GB2258962A - Radio receptor device for use instead of conductive aerial. - Google Patents

Radio receptor device for use instead of conductive aerial. Download PDF

Info

Publication number
GB2258962A
GB2258962A GB9214359A GB9214359A GB2258962A GB 2258962 A GB2258962 A GB 2258962A GB 9214359 A GB9214359 A GB 9214359A GB 9214359 A GB9214359 A GB 9214359A GB 2258962 A GB2258962 A GB 2258962A
Authority
GB
United Kingdom
Prior art keywords
receptor
circuit
receptor according
circuit means
amplifying device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB9214359A
Other versions
GB9214359D0 (en
Inventor
Stephen Barrie Chambers
Pamela Elizabeth Chambers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELECTRONIC ADVANCED RESEARCH L
Original Assignee
ELECTRONIC ADVANCED RESEARCH L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ELECTRONIC ADVANCED RESEARCH L filed Critical ELECTRONIC ADVANCED RESEARCH L
Publication of GB9214359D0 publication Critical patent/GB9214359D0/en
Publication of GB2258962A publication Critical patent/GB2258962A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3291Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted in or on other locations inside the vehicle or vehicle body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

An aerial or receptor for a motor vehicle radio receiver has no conventional conductive aerial rod but instead uses a front end circuit C3, L2, C4 coupled with a high gain amplifier TR1 followed by a broad band cascoded stage TR2, TR3, TR4. As electromagnetic radiation is intercepted and passes through C3, L2, and C4 a magnetic field is developed within L2 and also in the associated capacitors. As the RF cycle passes through zero the induced magnetic field within C3, L2 and C4 collapses and a small RF voltage is developed at each end of L2 with 90 DEG phase difference. The high frequency roll off is determined by C4 and the lower frequencies reflect back from C4 through L2 and C3, the resultant signal at the junction of C5, C3 and R1 is in phase. A broadly resonant circuit L1, C2 provides a higher "Q" over selected frequency bands. Further tuned circuits (STC), (Fig 3), may be coupled between C3, L2, C4 and R1 to increase circuit "Q" at selected frequencies. Dynamic noise limiting may be provided by a noise signal processor, (Fig 4), having an input coupled to the output of amplifier TR1 and providing a noise blanking signal. The receptor circuitry may be built into a rear view mirror of a vehicle. <IMAGE>

Description

TITLE RADIO DECEIVING CIRCUITS This invention relates to a radio receiving circuit and is more particularly concerned with a circuit adapted for the reception of radio signals over a wide bandwidth without the use of a conventional external conductive antenna element. Known in the art are radio receivers having a tunable front end stage fed by a conductive wire or rod element usually resonant at or about the received frequency. High gain in the front end stage is usually not important due to antenna background noise being the limiting factor, unless the bandwidth is exceedingly narrow. So-called active antenna systems are also known where an untuned high gain front end is used, possibly with band-pass filters, in conjunction with a relatively short length antenna.This system makes up for the reduced signal strength frorn a short length aerial but by using a high gain, high dynamic range ted input stage or stages. The system nevertheless requires some form of pickup for the electromagnetic signal.
One object of this invention is to provide receiving circuit arrangement which avoids the requirement for a conductive antenna elernent but which is capable of providing a satisfactory signal output to feed the input of a tuned radio receiver stage. Such a circuit arrangement is hereinafter referred to as a "receptor".
According to this invention there is provided a receptor for radio frequency signals, the receptor comprising an amplifying device with the input thereof connected to a circuit means producing an electrostatic potential and a circuit means producing an electromagnetic current on passage of electromagnetic radiation through the said circuit means, means combining said potential and current with 900 phase shift producing an input signal feeding the amplifying device.
The amplifying device preferably comprises a high gain wide band device coupled to a cascaded amplifier feeding an output.
In an embodiment the said circuit means comprises a serial connected lumped capacitive element and a lumped inductive element connected across the active input of the amplifying device. The inductive element is preferably arranged to have a distributed capacitive reactance. The said elements could be considered as forming a non-resonant transmission line coupling the amplifying device to ground; the line is of very small physical dimension. The distributed capacitive reactance may be replaced partly or totally by a lumped capacitive element.
A broadly resonant circuit may be provided coupled to the circuit means to increase gain and signal reception at one or more selected frequency bands.
A further feature is the very low "Q" factor of the circuit means providing a circuit which is not sharply resonant at any particular frequency thus allowing high gain to be used without oscillation.
The accompanying drawings show embodiments of a construction by way of example. In the drawings: - Figure 1 is a circuit diagram of an embodiment, Figure 2 is a circuit board layout for the front end only of the circuit of Figure 1, Figure 3 is a circuit diagram of a modified embodiment, and Figure 4 is a block diagram of a version sing dynamic noise limiting.
An embodiment in accordance with this invention is described and shown by way of example with reference to Figure 1 of the accompanying drawing which is a circuit diagram of a receptor for operation in the VHF band 88 to 108 MHz, the HF band 550 to 1700 KHz and the LF band 150 to 350 KHz.
It is important to appreciate that the described circuit is completely ielf-contained and in particular requires no connection to an external aerial. The circuit elements to the left hand side of TR1, at least, will need to be in the field of influence of electromagnetic radiation, i.e. unscreened.
The radio frequency signal is developed across C3, L2, C4, and Cl which is the capacity of L2 to ground. A broadly resonant circuit is provided by L1,C2 which provides a higher "Q" over certain selected frequency bands. L1,C2 are coupled to the gate of TR1 by C5 which has a very small value. The signal voltage on the gate of TR1 is small and hence this stage may operate at maximum gain without the risk of overload.
The input signal to TR2 being amplified, may have a wide dynamic range and the following stages TR2, TR3, and TR4-form a cascode amplifier with high gain and good dynamic range. The output through C12 feeds a conventional radio receiver.
The operation of the receptor circuit is as follows: As electromagnetic radiation is intercepted and passes through C3, L2, and C4 a magnetic field is developed within L2 and also in the associated capacitors. As the RF cycle passes through zero the induced magnetic field within C3, L2 and C4 collapses and a small RF voltage is developed at each end of L2 with gOt phase difference. The high frequency roll off is determined by C4 and the lower frequencies reflect back from C4 through L2 and C3, the resultant signal at the junction of C5, C3 and R1 is in phase.
The function of L1, C2 is to improve the Q of C3, L2 and C4 at certain selected frequencies. The output of L1, C1 through C5 is in phase with the output of C3, L2, C4 and in this arrangement C1 controls the amount of grounding and therefore the phase difference at the end of L2 at selected frequencies.
A practical operating circuit has the following values: L1=0.47 ,uH C2=5.6 pF C5= 10 pF 03=0.20 ,uF C1=2.2 F C4=5.6 pF L2=0.08 p.H to 1.0 ;iH (typical) In a practical construction the values are sufficiently small to be integrated onto a substrate together with the active components. The substrate may then form a dielectric reducing the physical dimensions.
The receptor according to this invention has proved successful in test carried out in a vehicle using a commercially available radio. The receptor can be installed at any convenient location where interception of electromagnetic signals will occur such as within a rear view mirror housing. Grounding to the vehicle chassis is not required at the installation position of the receptor.
The circuit stages following TR1 comprises a conventional cascode amplifier stage TR2,TR3 feeding an output TR4. The active elements all comprise FET devices selected for high gain at the frequencies of interest and stability. The output at C12 is connected by a screened feeder to the radio receiver.
There are many constructional methods that can be used to produce a receptor. Examples are: surface mount, hybrid, hybrid ceramic chip and conventional printed circuit board (through hole). The receptor can be wholly or partly manufactured in a custom silicon chip format.
Figure 2 shows a typical receptor using surface mount construction. The printed board, PB, can be made in almost any shape or size. C1 is formed by the proximity of L2 to the ground line G, C4 can follow the same construction method, L1 in this example is a small wound component1 but L1 can be incorporated as a circuit track component as is L2. The following low noise amplifier is indicated by AMP.
Figure 3 is a receptor with the inclusion of series and parallel tuned circuits, STC, for increasing the circuit Q at selected frequencies. The components CT, LT are for trapping out unwanted frequencies. Resistor RA is for damping the turned circuits and can be included to broaden the bandwidth of the circuit if required.
Capacitor CA provides a loose coupling to the gate of TR1. The tuned circuits shown can be lumped or linear in construction.
For a receptor with dynamic noise limiting it has been found that there are suitable locations on a vehicle where the receptor provides satisfactory radio signals but the said radio signals are obliterated with engine and vehicle electronic noise. Figure 4 is a receptor with dynamic noise limiting.
In operation, the radio signal PF is sampled at the drain of TR1 and passed to the noise amplifier NA. This stage amplifies both the radio signal and the unwanted noise pulses. The pulse detector and shaping circuits PD separate the wanted radio signal from the unwanted noise pulses. The output from the pulse detector and shaping circuit are the interfering noise pulses only, the wanted radio signal is removed.
The noise pulses may be altered in shape to trigger a circuit providing precise reconstructed pulses for example using radar interference limiting and/or blanking techniques, or the shaping circuits may be simply used for improving the rise time of the pulses prior to feeding to the inverting and switching stages SW. The inverting and switching is for inverting the noise pulses into a negative pulse stream NSP, with respect to the normal receptor output. The negative pulses can now be used in a suitable circuit to phase cancel the noise pulses or the negative pulses can trigger a switching transistor TR5 to short circuit the receptor output at the correct timing rates to be in phase with the noise pulses appearing at the receptor output.
The noise limiting circuit may not require a direct connection to the receptor for noise pick up. The noise limiter may incorporate a receptor front end and can be tuned to multiple noise source frequencies and can be remotely mounted close to a noise source. TR1 to TR4 are the receptor stages as in Figure 1.

Claims (15)

1. A receptor for radio frequency signals, the receptor comprising an amplifying device with the input thereof connected to a circuit means producing an electrostatic potential and a circuit means producing an electromagnetic current on passage of electromagnetic radiation through the said circuit means, means combining said potential and current with 90 phase shift producing an input signal feeding the amplifying device.
2. A receptor according to Claim 1, wherein the amplifying device comprises a high gain wide band device coupled to a cascaded amplifier feeding an output.
3. A receptor according to Claim 1 or 2, wherein the said circuit means comprises a serial connected lumped capacitive element and a lumped inductive element connected across the active input of the amplifying device.
4. A receptor according to any preceding claim, wherein the inductive element is arranged to have a distributed capacitive reactance.
5. A receptor according to Claim 4, wherein the distributed capacitive reactance is replaced partly or totally by a lumped capacitive element.
6. A receptor according to any preceding claim, wherein a broadly resonant circuit is provided coupled to the circuit means to increase gain and signal reception at one or more selected frequency bands.
7. A receptor according to any preceding claim, wherein very low "Q" factor of the circuit means provides a circuit which is not sharply resonant at any particular frequency.
8. A receptor for radio frequency signals, comprising a series connected inductor and capacitor connected across the input of an amplifying device, and combining an electromagnetic component and an electrostatic component of intercepted electromagnetic radiation with 900 phase difference therebetween, the amplifying device feeding a cascoded broad-band amplifier stage, the output of which feeds a radio receiver via a cable.
9. A receptor according to any preceding claim, wherein an output of the amplifying device feeds a noise signal processor providing a noise blanking signal to the output of the receptor.
10. A receptor according to any preceding claim, wherein between a broadly resonant circuit and said circuit means one or more series resonant circuits are provided.
11. A receptor according to any preceding claim, constructed on a circuit board wherein an screened part of said board contains the circuit means and amplifying device and a screened part of said board contains a cascode amplifier with a signal output for connection with a radio receiver.
12. A receptor according to any preceding claim for use in a motor vehicle, wherein the receptor circuit means at least is positioned on or in the vehicle to be in the path of electromagnetic radiation and connected through a screened cable to a vehicle radio receiver located within the vehicle.
13. A motor vehicle incorporating in an electromagnetically exposed position a receptor according to any preceding claim, and a radio receiver in the passenger compartment of the vehicle, the aerial input of the radio receiver being connected to the output of the receptor.
14. An external mirror assembly for a motor vehicle incorporating a receptor according to any preceding Claim 1 to 12.
15. A receptor constructed and arranged to function as described herein and exemplified with reference to Figures 1 and 2 or as modified by Figure 3 or 4 of the drawings.
GB9214359A 1991-07-08 1992-07-06 Radio receptor device for use instead of conductive aerial. Withdrawn GB2258962A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB919114720A GB9114720D0 (en) 1991-07-08 1991-07-08 Radio receiving circuits

Publications (2)

Publication Number Publication Date
GB9214359D0 GB9214359D0 (en) 1992-08-19
GB2258962A true GB2258962A (en) 1993-02-24

Family

ID=10698007

Family Applications (2)

Application Number Title Priority Date Filing Date
GB919114720A Pending GB9114720D0 (en) 1991-07-08 1991-07-08 Radio receiving circuits
GB9214359A Withdrawn GB2258962A (en) 1991-07-08 1992-07-06 Radio receptor device for use instead of conductive aerial.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB919114720A Pending GB9114720D0 (en) 1991-07-08 1991-07-08 Radio receiving circuits

Country Status (3)

Country Link
AU (1) AU2231192A (en)
GB (2) GB9114720D0 (en)
WO (1) WO1993001658A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2345209A (en) * 1998-12-22 2000-06-28 Hi Key Ltd A vehicle access radio receiver with a printed antenna and an earthed shield

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296535A (en) * 1969-04-18 1972-11-15
US4194179A (en) * 1977-11-18 1980-03-18 Becton, Dickinson & Company Active antenna for medical telemetry monitoring systems
GB2231204A (en) * 1988-08-12 1990-11-07 Enu Esu Kk Active antenna
WO1991000626A1 (en) * 1989-06-27 1991-01-10 Crowe, Brian, John Rear view mirrors including radio aerials
US5019830A (en) * 1989-03-13 1991-05-28 Harada Kogyo Kabushiki Kaisha Amplified FM antenna with parallel radiator and ground plane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD118965A1 (en) * 1975-04-11 1976-03-20
WO1980002782A1 (en) * 1979-05-25 1980-12-11 Tracor Antenna low-noise q spoiling circuit
JPS56111326A (en) * 1980-02-08 1981-09-03 Hitachi Ltd Antenna circuit of am radio receiver
JPH0652878B2 (en) * 1985-01-08 1994-07-06 ソニー株式会社 Antenna input circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296535A (en) * 1969-04-18 1972-11-15
US4194179A (en) * 1977-11-18 1980-03-18 Becton, Dickinson & Company Active antenna for medical telemetry monitoring systems
GB2231204A (en) * 1988-08-12 1990-11-07 Enu Esu Kk Active antenna
US5019830A (en) * 1989-03-13 1991-05-28 Harada Kogyo Kabushiki Kaisha Amplified FM antenna with parallel radiator and ground plane
WO1991000626A1 (en) * 1989-06-27 1991-01-10 Crowe, Brian, John Rear view mirrors including radio aerials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2345209A (en) * 1998-12-22 2000-06-28 Hi Key Ltd A vehicle access radio receiver with a printed antenna and an earthed shield
GB2345209B (en) * 1998-12-22 2003-07-02 Hi Key Ltd A radio receiver

Also Published As

Publication number Publication date
WO1993001658A1 (en) 1993-01-21
GB9114720D0 (en) 1991-08-28
GB9214359D0 (en) 1992-08-19
AU2231192A (en) 1993-02-11

Similar Documents

Publication Publication Date Title
EP0181200B1 (en) Automobile signal receiving apparatus
EP0334297B1 (en) Wrist carried wireless instrument
US4984296A (en) Tuned radio apparatus
US3699452A (en) Active antenna arrangement for a plurality of frequency ranges
KR20040044332A (en) Matching apparatus
US3942120A (en) SWD FM receiver circuit
US4897624A (en) Unitary capacitance trimmer
US6472958B2 (en) Input circuit of satellite tuner
US4816837A (en) Automobile antenna system
US4619000A (en) CATV converter having improved tuning circuits
US4757277A (en) Compensating amplifier for automobile antenna
GB2258962A (en) Radio receptor device for use instead of conductive aerial.
US7109925B2 (en) Antenna device
US5151708A (en) Shortened mast antenna with compensating circuits
US4642691A (en) Television signal input filter
EP0258821B1 (en) Automobile antenna apparatus
US4267604A (en) UHF electronic tuner
EP0387003B1 (en) A shortened mast antenna with compensated circuits
JPWO2020153420A1 (en) In-vehicle antenna device
US4596044A (en) UHF-VHF combination tuner
US6480169B2 (en) Method and apparatus for receiving signals in two different frequency bands using a single antenna
EP0370714B1 (en) A wave reception apparatus for a motor vehicle
US4621245A (en) Intermediate frequency filter for a DBS receiver
JP3525663B2 (en) Inductance element and electronic circuit using the same
JP3115540B2 (en) AM / FM receiving antenna

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)