GB2258875A - Drill bit steering - Google Patents

Drill bit steering Download PDF

Info

Publication number
GB2258875A
GB2258875A GB9214322A GB9214322A GB2258875A GB 2258875 A GB2258875 A GB 2258875A GB 9214322 A GB9214322 A GB 9214322A GB 9214322 A GB9214322 A GB 9214322A GB 2258875 A GB2258875 A GB 2258875A
Authority
GB
United Kingdom
Prior art keywords
borehole
tubular body
drill bit
mandrel
drill string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9214322A
Other versions
GB9214322D0 (en
GB2258875B (en
Inventor
Colin Walker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baroid Technology Inc
Original Assignee
Baroid Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baroid Technology Inc filed Critical Baroid Technology Inc
Publication of GB9214322D0 publication Critical patent/GB9214322D0/en
Publication of GB2258875A publication Critical patent/GB2258875A/en
Application granted granted Critical
Publication of GB2258875B publication Critical patent/GB2258875B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/067Deflecting the direction of boreholes with means for locking sections of a pipe or of a guide for a shaft in angular relation, e.g. adjustable bent sub

Abstract

Apparatus for steering a drill bit includes, a trajectory control sub 6 having an upper part 24 coupled to a drill string and a lower part 25 coupled to a lower assembly including the drill bit. The lower part 25 is adjustable relative to the upper part 24 to produce an axial bend in the sub 6 between the two parts to angularly offset the drill bit so that drilling proceeds along a curved path. To this end adjustable stabilizer blades 11 are mounted on the sub 6 and are movable between extended positions in which the blades 11 engage the borehole wall and retracted positions in which the blades 11 are radially spaced from the borehole wall. Also an actuator 28 is provided which initially maintains the drill bit in axial alignment with the section of borehole being drilled by axial alignment of the two parts 24, 25 and engagement of the borehole wall by the blades 11, but which is actuable to move the blades 11 into their retracted positions and subsequently, with the blades 11 in their retracted positions, to effect tilting of the lower part 25 relative to the upper part 24 to produce the axial bend leading to tilting of the drill bit. <IMAGE>

Description

"Drill Bit Steerinq" This invention relates to the steering of a drill bit at the end of a drill string within a borehole to permit drilling of the borehole along a deviated path.
It is known to drill a section of borehole along a deviated path with respect to the vertical by use of a downhole trajectory control device which causes the drill bit located at the end of the drill string to be tilted to permit drilling at an inclined angle with respect to the immediately preceding section of the borehole. Such a trajectory control device may be constituted by a bent sub or a bent motor housing which may be installed in the bottomhole assembly close to the drill bit so as to angularly offset the drill bit so that, when the drill string is maintained at a required angular orientation, rotation of the drill bit by a downhole motor results in drilling along a curved path.
Conventionally, when drilling is to be initiated along a deviated path, the drill string is withdrawn from the borehole to enable a bottomhole assembly incorporating a bent sub or bent motor housing to be fitted to the end of the drill string before the drill string is again introduced into the borehole. However such tripping of the drill string may result in a substantial loss of drilling time.
It is also known to make use of a trajectory control device, such as a variable angle bent sub, which is adapted to permit the curvature of the section of deviated borehole being drilled, that is the so-called "build rate", to be varied without requiring the drill string to be withdrawn from the borehole to change the bottomhole assembly. Such a variable angle bent sub is disclosed in GB 1494273 and is controllable from the surface to vary the angle of the bend in the sub.
It is also known to make use of a trajectory control device in the form of a variable stabilizer, such as is disclosed in US 4821817, in which equiangularly distributed stabilizer blades, which normally engage the borehole wall in order to centre the drill string within the borehole, are retractable in order to permit the drilling angle of the drill bit to be changed. Control of such a trajectory control device may be effected by operation of the mud pump at the surface to change the flow rate of the drilling mud which is pumped down the borehole to lubricate the drill bit and bring the drilling cuttings to the surface.
However these various trajectory control devices suffer from a number of disadvantages in use, either because they are difficult to control and do not operate satisfactorily in the field, or because they suffer from inherent limitations in use. Thus, for example, the use of a bent motor housing suffers from the disadvantage that, in order to drill a relatively straight section of borehole with a bottomhole assembly including such a bent motor- housing, it is. necessary to simultaneously rotate the drill string and actuate the downhole motor, and this results in eccentric rotation of the drill bit producing a section of borehole (of, it is believed, helical shape) of a greater internal diameter than is usual, thus increasing bit wear, producing higher static and dynamic stresses in the bottomhole assembly and increasing drill string rotating torque and axial drag.
In this specification terms such as "upper", "lower" and "bottom" are used for convenience to denote parts which have such an orientation in the drill string when the drill string extends substantially vertically downwardly in a borehole. However it will be understood that these parts may have a different orientation when the bottomhole assembly is in a section of borehole which deviates substantially from the vertical, and which may even be substantially horizontal.
It is an object of the invention to provide novel means for steering the drill bit which overcomes many- of the disadvantages of known trajectory control devices.
According to the present invention there is provided apparatus for steering a drill bit at the end of a drill string within a borehole to permit drilling of the borehole along a deviated path, the apparatus comprising a tubular body having an upper part adapted at its upper end to be coupled to a lower portion of the drill string and a lower part adapted at its lower end to be coupled to a lower assembly including the drill .bit, the lower part being adjustable relative to the upper part to produce an axial bend in the tubular body between the two parts, adjustable stabilizer blades mounted on the tubular body and movable between extended positions in which the blades engage the borehole wall and retracted positions in which the blades are radially spaced from the borehole wall, and actuating means for tilting the drill bit out of a position in which it is maintained in axial alignment with the section of borehole being drilled by axial alignment of the two parts of the tubular body and engagement of the borehole wall by the stabilizer blades, actuation of the actuating means resulting in movement of the stabilizer blades into their retracted positions and subsequently, with the stabilizer blades in their retracted positions, tilting of the lower part relative to the upper part to produce an axial bend in the tubular body leading to tilting of the drill bit.
The above described arrangement is advantageous in that it first creates sufficient radial clearance between the drill string and the surrounding borehole wall by retraction of the stabilizer blades, and only then induces a bend in the tubular body in such a manner as to avoid creation of massive bending moments in the vicinity of the point of bending. The advantages of combining these two actions in a serial manner has not previously been appreciated, and such a technique can be carried out without the necessity to withdraw the drill string from the borehole to change the bottomhole assembly.It is also an advantage of such an arrangement that, when it is desired to drill a straight section of borehole, the drill bit is simply located in its untilted position in which it is maintained in axial alignment with the section of borehole being drilled, with the result that the drill bit drills a straight section of borehole of normal crosssection with significantly decreased drill string rotating torque and axial drag as compared with certain prior arrangements. In use of such an arrangement the life of the drilling motor tends to be extended, particularly since the drive coupling does not necessarily have to pass through a bend in the housing of the motor.
The invention also provides a method of steering a drill bit at the end of a drill string within a borehole to permit drilling of the borehole along a deviated path, the method comprising connecting a tubular stabilizer body within the drill string so that an upper part of the tubular body is coupled to a lower portion of the drill string and a lower part of the tubular body is coupled to a lower assembly including the drill bit, lowering the drill string into position within the borehole so that the drill bit is located at the bottom of the borehole in axial alignment with the section of borehole being drilled with the two parts of the tubular body being axially aligned and centred within the borehole by stabilizer blades on the body engaging the borehole wall, retracting the stabilizer blades so that they no longer engage the borehole wall, and, with the stabilizer blades in their retracted positions, tilting the lower part relative to the upper part to produce an axial bend in the tubular body between the two parts resulting in tilting of the drill bit to permit drilling along a deviated path.
In order that the invention may be more fully understood, a preferred embodiment of the invention will now be described, by way of example, with reference to the accompanying drawings, in which: Figures 1 and 2 are side views of the apparatus within a borehole in the straight drilling mode and the deviated drilling mode respectively; and Figures 3, 4 and 5 are axial sections through the apparatus in three successive operating positions.
Referring to Figure 1 a drill string 1 within a borehole 2 has a bottom hole assembly 3 comprising a drill bit 4, a drilling motor 5 for rotating the drill bit, a trajectory control sub 6, a bypass sub 7 and a measurement-while-drilling (MWD) tool 8 incorporating downhole sensors and means for transmitting data to the surface such as a mud pulse transmitter. It will be appreciated that various types of drill bit, drilling motor, downhole sensor and transmitting means can be used in such a downhole assembly, but these will not be discussed further here as they are not central to the inventive concept.
Optionally the bottomhole assembly 3 may include upper and lower stabilizers 9 and 10 for centring the assembly within the borehole 2. If required both the upper stabilizer 9 and the MWD tool 8 may be placed higher up the bottomhole assembly than is shown. If the lower stabilizer 10 is not provided the drill bit 4 may instead be provided with a long gauge section (not shown).
The trajectory control sub 6 is shown in Figure 1 in a straight drilling mode in which equiangularly spaced stabilizer blades 11 on the sub 6 are in radially extended positions engaging the wall of the borehole 2 so as to centre the sub 6 within the borehole and in which the whole of the bottomhole assembly 3 including the sub 6 is in axial alignment with the section of the borehole being drilled so that further drilling of the borehole by rotation of the drill bit 4 will result in drilling along a straight path.Typically the gauge diameters of the blades of the upper and lower stabilizers 9 and 10 and of the stabilizer blades 11 on the sub 6 are arranged before running into the borehole with the intention that, when mud pumping along the drill string commences and the drilling motor 5 turns the drill bit 4, rotation of the drill string and the application of weight to the bit causes the entire assembly to drill ahead along a constant trajectory (constant inclination I and azimuth A).
On the other hand the trajectory control sub 6 is shown in Figure 2 in a deviated drilling mode in which the stabilizer blades 11 are in radially retracted positions in which they are spaced from the wall of the borehole 2 so as to provide radial clearance about the sub 6 and in which a bend 12 is induced in the part of the sub 6 below the stabilizer blades 11 so as to provide an angular offset e between the axis 13 of rotation of the drill bit 4 and the centre line 14 of the borehole. Such tilting of the drill bit 4 causes the bit to be forced against the borehole wall on the side to which it is angularly offset resulting in a reaction force R.
Accordingly rotation of the drill bit 4 by the drilling motor 5 will result in drilling along a deviated path, and more particularly along a curved path having a radius of curvature determined by the offset angle e.
In practice changing.from the straight drilling mode to the deviated drilling mode may be made by a series of steps in response to detection of departure of the inclination I from the required value or the azimuth A from the desired direction. These steps comprise stopping of drill string rotation followed by, in a first actuation phase, retraction of the stabilizer blades 11 and, in a second actuation phase, creation of the bend 12 in the sub 6. Since the orientation of the sub 6 relative to the MWD tool 8 has been established prior to running into the borehole, the drilling motor 5 may then be oriented in the required azimuthal direction, and the appropriate trajectory change may then be effected by actuation of. the drilling motor 5 for the required length of time.Subsequently changing from the deviated drilling mode back to the straight drilling mode is effected in the reverse sequence with the second actuation phase to reduce the bend to zero, preceding the first actuation phase to extend the stabilizer blades.
It is important that the first and second phases of actuation of the trajectory control sub 6 occur sequentially as this then ensures that sufficient radial clearance is created prior to forming of the bend, and thus avoids massive bending moments, and therefore stresses, at and about the point of bending.
The operation of the trajectory control sub 6 will now be described in greater detail with reference to Figures 3, 4 and 5 which show three successive phases of operation of the sub 6 starting with the straight drilling position shown in Figure 3.
Referring to Figure 3 the sub 6 has a tubular body 20 having an axial bore 21 for passage of drilling mud and consisting of an upper part 24 having a female coupling 22 at its upper end for connection to an adjacent sub and a lower part 25 having a male coupling 23 at its lower end for connection to an adjacent sub. The upper and lower body parts 24 and 25 are coupled together by a single axis knuckle joint 26 capable of producing an axial bend between the two parts. The upper part 24 has a housing 27 and a mandrel 28 coaxially located within the housing and drivingly engaged with the housing by drive splines 29 (shown by broken lines in the drawings). The mandrel 28 has annular camming surfaces 30 and 31 engaged by two feet 32 and 33 on each of the stabilizer blades 11 under the action of return springs 34.
The camming surfaces 30 and 31 maintain the blades 11 in their extended positions in the axial position of the mandrel 28 shown in Figure 3.
Furthermore, in this position, a locking wedge 35 on the mandrel 28 acts against a long lever arm 36 on the knuckle joint 26 to maintain the parts 24 and 25 in axial alignment, an actuating rod 37 on the mandrel 28 being spaced from a pivot member 38 which is in contact with a short lever arm 39 on the knuckle joint 26 (and which serves to effect pivoting of the knuckle joint as will be described in more detail below).
Furthermore the sub 6 includes two locking pistons 40 each of which is held in position in a respective radial bore 41 in the wall of the mandrel 28 by a retaining ring 43 and is movable radially outwardly by mud pressure against the action of a spring 42 in order to engage within a recess in the wall of the housing 27 to lock the mandrel 28 axially in position relative to the housing 27. For the purposes of illustration only, the locking piston 40 .on the right hand side of Figure 3 is shown in the unactuated position and the other locking position 40 at A on the left hand side of Figure 3 is shown in the actuated position in which the pressure P of the drilling mud flowing downwardly within the bore 21 is greater than a threshold value PT determined by the preload on the spring 42 and the surface area A of the inner face of the piston 40. It will be understood that in practice both pistons 40 will be either in the unactuated position or in the actuated position at any one time.
In operation, in order to effect drilling along a straight path, the pump rate of the mud pump at the surface is first set so that the mud pressure is less than PT, and the drill string is then slowly hoisted within the borehole to ensure that the mandrel 28 is at its uppermost position within the housing 27. The pump rate is then increased to the drilling flow rate at which the mud pressure P is greater than PT, and this results in actuation of the locking pistons 40 to engage within recesses 44 in the wall of the housing 27 so as to axially fix the mandrel 28 in its uppermost position relative to the housing 27 as shown in Figure 3. The drill string may then be lowered to the bottom of the borehole and rotation of the drill string started to commence drilling along a straight path.
In order to change to drilling along a deviated path, rotation of the drill string is stopped and the drill string is hoisted to raise the drill bit from the bottom of the borehole. The pump rate is then reduced so that the mud pressure is less than PT resulting in movement of the locking pistons 40 by the springs 42 into their unactuated positions as shown in Figure 4, and the drill bit is lowered to the bottom of the borehole and weight applied so that, in a first actuation phase, the mandrel 28 moves downwardly within the housing 27 and the camming surfaces 30 and 31 on the mandrel 28 are moved to permit the stabilizer blades 11 to be retracted by the springs 34. At the same time the locking wedge 35 is moved downwardly and away from the long lever arm 36 on the knuckle joint 26.
With continued application of weight to the drill bit, the mandrel 28 continues to move downwardly within the housing 27 so that, in a second actuation phase following the first actuation phase, the actuating rod 37 on the mandrel 28 contacts the pivot member 38 and causes it to pivot about its pivot point 45 which in turn acts on the short lever arm 39 to cause pivoting of the knuckle joint 26 through the offset angle e to produce the required bend in the sub 6, as shown in Figure 5. The pump rate is then slowly increased to the drilling rate so that the mud pressure is greater than PT with the result that the locking pistons 40 are actuated so as to engage within recesses 46 in the wall of the housing 27 as shown at A on the left hand side of Figure 5. This causes the mandrel 28 to be locked in its lowermost position relative to the housing 27.The drilling motor may then be oriented at the required azimuthal angle and deviated drilling commenced.
When the drill bit is lowered to the bottom of the borehole and weight applied, the motor will develop a differential pressure PD, so that, if the mud pressure when the bit is off the bottom is PO the sum P0 + PD must be less than the threshold value PT or the locking pistons 40 may attempt to actuate before they come into direct alignment with the recesses 46 in the housing wall.
The above-described trajectory control sub is particularly advantageous in use as, during drilling by drill string rotation in the zero-bend condition (shown in Figure 3), the drill bit is rotated concentrically and therefore drills a standard gauge hole. Furthermore, because eccentric rotation of the drill bit is not required in this mode, drill string rotating torque and drag are decreased as compared with arrangements in which the drill bit is rotated eccentrically by drill string rotation. Furthermore changing to the deviated drilling mode can be accomplished without tripping of the drill string.
Although the above description has been given with reference to one specific embodiment in accordance with the invention, it will be appreciated that a number of other embodiments in accordance with the invention are also contemplated. For example, embodiments are contemplated in which the actuating movement of the mandrel is rotary rather than linear, and/or in which the mandrel is actuated electrically or hydraulically.
Embodiments are also contemplated in which the locking pistons are dispensed with and replaced by some other actuating arrangement, and/or in which some other arrangement is provided for forming the bend, either by being actuated by the mandrel or by being separately actuated such as by a synchronized control system.

Claims (12)

1. Apparatus for steering a drill bit at the end of a drill string within a borehole to permit drilling of the borehole along a deviated path, the apparatus comprising a tubular body having an upper part adapted at its upper end to be coupled to a lower portion of the drill string and a lower part adapted at its lower end to be coupled to a lower assembly including the drill bit, the lower part being adjustable relative to the upper part to produce an axial bend in the tubular body between the two parts, adjustable stabilizer blades mounted on the tubular body and movable between extended positions in which the blades engage the borehole wall and retracted positions in which the blades are radially spaced from the borehole wall, and actuating means for tilting the drill bit out of a position in which it is maintained in axial alignment with the section of borehole being drilled by axial alignment of the two parts of the tubular body and engagement of the borehole wall by the stabilizer blades, the actuating means being actuable to effect movement of the stabilizer blades into their retracted positions and subsequently, with the stabilizer blades in their retracted positions, tilting of the lower part relative to the upper part to produce an axial bend in the tubular body leading to tilting of the drill bit.
2. Apparatus according to claim 1, wherein upper and lower stabilizers are provided on the upper and lower parts respectively of the tubular body to centre the tubular body within the borehole.
3. Apparatus according to claim 1 or 2, wherein the upper and lower parts are connected together by a knuckle joint capable of producing an axial bend between the two parts.
4. Apparatus according to claim 1, 2 or 3, wherein the actuating means comprises a mandrel within the tubular body which is axially movable relative to the tubular body to effect retraction of the stabilizer blades and subsequent tilting of the lower part relative to the upper part.
5. Apparatus according to claim 4, wherein the stabilizer blades are biased radially inwardly into engagement with camming surfaces on the mandrel such that radial movement of the stabilizer blades is effected by relative axial movement between the mandrel and the tubular body.
6. Apparatus according to claim 4 or 5, wherein the mandrel is located within the upper part and includes an actuating part adapted to engage a pivotal member to effect tilting of the lower part relative to the upper part in response to relative axial movement between the mandrel and the tubular body.
7. Apparatus according to claim 6, wherein the mandrel also includes a locking wedge part adapted to lock the lower part in axial alignment with the upper part when in a locking position and movable out of the locking position by relative axial movement between the mandrel and the tubular body to allow tilting of the lower part by the actuating part.
8. Apparatus according to any one of claims 4 to 6, wherein the actuating means comprises locking means capable of being moved into an unlocking position in response to pressure variation in drilling fluid passing along the drill string in order to permit relative axial movement between the mandrel and the tubular body.
9. Apparatus according to claim 8, wherein the mandrel is provided with a bore for the passage of drilling fluid, and the locking means comprises at least one locking piston extending through the wall of the mandrel between the bore and the outer surface of the mandrel and at least one locking recess in the wall of the tubular part for receiving said at least one locking piston in a locking position.
10. A method of steering a drill bit at the end of a drill string within a borehole to permit drilling of the borehole along a deviated path, the method comprising connecting a tubular stabilizer body within the drill string so that an upper part of the tubular body is coupled to a lower portion of the drill string and a lower part of the tubular body is coupled to a lower assembly including the drill bit, lowering the drill string into position within the borehole so that the drill bit is located at the bottom of the borehole in axial alignment with the section of borehole being drilled with the two parts of the tubular body being axially aligned and centred within the borehole by stabilizer blades on the tubular body engaging the borehole wall, retracting the stabilizer blades so that they no longer engage the borehole wall, and, with the stabilizer blades in their retracted positions, tilting the lower part relative to the upper part to produce an axial bend in the tubular body between the two parts resulting in tilting of the drill bit to permit drilling along a deviated path.
11. Apparatus for steering a drill bit at the end of a drill string within a borehole to permit drilling of the borehole along a deviated path, the apparatus being substantially as hereinbefore described with reference to the accompanying drawings.
12. A method of steering a drill bit at the end of a drill string within a borehole to permit drilling of the borehole along a deviated path, the method being substantially as hereinbefore described with reference to the accompanying drawings.
GB9214322A 1991-08-17 1992-07-06 Drill bit steering Expired - Lifetime GB2258875B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB919117810A GB9117810D0 (en) 1991-08-17 1991-08-17 Drill bit steering

Publications (3)

Publication Number Publication Date
GB9214322D0 GB9214322D0 (en) 1992-08-19
GB2258875A true GB2258875A (en) 1993-02-24
GB2258875B GB2258875B (en) 1995-05-10

Family

ID=10700159

Family Applications (2)

Application Number Title Priority Date Filing Date
GB919117810A Pending GB9117810D0 (en) 1991-08-17 1991-08-17 Drill bit steering
GB9214322A Expired - Lifetime GB2258875B (en) 1991-08-17 1992-07-06 Drill bit steering

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB919117810A Pending GB9117810D0 (en) 1991-08-17 1991-08-17 Drill bit steering

Country Status (2)

Country Link
GB (2) GB9117810D0 (en)
NO (1) NO923193L (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023652A1 (en) * 1992-05-21 1993-11-25 Baroid Technology, Inc. Drill bit steering
GB2369136A (en) * 2000-11-20 2002-05-22 Toolbox Drilling Solutions Ltd A down-hole tool
US7128170B1 (en) 2001-11-15 2006-10-31 Mark Alexander Russell Adjustable stabiliser for directional drilling
WO2008037947A1 (en) * 2006-09-26 2008-04-03 Sondex Limited Direction adjustment tool for downhole drilling apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641316B1 (en) * 1988-12-30 1995-09-08 Inst Francais Du Petrole LINING FOR BOREHOLE WITH CONTROLLED TRAJECTORY COMPRISING A BENDED ELEMENT WITH VARIABLE ANGLE AND USE OF THIS LINING

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023652A1 (en) * 1992-05-21 1993-11-25 Baroid Technology, Inc. Drill bit steering
GB2281332A (en) * 1992-05-21 1995-03-01 Baroid Technology Inc Drill Bit Steering
GB2281332B (en) * 1992-05-21 1995-09-13 Baroid Technology Inc Drill Bit Steering
AU666373B2 (en) * 1992-05-21 1996-02-08 Halliburton Energy Services, Inc. Drill bit steering
GB2369136A (en) * 2000-11-20 2002-05-22 Toolbox Drilling Solutions Ltd A down-hole tool
US7128170B1 (en) 2001-11-15 2006-10-31 Mark Alexander Russell Adjustable stabiliser for directional drilling
WO2008037947A1 (en) * 2006-09-26 2008-04-03 Sondex Limited Direction adjustment tool for downhole drilling apparatus

Also Published As

Publication number Publication date
GB9214322D0 (en) 1992-08-19
NO923193D0 (en) 1992-08-14
GB9117810D0 (en) 1991-10-09
NO923193L (en) 1993-02-18
GB2258875B (en) 1995-05-10

Similar Documents

Publication Publication Date Title
US5311953A (en) Drill bit steering
US6321857B1 (en) Directional drilling apparatus and method utilizing eccentric stabilizer
US8191652B2 (en) Directional control drilling system
US6595303B2 (en) Rotary steerable drilling tool
EP1006260B1 (en) Drilling liner systems
CA2296464C (en) Drilling system with means for anchoring in the borehole
US5094304A (en) Double bend positive positioning directional drilling system
CA2136559C (en) Bottom hole drilling assembly
US7234544B2 (en) Drill tool shaft-to-housing locking device
US5117927A (en) Downhole adjustable bent assemblies
US5617926A (en) Steerable drilling tool and system
US5836406A (en) Adjustable stabilizer for directional drilling
US5941323A (en) Steerable directional drilling tool
US4220214A (en) Directional drilling sub
CA2167795C (en) Articulated directional drilling motor assembly
US5265687A (en) Drilling short radius curvature well bores
US5894896A (en) Orienting tool for coiled tubing drilling
NL9320031A (en) Sending a drill bit.
US20080142268A1 (en) Rotary steerable drilling apparatus and method
US5402855A (en) Coiled tubing tools for jet drilling of deviated wells
WO2002036924A2 (en) Rotary steerable drilling tool and method for directional drilling
GB2258875A (en) Drill bit steering
US7343988B2 (en) Drilling apparatus

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PE20 Patent expired after termination of 20 years

Expiry date: 20120705