow through the unit 16 is reduced to a level at which its temperature does not affect the efficient operation of the unit 16 during its generation of electricity. Indeed as previously stated, the provision of a further valve in the oil inlet pipe 22 could be used to completely cut off the oil flow to the unit 16.
It will be seen therefore that the present invention provides an easy, inexpensive way of starting gas turbine engines in cold conditions

Claims (7)

Claims: -
1. A gas turbine engine provided with an electric starter unit, said starter unit being adapted to provide rotation by direct drive of at least one of the rotatable parts of said gas turbine engine to facilitate engine starting, said gas turbine engine having an oil-based lubrication system, means being provided to place the oil in said lubrication system in heat exchange relationship with said electric motor starter unit, at least during engine starting, to provide an increase in temperature, and consequent decrease in viscosity, of said lubrication system oil.
2. A gas turbine engine as claimed in claim 1 wherein said engine includes compressor and turbine sections drivingly interconnected by shaft means, said starter unit being adapted to drive said shaft means during engine starting.
3. A gas turbine engine as claimed in claim 1 or claim 2 wherein said oilbased lubrication system includes a heat exchanger, said heat exchanger being adapted to place oil contained within said lubrication system in heat exchange relationship with fuel operationally passing through the fuel system of said gas turbine engine.
4. A gas turbine engine as claimed in any one preceding claim wherein means are provided to by-pass at least part of the oil directed to said starter unit for heat exchange therewith during the normal running of said engine.
5. A gas turbine engine as claimed in any one preceding claim wherein said starter unit is additionally adapted to function as an electric generator during normal engine running.
6. A gas turbine engine as claimed in any one preceding claim wherein said engine is a ducted fan gas turbine engine.
7. A gas turbine engine substantially as hereinbefore described with reference to and as shown in the accompanying drawings.
GB9121994A 1991-10-16 1991-10-16 Gas turbine engine starting Expired - Fee Related GB2260577B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB9121994A GB2260577B (en) 1991-10-16 1991-10-16 Gas turbine engine starting
US07/916,669 US5253470A (en) 1991-10-16 1992-07-22 Gas turbine engine starting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9121994A GB2260577B (en) 1991-10-16 1991-10-16 Gas turbine engine starting

Publications (3)

Publication Number Publication Date
GB9121994D0 GB9121994D0 (en) 1991-11-27
GB2260577A true GB2260577A (en) 1993-04-21
GB2260577B GB2260577B (en) 1994-10-05

Family

ID=10703050

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9121994A Expired - Fee Related GB2260577B (en) 1991-10-16 1991-10-16 Gas turbine engine starting

Country Status (2)

Country Link
US (1) US5253470A (en)
GB (1) GB2260577B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2915238A1 (en) * 2007-04-23 2008-10-24 Airbus France Sa METHOD AND SYSTEM FOR STARTING A COLD WEATHER TURBOMOTEUR.
EP2011979A3 (en) * 2007-06-28 2013-03-20 United Technologies Corporation Generator with separate Oil System

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555722A (en) * 1993-11-15 1996-09-17 Sundstrand Corporation Integrated APU
FR2728938A1 (en) * 1995-01-04 1996-07-05 Snecma OIL AND FUEL TEMPERATURE REGULATION SYSTEM IN A TURBOJET
US5667051A (en) * 1995-03-01 1997-09-16 Sundstrand Corporation Hydraulic control and lubrication system with compressed air pre-heat circuit for rapid response at low ambient temperatures
US5971503A (en) * 1998-02-03 1999-10-26 Ford Global Technologies, Inc. Hydraulic control unit with ambient temperature compensation during fluid pressure delivery
US6416141B1 (en) * 1999-02-25 2002-07-09 Kelsey-Hayes Company Methods for improving braking performance in electronically-controlled hydraulic brake systems
US6810676B2 (en) 2001-12-14 2004-11-02 Pratt & Whitney Canada Corp. Method of engine starting in a gas turbine engine
US7204090B2 (en) * 2004-06-17 2007-04-17 Pratt & Whitney Canada Corp. Modulated current gas turbine engine starting system
US7373771B2 (en) * 2004-07-09 2008-05-20 Pratt & Whitney Canada Corp. Cooling arrangement for an accessory gearbox and method of cooling
US7793505B2 (en) * 2006-05-04 2010-09-14 Pratt & Whitney Canada Corp Gas turbine engine oil system operation
US9091214B2 (en) * 2007-06-28 2015-07-28 United Technologies Corporation Reduced gearbox size by separate electrically powered engine oil system
US20090078508A1 (en) * 2007-09-20 2009-03-26 Honeywell International, Inc. Electric motor driven lubrication supply system shutdown system and method
US9719428B2 (en) * 2007-11-30 2017-08-01 United Technologies Corporation Gas turbine engine with pylon mounted accessory drive
DE102007058954A1 (en) * 2007-12-07 2009-06-10 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine oil supply system and method of operating a gas turbine bearing oil supply
DE102008009822A1 (en) * 2008-02-19 2009-08-20 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine bearing oil system with improved oil return
US20090205341A1 (en) * 2008-02-20 2009-08-20 Muldoon Marc J Gas turbine engine with twin towershaft accessory gearbox
DE102008057828A1 (en) * 2008-11-18 2010-05-20 Rolls-Royce Deutschland Ltd & Co Kg Aircraft gas turbine oil system warming
US8997449B2 (en) * 2008-12-22 2015-04-07 Pratt & Whitney Canada Corp. Flow restrictor for lubrication line
US9816441B2 (en) * 2009-03-30 2017-11-14 United Technologies Corporation Gas turbine engine with stacked accessory components
EP2430292A1 (en) 2009-05-12 2012-03-21 Icr Turbine Engine Corporation Gas turbine energy storage and conversion system
US8910463B2 (en) * 2010-02-22 2014-12-16 Hamilton Sundstrand Corporation Turbine starter lubricant cooling
US8866334B2 (en) 2010-03-02 2014-10-21 Icr Turbine Engine Corporation Dispatchable power from a renewable energy facility
US8984895B2 (en) 2010-07-09 2015-03-24 Icr Turbine Engine Corporation Metallic ceramic spool for a gas turbine engine
US8881533B2 (en) * 2010-08-05 2014-11-11 Rolls-Royce Corporation Turbine engine
WO2012031297A2 (en) 2010-09-03 2012-03-08 Icr Turbine Engine Corporation Gas turbine engine configurations
US8955335B2 (en) 2010-12-30 2015-02-17 Rolls-Royce Corporation System, propulsion system and vehicle
US9051873B2 (en) 2011-05-20 2015-06-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine shaft attachment
KR101305887B1 (en) * 2011-12-26 2013-09-06 한국항공우주연구원 Heat exchanger heating apparatus of turbine engine
US10094288B2 (en) 2012-07-24 2018-10-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine volute attachment for a gas turbine engine
US20140252160A1 (en) * 2013-03-07 2014-09-11 United Technologies Corporation Reverse flow gas turbine engine removable core
US8829702B1 (en) 2013-03-11 2014-09-09 Pratt & Whitney Canada Corp Gas turbine engine with internal electromechanical device
US9003638B2 (en) 2013-03-11 2015-04-14 Pratt & Whitney Canada Corp. Method of assembling an electromechanical device in a gas-turbine engine
RU2524776C1 (en) * 2013-03-27 2014-08-10 Открытое акционерное общество "Электропривод" Starting gas turbine engine by contactless salient-pole sync generator with rotating rectifier
FR3011277B1 (en) * 2013-09-30 2018-04-06 Turbomeca TURBOMACHINE ADAPTED TO OPERATE IN VIREUR MODE
US20170356304A1 (en) * 2016-06-13 2017-12-14 General Electric Company Systems and methods for reducing fluid viscosity in a gas turbine engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB701121A (en) * 1951-04-10 1953-12-16 Rolls Royce Improvements relating to gas turbine engine starter systems
GB763449A (en) * 1953-09-09 1956-12-12 Rolls Royce Improvements relating to gas turbine engine fuel systems
GB912762A (en) * 1960-07-12 1962-12-12 Rolls Royce Heat exchange apparatus
GB2144804A (en) * 1983-07-25 1985-03-13 Gen Electric Turbomachine starter lubrication system
US4779412A (en) * 1986-10-23 1988-10-25 Rheinische Braunkohlenwerke Ag Power generation process using a gas turbine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451214A (en) * 1967-03-15 1969-06-24 Garrett Corp Cold engine start facilitating apparatus
US4354345A (en) * 1980-04-29 1982-10-19 United Technologies Corporation Fuel heating system for gas turbine engine
GB8907788D0 (en) * 1989-04-06 1989-05-17 Rolls Royce Plc Management of heat generated by aircraft gas turbine installations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB701121A (en) * 1951-04-10 1953-12-16 Rolls Royce Improvements relating to gas turbine engine starter systems
GB763449A (en) * 1953-09-09 1956-12-12 Rolls Royce Improvements relating to gas turbine engine fuel systems
GB912762A (en) * 1960-07-12 1962-12-12 Rolls Royce Heat exchange apparatus
GB2144804A (en) * 1983-07-25 1985-03-13 Gen Electric Turbomachine starter lubrication system
US4779412A (en) * 1986-10-23 1988-10-25 Rheinische Braunkohlenwerke Ag Power generation process using a gas turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2915238A1 (en) * 2007-04-23 2008-10-24 Airbus France Sa METHOD AND SYSTEM FOR STARTING A COLD WEATHER TURBOMOTEUR.
WO2008142287A2 (en) * 2007-04-23 2008-11-27 Airbus France Method and system for starting a turboshaft engine by cold weather
WO2008142287A3 (en) * 2007-04-23 2009-02-05 Airbus France Method and system for starting a turboshaft engine by cold weather
RU2445482C2 (en) * 2007-04-23 2012-03-20 Эрбюс Операсьон Method and system for starting of gas turbine engine during cold weather
US8381509B2 (en) 2007-04-23 2013-02-26 Airbus Operations Sas Method and system for starting a turboshaft engine by cold weather
CN101688476B (en) * 2007-04-23 2013-03-13 空中客车运营简化股份公司 Method and system for starting a turboshaft engine by cold weather
EP2011979A3 (en) * 2007-06-28 2013-03-20 United Technologies Corporation Generator with separate Oil System

Also Published As

Publication number Publication date
US5253470A (en) 1993-10-19
GB9121994D0 (en) 1991-11-27
GB2260577B (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US5253470A (en) Gas turbine engine starting
US11846237B2 (en) Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox
US10208675B2 (en) Hybrid drive system for transferring power from a gas turbine engine of an aircraft
US10998837B2 (en) Turbomachine with an electric machine assembly and method for operation
EP3282093B1 (en) Geared turbofan with low spool power extraction
CN106468219B (en) Gas-turbine unit stall margin management
US11542872B2 (en) Hybrid gas turbine engine system powered warm-up
US10605173B2 (en) High and low spool accessory gearbox drive
US4062186A (en) Apparatus for windmill starts in gas turbine engines
US3416309A (en) Engine installations and starting means therefor
EP1144826B1 (en) Apparatus and method to increase turbine power
EP3800342A1 (en) Superposition gearbox for engine performance
US10634064B1 (en) Accessory gearbox with superposition gearbox
US2895295A (en) Variable speed gas turbine
US2216494A (en) Internal combustion engine
GB1136584A (en) Gas turbine engine accessory drive systems
CA2551904A1 (en) Scavenge pump system and method
Turner et al. Development of a novel gas turbine driven centrifugal compressor
US3609966A (en) Gas turbine having an inlet and outlet arrangement suitable for automotive vehicles
US2730863A (en) Gaseous fuel turbine power plant having parallel connected compressors
US11939913B2 (en) Turbine engine with inverse Brayton cycle
US3280552A (en) Gas turbine engines and method of operating the same
WO1998051912A1 (en) Contained gas-turbine engine
GB2309745A (en) Multi-stage compressor
AU737136B2 (en) Contained gas-turbine engine

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20031016