GB2250322A - Axial flow air compressor blade - Google Patents

Axial flow air compressor blade Download PDF

Info

Publication number
GB2250322A
GB2250322A GB8920415A GB8920415A GB2250322A GB 2250322 A GB2250322 A GB 2250322A GB 8920415 A GB8920415 A GB 8920415A GB 8920415 A GB8920415 A GB 8920415A GB 2250322 A GB2250322 A GB 2250322A
Authority
GB
United Kingdom
Prior art keywords
plane
sec
ref
sheet
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB8920415A
Other versions
GB8920415D0 (en
Inventor
Frederick Eggleton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constance Fenwick
Judith Trafford
Original Assignee
Constance Fenwick
Judith Trafford
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constance Fenwick, Judith Trafford filed Critical Constance Fenwick
Priority to GB8920415A priority Critical patent/GB2250322A/en
Publication of GB8920415D0 publication Critical patent/GB8920415D0/en
Priority to EP19890312535 priority patent/EP0416186A3/en
Publication of GB2250322A publication Critical patent/GB2250322A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

:)heet I.
-1 223032C TITLE:- Axial Compressor lotor Blades 3pecifically 3haped to confine the existence of the Energy Designated Esp. to within their,Axial Working Length defined by the Dimension 1&1.3).
IN=. "TO:- Foede -Ack iliggleton. Nationality British AD'IU,,,5-:):Every '7,treet, IPI,',LSCN BB9 7LZ. Lancs.
,UTDi- Mrs. Constance Fenwick, Nationality British ADD'Z-;,"-',7): - The )tone House, Poole in I-Tharfdale, L7321 IJZ.
Uest Yorkshire.
AND:- Mrs. Judith Trafford. Nationality British AD',D-Z-,'.33:- 4. Betton lise, East AytonjY013 91RT.
Scarborough, North Yorkshire.
do hereby ieclare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the follcwirU statement:- I-
Multi stage axial flow compressors are usQd to effect the compression of large air mass flows to high pressures. Each individual stage comprising of a ring of rotor blades followed with running clearance between by a ring of stator blades. The rotor blade ring is re4uirei to add kinetic energy alone or kinetic and heat energy to the air while the stator ring of blades change the surplus whi:-1 velocity kinetic energy into heat energy. The blade shape and speed of rotation being arranged also to maintain a constant value axial air velocity along all st-eaxalinea but not necessurily all of the same value.
Sheet 2.
Thus the difference between each-stage inlet and outlet plane is that at the outlet plane of a stage the area of flow is reduced relative to- the reduced specific volume of the air and the temperature increased relative to the energy added. A truly designed rotor blade is thus only required to add two forms of energy to the air thus:- Kinetic:- (va4 2. - vaI 2.)/2.g. & Heat:- G..(T4. - TI.)/(y-I.).
Where va4. & val. = Outlet and Inlet Air Whirl Velocities.
Where T4. & TI. = Outlet an& Inlet Air Temperatures.
Where g. = Acceleration Rlate due to Gravity.
Where y. = Ratio of the two Specific Heats of Air.
Where C. = The Gas Constant for Air.
However the use of circular are cambered. aerofoil sections for the rotor blad-es in engines to o'btainhigher output has resulted in the blades _allowing a third form of energy interaingled with the heat energy to pass the rotor oiitlet pl;me. This third.. forx of energy for which I have used- the definition letters Esp. (Air Spring Energy) is generated together with the heat energy between the Inlet Plane and Plane 2. whichis the plane where the blade attains its maxiaum thicleess and if unused between Plane 2. and the Outlet Plane cannot be changed by the following Stators into Heat Energy. The only way. this unwanted energy can dissipate itself is by causing the blades it passes between and other components (Combustion chambers etc.) to vibrate. A result of which is that they either fail because of fatigue or have to be given a limited. 'Iservice lifelt to prevent them failing.
Tle unwanted form of energy Esp. is made to exist whenever the plane which divides_the airflow into two equal mass flow halves is made to move away from its normal central positioiiL and to illustrate this:- 1 3heet 3.
Consider a cylinder containing one pound of air at normal temperature, pressure and specific volume divided by a piston in the mid position into two equal halves. The piston being integral with a rod in the axial position which extends through both cylinder end plates fitted with air seals, the only constraint to axial movement being the air at each side of the piston. Secure the cylinder to prevent- jaxlal movement and then by force move the piston from its central position the distance D.
If one now calculates the specific volume of the two halves, add together and -livide by two to get the mean value it will be seen to be unchanged from its original value. Calculate the temperature similarly, add and divide and again no change. Calculate the pressure similarly, add and divide and this time the mean air pressure is. greater than the original value, and this is the only indication of the presence of the energy Esp. When the piston is released- it will spring back and beyond the central position and oscillate until the energy is, dissipated in the form of heat caused by friction between the rubbing surfaces.
In the compressor it will be the stators which are caused to vibrate and the heat generated will be at the root- of the blades the strumming of which will also cause unwanted sound. The heat causing the degeneration of the blade material and thus failure at a much lower stress,than that which it was, designed to withstand. This form of energy exists in both. piston and turbine motivated engines but whe.-eas in the former it exerts itself in line with the gas flow and is thus innocuous in the latter is transverse to it and malignant.
Thus it will be seen that if the -Esp(J.2). is used to help; drive the second portion of the rotor blade ring, besides being more efficient in compressing the air will be better from a structural point of view.
Sheet 4.
A specific. embodiment of the invention is thus rotor blade rings, each blade of which has a precisely calculated. shape such that the energy Esp(I.2). generated in the air through the first portion of the blade ring is constructively used to helpdrive the second portion thus eliminating itself from the air flow. The Bernoulli type equation which identifies. the various forms of energy involved in the action between the inlet plane (Plane I.) and the plane which terminates the working length of the blade (Plane 3.) is given below:
2 2 (Plane I.) W(I.3). + (vaj. + vemI.)/2.g. + Y.C.TI./(y-I.).
2 2 (Plane 2.) W(2.3). + (va2. + vemI.)/2.g. + Y.C.T2./(y-j.). + Esp(I.2).
2 2 (Plane 3.) (va3. + vemI.)/2.g. + y.C.T2./(y-I.).
Where 'Y[.(I.3). = The energy Per unit air mass flow required to drive the Plane I. to 3. portion of the rotor blade ring.
Where W(2,3). = The energy - Ditto - Plane 2. to 3. - Ditto.
1 Rhe re y., G. 9 g. 9 T., and Esp(I. 2). are as previously stated. Where vemI. = Axial Air Velocity.
The above equation with suffices (-r=O.) up to (r= Max.No.) apply to lamina streamline values. That is the mean of unit air mass flow if it was disposed equally abibve and below the lamina streamline.
Similarly with suffices (r= I.) up to (r= Max.No.) it applies to the mean values of the air mass flowing between, the common outer boundary streamline (r= 0.) and the streamline whose designation is used as the suffix. TO distinguish between the two sets of values, those of the latter equations.have m. positioned one letter space between in- front thus:- m KI.3). m va2., m v2., m C3.. 9 m p2. 1 m T2. etc.
1 Sheet 5.
-he To show the development of the design system used for -VI calculation of the rotor blade Profile it isnecessary to postulate the four boundary surfaces and two end planes which. together form the absolute shape of an individual air stream flowing between a single pair of blades- All six are of a different shape, so to simplify a little, for an example will use that of a compressor having a constant value outside diameter, thus:- The inlet and outlet plane outer edges are both equal in radius and angular extent. That at the outlet plane due to the air whirl velocity being angularly ahead in the direction as of the rotation of the blades, of the inlet plane. Similarly the inside edges are both a-rcs, that of the outlet plane being angularly ahead for the same reason as the outer are. Both arcs are equal in angular extent but the are at the outlet plane is at a larger radius than that at the inlet plane. Dependent on the type of blade used to provide for reason of material stress a sectional area decreasing radially outwards, the inside arcs can be at an equal, greater, or lesser axial distance apart than the outer arcs. Thus the axial projection of both end planes are sectors of their respective annulus.
The outer boundary surface that joins the two above planes together is of constant arc radius but not of angular extent, the latter being of minimum extent at Plane 2. The surface also spiralling at a varying rate from inlet to outlet plane.
The inner boundary surface joining the two inner arcs, for reason-that the_oompression of the air should be done by the force used to aepelerate the air in a tangential direction only, is of a constant wro 'radius trom Plane I. to Plane 2. 9 Optionally to Plane 3.). Plane 2. being position of minimum angular extent. From Plane 2. to Plane 4-(outlet Plane) both angular extent and are radius increase at rates which are related to each other to maintain from Plane 2. a constant cross sectional area airstream to the outlet plane. Additional to the foregoing and similarly to the outer surface it soirals in the same direction.
Sheet 6.
If we now look on the inlet plane of a compressor whose direction of rotation is anti-clockwise and visualise the airstream described above to be situated on the top half of the vertical centre line, the surface of the airstream to the left would be the rear absolute profile of the blade to the left and the airstream surface to the right would be the front absolute profile of the blade to the right of the airstream. The reasoning f th e of which could apply to the airstream to the right o stiDulated one. Thus if we use the left side of the streamline to the right and the right side of the stipulated one, together they delineate the absolute shape of the blade to be dimensioned from which is developed the relative sha-oe of the rotor blade (As manufac-tured).
As it is required for purposes other than aerodynamic (To stack the centroids of all the lamina blade sections on or near a straight line which is off 2>et to the rear of a true radial line which intersects the rotor axis), the airstream is divided by intermediate streamlines into lesser portions of the full air mass flow. For convenience the radial depth on Plane I. is divided into an even number of equal portions. The outer boundary one is designated (r=O.) and the inner one (r= Max.No.), the inner ones having intermediate numbers. The air mass flowing betweenthe common outer houndary and any one of the others is calculated for Plane I. and is retained by the streamline to the outlet plane.
At this stage it is necessary to explain the action between the blade (Solid body) and the air passing between the blades during the period of time it takes the air to travel from Plane I. to Plane 3. which terminates, the working length of the rotor blades. and for this purpose have supplied Drawings Figuras 1/2.
?/2. which illustrate two analogies. In both analogies the air container at all positions should be axially in line but have been drawn offset to allow dimensioning.
Sheet 7.
In both analogies the air container weight and the atmosphere's resistance to movement of the two bodies has heen ignored. Each cylinder contains one pound of air at normal sta-,ic conditions and the solid bodies weigh less than one pound, having velocities much higher than that of the cylinders. The single difference beteen the two analogies is that the cylinder of the 2 nd. Analogy has an open rear end fitted with a piston and rod, the latterts purpose being to prevent the solid body making contact with the cylinder. The piston being fitted with a mechanism to allow only irreversible movement up the cylinder so that any compression of the air effected between Positions I. & 2. is retained. The conditions are recorded in Bernoulli type e4uations at three positions which are I. The instant of time when the solid body makes contact with the cylinder or rod. 2. The instant of time when the cylinder and solid body attain an identical speed.
3. The instant of time that the cylinder or rod lose contact with the solid body, thus:
2 2 I. (vaj + b.vbI.)/2-g. + PI.vI./(y-I.).
2 2 2. (va2 + b.vb2.)/2.g. + P2.v2./(y-I.). + (E(I.2).
(p2.v2.- PI.VI.)/(y-I.).) 2 2 3. (va3.+ b.vb3.)/2.g. + p3-V3./(y-I.).
I St. Analogy:- E(I.2). = (vbI, vaj.)(va2.- vaj.)/2.g. = Esp(I.2). Where p2.= PI.= P3. and v2.= vI.= v3. (Exclusive of air pressure due to presence of Esp(j. 2)., ' 'See Figure 1/2.
2 nd. Analogy:- E(I.2).= (vbI.- vaI.)(va2, vaI.)/2.g.= ((P2.v2, PI-VI. )/(y-I.). + Esp(I.2).). (Exclusive of air pressure due to presence of Esp(I.2).). See Figure 2/2. Where p2.= P3. and v2.= v3. and the ratio (Esp(I.2)./E(I.2).) 2 ((va3.- va2.)/(va2, vaI.)). = (C3, 1.)2. and the ratio (Ep(I.2)./lP,(I. 2).) = (I.- ((va3.- va2.)/(va2, vaj.))2.).
Where EI.2). 2. /2. g.
= (I.+ I/b)(va2- vaI.) Where Ep(J.2). = (I.+ I/b)((va2- vaI.)2._ (va3.va2.) 2.)/2.g. Where 1,p(j.2). = ((VI./v2.)(Y-,').- I.).TI.C./(y-I.). Where E(I. 2). = ((vI./vr2.)(Y-,).- I.)-TI.C./2.(y-I.).
Sheet 8.
Where vr2. = Specific Volume of the air mass in the rear DOrtion of the cylinder (Adjacent to piston). Where va2. = vaI. + (b.(vbI, vaj.)/(I.+ b. )) = vb2. and vb2. = vbI, ((vbI, vaI.)/(I.+ b.)) = va2. Where va3. = C3. (va2, vaj.). + vai. and vb3. = vbj.- (va3.- vaI.)/b. Where Am(I.2). = (va2.- vaI.)/t(I.2). = Abm(I.2). = b.(vbI. - vb2.)/t(I.2). and Am(2.3). = (va3.- va2.)/t(2.3). = Abm(2.3). = b.(vb2.- vb3.)/t(2.3). Where b. = (va2vaI.)/(vbI, vb2.). Where va2. = vb2.
1/2 Where C3. = (I.+ (Esp(I.2).pz(I.2).) (va3.- vaI.)/( va2- vaj.).
Where t(I.2). = 2.PI.(I.- v2./VI.)/(vbI, vaj.).
and t(2.3). = PI-(I, v2-/VI.)/(va3, vb3.).
Where PI. = Inside length of cylinder at Position 1. of Analogy.
(Cylinder head to inside face of Piston).
At this time it is necessary to single out the value C3. which has a unique part to play in the design of an axial compressor rotor blade which uses up the malignant Air Spring Energy Esp(I.2). for it is this value which links up all the different kinds of energy.
To bridge the differences between the formulae of the nd. Analogy and the new design system it is first necessary to account for the extra power required for full cycle operation. The second requirement is to provide for specified air mass flows. and thirdly to connect the foregoing withthe tangential blade velocity, and finally to streamline the blank end of the blade which in the analogy would be (PI. - P2) wide at position 3. of the analogy.
The first being satisfied by adding the value (BaI, b.) to b. of the analogy at Position I. which would disappear at Position 2. The second by changing the straight line operation of the analogy to circular, whichallows area's to be specified between concentric lamina 3 -3heet 9.
streamlines which together with the addition of axial air velocity defines air mass flow. The third. by linking the axial and tangential air velocities together and to the tangentiil bla-e velocity, thus the Be_. noulli type eluation of the analoey becomes:- 2 2 2 I, (vaj. + VOMI. + BaI.vbI.)/2.g. + y.pI.VI. ' /(Y-I.).
2 2 2 2,-(va2. + VOMI. + b.vb2.)12.g. + y.P2.v2.,/(y-I.).+ Esp(I.2 2 2 2 3- (va3. + VOMI. + b.vb3.)/2.e. + y.P2.v2./(y-I.). Ai,d as (BaI.vbI 2._ b. vb2 2. ' /2.g. = 1-1(1.2).
2._ 2. R(2.3).
And as b.(vb2 vb3) /2. g. = 1, 2, 2 2 W(I.3),.+ (vaI. + VCMI)12.g. + 2 2 W2.3).+ (va2. + VOMI)/2.r. + v.,)2 v2 j(y-I.). + r r r r r Esp(I.2) r = 3, (va3 r 2.+ vcM, r 2.)/2.g. + y.p2.,.v2,,.l(y-I.).
2 2 he.-.-e W(JJ)r.= y-Ep(I.2)r.+ --,'sp(I.2) r.+ (va2 r._ vaI r /12.
2 2 Where-W(2 T' 3)r. + -1sp(I.2)r. = (va3, va2 r)/2.c. = Ek(2.3)r.
2 Whe-e = ','i(I.2).r. = (BaIr, br.).vbI r. /2. g.
Alj-.i the formula which connects the tangential blade velocity to the air velocities on the.loot Streamline are:- f- 1)!r See Figure 1/9.
vb + 1 aximum m vcm(I.3) :-PC R 0 - I ("ri = (v-3 R R- v.13 R)) In tl,e 2ables ID. to 6D. a coii-3t.ant v-alu,3 vomj,,. has been used which is ilightly less than both the two values above.
See Figure 1/9.
w11..re m vb(I.3) R. = m va(I. 3) R. + X2 R /2.t(I.3) R 6 whe-e m va(I.3) ((t(I.2)R.(vaIR.+ va2R.)) + (t(2.3).,.(va2,,. + va3 R /2. t(I - 3) R m va(I.3) R C4R.(va311, vaI R) + vaI R 0 Limiting Angle Co. is taken to be 45. and the value -f the angular difference between the absolute and. -elative centre lines of the tail po. ..tions (Plane 3. to Plane 4.) is 900. 3ee Ficure 1/9.
Sheet 10.
It is also of importance that on the root streamline where VI R has the minimum velocity, that vbI R sh-ould have a value not exceeding (VI R.+ val R) With reference to surge conditions it should be noted that the rotor blade shape (As manufactured) when stationary is also its.absolute shape. Thus in the run up to the designed speed (VI.) the rotor blade absolute shape continuously in contact with its relative shape on Plane I. appears to zLcLve in an anti-clockwise direction-like a pointer of a clock until at the designed speed it reaches-the designed speed positiox-, Intermediate to the two positions described above the abzolute shape passes through a third position-where it is disposed axially. This is the position where surge conditions would arise if the relative blade shapes did not give full static coverage to the inlet plane. Thus-in a front view of a compressor the rotor blade at all radii should have a minimum are length of one blade pitch.. (See Figure 9/9.) it will also be seen that for industrial use where protection can be given to prevent ingestation of foriegn bodies it would be advantageous to use finer pitched blades than would be used for aircraft engines.
Wa-th regard to streamlining it should be noted that as. in the analogy where the piston is locked tothe cylinder at Position 2. to retain the compression of the air to Position 3. so also does the blade of the compressor attain its maximum thickness at Plane 2. and in the example given retains this thickness to Plane 3. from which it is streamlined to a point at Plane 4. It should be noted however that if required it could have been commenced at Plane 2. If the Synopsis IL. had been used for the example the starting plane of the streamlining would have been prior to Plane3.
z Sheet II.
The absolute lainina blade circular ara;diinensions are measured from an axial line which passes through the blade point at P1ane I. and the axial length dimensions from Plane I. along the line. Note also that all streamlines,in the synopsis are at a constant radius thus r(I.3).
Front profile dimension designations are prefixed by the letters Fp)and rear profile dimensions Rp-A.. The mean centre line of air mans flow moved circumferentially one half blade pitch-so that it, can be dimensioned froin the above axial line uses the prefix S.
The blade length is divided into three sections aL, 9 b..2 a. whicl. represent (Plane I. to 2.)., (Plane 2. to 3.) and (Plane 3. to 4.) and thus,:- FpaI Zero. Fpa2r.= t(I.2)r#(vbIr.+ vb2r.)/2.
r SaI r. Zero. Sa2 r t(I.2),.(v-.iLI,.+ va2r.)/2.
RpaIl. Zero. Rpa2 r t(I.2).r.(vaI:ro+ va2ro)/2.
Fpb3r= Fpa2 r.+ t(2.3).ro(vb2 r& + vb3 r,')/2.
Sb3 = Sa2.+ t(2.3)r.(va2r.+ va3r.)/2.
r r Rpbl.=Rpb2.+ t(2.3)r.(vb2r.+ vb3..)/2_ r r And in the intermediate positions:- Fpan..= t(I.n),.vbj,.+ vbn r.)/2.
Sax.= t(I.,n)r.(-vaIr.+ vani.)/2_ r r RPanr.= t(I.n)r.(vaI.+ van,.)/2.
r r RPbIn r Rpa2 r.+ t(2.ja):r.(vb2 r.+ vba r.)/2 Sba r Sa.2r.+ t(2.a)r.(va2r.+ vaia,.)/2.
Fpbm r Ppa2 r.+ t(2.m):r.(vb2 r.+ vbm)/2.
Sheet 12.
And for blade section c.
Sc4r. Sb3r.+ t(3.Cr.va3r. Sewr.= Sb3r.+ t(3.w)..va3 r Fpe4r. SC4r. = IRPO4r.
Fpew Sew.+ XW./2. Rpew sew XW /2.
r r:r r r, Fpb3r. Sb3r.+ X2 r./2. -!pb3r.= Sb3r--- X2r./2.
Where Xw r.+ 2. F r 2. - L(3.w) r 2.) I/2._ (-RF r 2._ L(3.4)r 2.) 1/2 2 And RF.= Blade Form Radius = (L(3.4) /X3r.) + X3r.A.
And X3 r.= X2 r - And for axial lengths.
L(I.2) r- t(I.2)r-vOmIr. & L(I.n) r.= t(I.n),.vcmj.,.
L(I.3)r.= t(I.3)r.vcmI:r. & L(I.m)r.= t(I.m)r.vcmjr.
L(I.4)r- t(I.4)r-vemI,- & t(I.w):r.vemIr.
And for Relative Blade Shape Dimensions.
R Fpa2 r - = FPa2 r -- t(I.2)r-VIr.
lq FPb3r. = FPb3r, t(I.3)r-VI..
R FPe4r. = Fpo4., t(I.4)r-VI..
R RPO4r. = Rpo4r--- t(I.4)r-VI..
R Rpb3r. = Rpb3r, t(I.3)r-VI.. & R RPbm.,= Rpbmr, t(I.m):r.VIrs Rpa2r. = Rpa2 r -- t(I.2)r.VIre & R Rpan r.= 1Rpan., t(I.n) r VI r TO relate all the above dimensions together a Drawing has been provided:- Figure I/I- & R FPan r.= Fpan., t(I.n.),.VI r & R PPIbMr.= FPbm r t(I.m) r Viro R Fpew r Ppow r t(I.w)r.vi r R Rpow r -Rpow r t(I.W)r.viro Skeet 13.
Axial Flow Air Compressor Design Procedure - Rotor Blades. Notes:- A Synopsis is not compiled for any specific air mass flow but to provide relationships between the dimensions of the air duct and rotor blades to the large number of different air and blade velocities and air conditions which simplify t1te design of a compressor having a specific air mass flow.
TILUS a first requirement before compilation is to know wkether it is for airplane or industrial use. If the former, to facilitate maximum blade loading, the area contained within the rotor blade profile is made to increase in a direction radially outwards as on Synopsis Table IA. The decrease in material sectional area in the same direction for reason of material stress being effected by coring which would be facilitated by making the blades in kalves and fusing together.
For industrial use due to the kigk material and manufacturing costs of the former it is usual to use soli& blades decreasing in sectional area radially outwards as on Synopsis Table ID.
A study of both the above Synopses,shows that to obtain t1te maximum air mass flow through a given area inlet plane, the axial air velocity on the root streamline should be the maximum value and the air whirl velocity a minimum value. The resultant energy of both causing the drop in air pressure from static to inlet plane.
As values which are the mean over various portions of the airflow are required, to simplify their calculation, products (rl:,.vcmI..) and (rI r - vcmI r W(I-3)".) have been made to vary at a constant rate radially across the inlet plane. Thus for example m W-I-3),=,-= W(I-3),=2'9 a C32=3' C"3r=I.I!29 etc. This however is not mandatory and could be different providing the resultant air pressure drop is a constant value over the whole inlet plane.
If in the case of the example it is required to reduce the axial length of the rotor bladeq the way to do it is either increase the number of blades in the ring Skeet 14.
Notes:- Continued. or alternatively reduce:r(I-3)0. or do botk, but certainly not the axial length alone even thougk it appears uselessly too, long. If the Synopsis IA. had been used for the example the blade thickness would have increased. radially outwards thus necessitating a longer length for streamlining at all radii except at the root. The starting positions of the tapering could witk advantage be moved up to Plane 2. while still retaining the same circular are pitch length as Synopsis ID. Thus the formulae for Fpbur- ancl RRbm, would. require modification to take the streamlining into account thus:- Fpb3r--- Fpa2 r. + t(2.3),-(vb2 r vb3r.)/2. - (X2 r -- X3r.)/2.
Rpb3r.= Rpa2r. + t(2.3) r (vb2 r vb3r.)/2. + (X2r, X3r.)/2.
Rpbmr.= Rpa2r. + t(2.ia) (Vb2 vbm)/2. + (X2 XM)/2.
r r r Fpbx Fpa,2. + t(2.iiL),.(vb2 vbin,.)/2. - (X2 Xmr.)/2.
r r r R FPb3r. = FPb3 t('.3)r-VIr.
R RPb3r. = Rpb3r, t(I.3).r.VIr.
R RPblia:, - = -RpbX r- t(I.X)X..vir.
R Fpbar. = Fpbar, t(I.m)..VI..
Sb3r. = Sa2r.+ t(2.3),-(va2 r.+ va3r.)/2. (Unchanged) Sbn r. = Sa2r.+ t(2.iii):,.(va2 r.+ Yam:,.)/2. (Unchanged) R Sba r Sbmr. - t(I.a):r.VI:C.
R Sb3, Sb3, - - t(I.3)r-VI:E.
r r Note:- The above dimensions give the blades position and shape on cylinders of constant rI r. radius which when looking down the stacking line are identical to the blade shapes on the streamlines.
1 0 Sheet 15.
Computation of Stage I. Synopsis Values.
The first requirement is the eh-oice of the following values:- VIO.9 -r(I.3)0.9 r(I.3),. No. of blades in ring., 7atios (P2 r /Z2.r.)., ICAC Standard Atmosphere air conditions., a stipulation of the value of vaj.., a stipulation of the value.R of the Ratio (vemI,/iax.vcmj).From which are derived all other R values on either Synopsis ID. or ID. (used as an example):- Root Streamline Column applicable to Synopses IA. or ID.
1/2.Ref.No. 9, C3n -- (I.+ ((B.- A.)/B.) Where A.= ((P27 (Y-I-)._I.
/Z 2, Where B.= (((P2 R./(2.Z2 1 -- P2 R)) (Y-,').- 1.)/2.).
Where (P2./(2.Z2 - P2 (I.A2.Z2, I.
R :,. /P 2 Ref.NO.I0, G4 R.= (3.C3 I.V 1 (4.C3 2.- M3,.) R 2 1/2 Ref.No.II, b_. = (I./(D.+ (D. + I.) 2 Where D. = ((y-I-)(I, (C3 I.).)/2.).
Ref.No.14, vcmI Ratio(v=I).llax.vcmI R'= /ax. vcmI R 'i R W-here Max.VemI C3 -C4 VI AI.+ b.). See also Sheet 9.
11.,L Z1 11 2 2 Ref.No.15- TI.. = T.- (y-I.).(vaj.... + vemI R.)/2.g.Y.C.
Ref.NO.I6- PI r - = P.(TIr./T.)y/(y-,').
Ref.NO-I7, vIr. = v.(T./TI r) IAY-i.)_ Ref.NO-31- EP(I.2).. = (,ef-No.9.A.)-C-TI -/(y-I.). r Ref.NO-30- E(I.2) = (Ref-NO-9, B.)-C-TIr./(y-I.).
R Ref.NO.32, EiI.2) R = (y-I.).EP(I.2) R 2 Ref.No.12, Baj R b R.+ Ei(I.2) R.2.g./vbI R -P Ref.No.20, vbI R VI R.+ vaj R.
Ref-No. 5..- VI R. = r(I.3) R VIO./r(I.3)0.
Ref.No-33- Esp(I.3) R.= E(I.2) R -- EP(I.2) R Ref.No.18_ va2 '.= vb2 E(I.2) R.2.g./(vbI R- vaI -R + vaI R' rR 'R Sheet 16.
Continuation - Rvot Streamline Column - Synopses ID. &- IA.
2 2 Ref.No.34-- Ek(J.2)-,, (va2.- Val.)/2-g- R q ?ef.No.Ig.- va3,:,.
C3,,. (va.2. - vaj). + vaj.
--- R R D - 1 2 2 -'ef.No.36.-:,k(I.3) R - (va.3 R._ vaI R.) /2. g.
Ref.NO.2I, vb3 = vbI, (-va3 val /b R R R R Ref.No.26, m va(I.3),.= C4. (va3 vaj + vaj R R R R) -1 m va(I.3)--,.= ((t(I.2) R (vaI R.+ va2 R + (t(2.3) R-( -va2 R.+ va3-R.)))/2.(t(I.2) R.+ t(2.3) R') Ref.NO.27, m vb(I.3) R.= m Va(I.3) R + X2 R /2.t(I.3) R - Ref.No.28- t(I.2):- = 2-X2 /(vbI- vaI 1 R Ref.No.29- t(2.3) X2 /(va3 -- vb3 - - R' R R) Ref.NO-38, T2 R T3 R = (Ep(I. 2) 'R (Y-I.)./C.) + TID.
ef.No.39.- P2.= P32.= PIr.(T2-0./T1r.)y/(y-,'). R Ref.No.40- v2,,,.= V3 R.= VI..(TI../T2)IAy-i.).
2 2 Ref-NO-35- W(I.2),.= (BaI R vbI R b R vb2 R.)/2.g.
2 2 Ref-NO-37, W(I.3) R - = (BaI R vbI R. - b IR - vb3 'R.) /2. g.
Ref.No-49, Angle A,.= Ref-NO-50 - Angle B R = 13 - Angle ef.No.51. liR- = 14-X Tan (va3 R. /Vcrn,R Re f I -NO.53, (I.x Ref.No-54- (I.x Tan. (VIR -va3 R)/vmi R-) Tan.-1((VI R m vb(I.3) R)/vcmi R)' 37. (:r(I. 3) R ' VOMI R 11(1.3) R') 14.)R. = (r(I.3)R VCMI R') z Sheet J7.
Continuation - outer Streamline Column - Synopses Table ID. & I.A...
Ref.Nos. g. and I0, Values C30. and C40. Use formulae given for same values on Root Streamline.
Ref.NO-II, b 0' Note:- Root Streamline value used for convenience such that Ref-NO-I2, BaJO. is below unity.
Ref.No.12, BaI.= b + Ei(I.2)0.2.g./vbIO 2 0 0 Ref.NO-I3, vaI0- (VIT- VI R)/2. + vaI R Value chosen to keep the value va3 0 reasonably low.
2 2 2 11/2 Ref.NO-I4, vemI,.= (vaj R. + VOMI R._ vaI 0.) Ref.17os. 6, 7-, 8., 15., 16., 17. Values T. 9 P., V., TI., PI., and vI. are of the same value as on the Root and all other streamline columns of the same Synopsis.
Ref-Nos-30 to 33, E(I.2)o., IEP(I.2)o., Ei(I.2)o., Esp(I.2)c,., Use formulae given for same values on Root Streamline. 1/2 Ref-NO.IB.- va2 0.= vb20.= (E(I.2)0.2.g./(I.+ I/bo.)) + vaj Ref.NO-I9 - va30.= C30.(va20.vajo.) + vaIo.
Ref.No.20, vblo.= ((va20.- vaIO.)/bc).) + va20.
Ref.NO.2I.- vb30.= vb10, (va30, vaI,.)/bo.
Ref.Nosi.26., 27-, 28., 29., 34-, 35., 36., 37-, 38., 39-, 40-, 49.Y 50.9 & 51. Values m va(I.3)-9 m vb(I.3).q t(I.2)., t(2.3)., Ek(I.2). W(I.2).7 Ek(I.3). W(I.3)., T2.= T3-, p2.= P3., v2.= v3.. Angle A., Angle B., Angle C. Use formulae given for same values on Root Streamline.
Ref.No-53, (I.x 14.x 37.) = r(I.3)0.vemIO,'(I.3)0.
Ref.No-54, (I.x 14.) = r(I.3)0-vcmIO.
Sheet 18.
Continuatiox.- Intermediate Streamline Columx SynoPsis,Tables ID. and IA.
Ref.Nos. 9. & JO--- Values C3 r - and C4r. Use formulae given for same values as on Root Streamline.
Ref.No-54, (r(I.3),.vcmI,.). = (Yiax-Stre.No. - Stre.No.)(r(I.3)0.v--inIO.- r(I.3) R. veraj R)/(Max.stre.No.)+ (r(I.3) R VOMI R).
Ref-No-14- vcr'I,. = (r(I.3)r.vcixI:r.)/r(I.3):r.
2 2 1/2 Ref-NO-I3, vaIr. = (vaj.+ vcmj._ vemI R R Ref-No.53- (I.x 14-X 37.)r. = (Max-Stre-NO, Stre.NO.)( r(I.3)0.vcmlo.W(1.3)0.- -r(I.3) R. vemI R W(1 - 3) R May,Stre.No.). + (r(I.3) R VeMI R W.(I.I) R.) Ref-NO-37, W(I.3)._ = I(I.X 14.x 37.),./(r(I,.3-):,.vcmI,.) Ref.Nos- 6.,7. Y8. Y15. 16.,17, Values, T. yP. v. TI. gpI. vI. are of the came value as ox the Root Streamline Column of the same Synopsis.
Ref.Nos.30 to 33, Values E(I.2)r. lEP(I.2)r.lE'(I.2):r. 1Esp(I.2).r.
Use formulae given for the same values on the Root Streamline.
Ref.No-36.- Ek(I.3).. = W(I.3)r- (y.EP(I.2).r.)_ Ref.NO-I9, va3r. = ((Ek(I.3)r2Q.g. + vaI r 2.)J/2.
Ref-NO.I8, va2 r - = ((va3-- vaI.)/C3-.) + vaj.
2 2 Ref-No-34, Ek(I.2).. = (va2 r._ vaj r.)/2.g.
Ref.No.20, vbIr. = ((E(I.2),.2.g./(va2 r - vaj r + vaI r Ref.No.II, b.. =.(va2 r, vair.)/(YbI r, vb2 r.).
Ref. Nor.,. 35. 37-,38. 39-,40. 49.,50.,51 - - Values. W-(,.2):r. qW(I. 3)r. 9 Angle A., Angle B., Angle C. Use formulae for the same values given for the Root Streamline.
Sheet J9.
Continuation - Air Mass Flow Mean Values - Synopses Tables ID. IA.
Note:- The suffixes applicable to the example would be to (r 4-)- 2 Ref.No-41.- ArI r Pi.(r(I.3.) (r=O.) r(I.3)r Ref.No-42..- m veml = m VCMI (r=x.) vcla,(,=,/2)' Ref-NO-43-- MI Arj,m vcmj:,./vI Ref-No-44-Ref.No-45.-- Ref.NO-46.- Ref-No-47-- Ref.No-48.- NOte:- The from m W(I.3 m T2 - = m Ek(I.3).r.= m Ek(I - 3) (r=x. Ek(I. 3) (r=x/2.
m Ep(I.2).r.= m Ep(I.2) (.=X.).= Ep(I.2)( r=x/2.) m Bi(I.2) m Ei(J.2) Ei(I.2) r (r=x.)= (r=x/2.) m Y(I.3)(r=x )r.) = W(I.3) (r=x/2.) m T3 m T2 T2 r (r=x.) (r=x/2.) mean values for m p2r. and m v2 r can be calculated the above temperature if required.
Horse Power = H.P.r.= MIr.m W(I.3).r./550.
End of Procedure for Stage I. Synopses Tables ID. & IA.
Sheet 20.
Computation of plane n. -values intermediate between Planes I. & 2.
All Streamline Columns - Blade Section a. Tables 2D. & 3D.
Ref.No-54- van vai n.(va2,.- vaj,.)/N. va(n=O.),.= vaj r Ref.No-55- vbn,.= vbI,.- n.(vbj.--- vb2..)/N. vb(n=O.):r.= vbjr.
2 2 Ref.No-56- Ek(I.n)...= (van r._ Vai r.)/2.g.
Ref-NO-57, E(I.n) r.= (((2.vbj,..)+ I.)-van.))(van,.- vaj..))/2.g.
r - Ref.No-58, EP(I.n)..= E(I.n==%)-+W(2.m=(M-x.)) r Where M-NO.Of Planes N-No.of Planes...
Also EP(I.n)..= E(I.n)..(j._ (C3.- 1.) 2. 2 Ref.No.59.- Esp(I.n)..= E(IMr.(C3r, I.) Ref-No.60---Ei(i.n).. = (Y-- I.)-EP(I.n) Ref.No.C. W(I.n).= (BaI vbj 2 - - Ban. vbn 2.) /2. g.
r r r r Ref-No.62- Ban ((Baj..vbI 2._ (2.g.(E(I.n),.+ Ei(I.n) + r r Ek(I.n)..)))/vbn. 2 ef.No.63.- t(I.n):r.= ((I.- (TI../(TI..+ (Y-I-)-EP(I.n)./C.
IAyi.) -).2.P2../((VbI:,.+ vbn,.)- (vajr.+ van:r.))) nef-NO.64.- L(I.n).= Ref.NO.65- Fpan.= r t(I.n):,.vemi..
t(I.n),.(vbj,.+ vbn:r Ref.No.66, San r t(I.n),.(vaI, + van t(I.n).(vaI.+ van Ref.No.67- Rpan. = r Ref.No.86, R Fpin r Fpax r t(T.n) VI Ref-No.87, R San r. = San Ref.NO-88, R Rpan - = Rpan t(i.x)rvi Sheet No 21.
Computation of ?lane m. valuesinteriLediate between Planes 2. & 3.
All Streamline Columns - Blade Sectiox b. Tables 3D. 4D. & 5D.
Re.NO.68, vam. = va2.+ m.(va3:- va2r.)/Ji.
Ref.NO.69, vbjn r vb2r.+ m.(vb2 r - vb3,)M 2 2 Ref.NO-70, Ek(2.1n)r. = (vam r._ v;L2 r.)/2.g.
Ref.NO.7I, E5P(2.m):r. = Ek(2.m)r. W(2.in)r.
2 2 Ref.NO-72, W(2.m).r. = bo(vb2 r vba r.)/2.g.
Ref.No-75, Esptre = Residual Air Spring Energy existing at Plane m. = Esp(I.2) r - Esp('.x):r Ref-NO.73, t(2.x)r = L(2.m)./veiRI.
Ref-NO-74- L(2.in):r. = Dr.((Sin.(Tan. -I. (Vamro/vclair.)) (Sin.(Tan.-,(va2,/vcaI,.))). -I.
Ref-NO-74A, D r.4(Radius) = L(2.3)rj(Sin.(Tan. '(va3r./vcxI:r.)) (Sin.,--'(Tan.-"(va2./vcmI_.)).
Ref-NO.76, Fpbxr.= Fpa2r.+ t(2.a)r(vb2 r.+ vbm r.)/2.
Ref-NO-77, Sbier. Sa2r.+ t(2.m)..(va2 r.+ vam r.)/2.
Ref-NO-78, Rpbar. Rpb2r.+ t(2.ia)r.(vb2.+ vbYar.)/2. r Ref.No.90.- R Fpbar. = Fpbjar.- t(I.m)r.VIro Ref.No.91.- R Sba r = Sbar, t(I.in).r.VIro Ref-No.92, R Rpbxr- = Rpbm., t(I.m)roVIr_.
Ref.No.89, L(I.M)r'. = L(I.2):r.+ L(2.ja)r.
Sheet 22.
or Coliputation of Plane w. values intermediate between, Planes 3. & 4.
All Streajaline CO1wnns - Blade Section C. Tables 5D. & 6D.
Ref.No-79, L(I.w) r L(I.3)r.+ w.L(3.4),./W- Ref.No-79A, L(3.4) = L(I.4).L(I.3)..
Ref-NO-79-B-- L(I.4) = vclal -t(I.4)..
Ref No-79C, t(I.4).. = (PI r (VI r:r Ref.No.83.- rw r.= b/2.a. + ((b.,./2,a.). 2. + 1/2 where a. = 2.P:L./No. of Blades.
Where b--, = (Xwouter'-'- Xwinxer') Where inner & outer refer to two adjacent strearLlines which enclose an area.
Where a. = (2.Pi.rw Outer 2 INO. - (Ar inner Ax outer').2./No. - b.rw outer' Commence with the outer pair of which the outer Ar r=O:- Zero. and continue inwards using the first calculated inner radius.as.the outer of the next pair and so on. The iitclividual area of the first set is:(Ar2 r=I - AX r=O).
Ref-10.80, Fpow FPbl.+ WA(3.4)r-/Wi. - (X3, Xw.)/2.
r r r r Ref-NO.8I, Sow Sb3. + w-t(I.4):r r ' P; - Ref.No.82, Rpew Rpb3r+ W.t(3,.4)r./W7. + (X3,r,.- Xw.)/2.
r r Ref.No.96.- R R r RPcw r. - (vi r JvoxIr).L(I.w)r Ref.No-95.- R Saw Sow. - (V1 JvcaIrw).L(I.w) r Ref-NO-94, R FPcv Fpew r r 2 2 1/2 2 Ref.No.84- Xw= 2.((RP r._ LD-w)r.)._ L(3. 4) r 2.) 1/2.
2 Ref.NO.93, RF r.= Forla Radius= (L(3.4)r. A3.r.)+ X3r,A Yhere in the example Xl.= X2 r r Sheet 23- Computation of Plane w. values intermediate between Planes 3. All Streamline Columns - Blade Section-" Tables.5D. & 6D.
Note:- In the example the streamlining of all blade sectioxa start at Plane 3. Thus with the exception of the energy value Ei(I.2) and the introduction of the value (BaIr.- br.) to take it into aecount which does not affect the blade absolute and relative profile dimensions, the formulae of the analogy and those up to Plane 3. used for the example are alike. However particularly in the case of Synopsis IA. it could start earlier with Plane 2. being a maximum upstream position.
In-the case of Synopsis IA. it would be ad-vantageous.for reason of material stress to use the same root section as for ID. but on.the blade tipsection use Plane 2. as the starting position of the streamlining. In between it could be varied fie.x the plane of one to the other.
Vie streamlining will not affeat the energy change between Plane 2. and Plane 3. providing the value (X2r-- Xb r')/2 issubtracted from the front and added to the rear profile throughblade section b. similarly as is done on section c.
Sheet 24.
Rotor Blade DesigA Roced_ure applicable to Rotors which follow Stators. Synopsis Stage 2. Tables17D. Notes:- To provide fOr the matching of the airflow througa- a multiple number of stages-it will be noted that the Stage I-. Synopsis has made the two Products (r(I-3.)rvcmIr-If.-(I-3)r) and (r(I.3)r-vemIr) to vary in value at a constant rate radially across the inlet plane, such that the mean streamline valuesare also the mean values, of the air mass, flows which at the inlet plane are.3ymetrically disposed on the plane. Thus W(I-3) r=x/2 equals m W(I.3) r=x, 1, Ek(I.2) r=x/2. equals a Ek(I. 2) r=M. etc.
This provision isnLade to apply to all stages with a further proviso that the two valuesvaj. and vcxj. on the mean streamline of the full air mass flow are the same for all stages. However due to the repositioning of the full air mass mean streamline each stage the values of the lesser portions do change slightly each stage.
The following formulae have been provided to calculate the new values:Ref.No.4I, ArI R = Stage I. AA R - & r(I.3) R Stage I. r8 R. 2 Ref.No.4IArIr. = Fi.(t(I.3)0. r(I.3)r 2 Ref.No. I, r(I.3) R Cr(I.3), Stage I.Ar8 R. pi.)1/2.
Ref.No. I- r(I.3):r r(I.3)0. (Str.No.)(r(I.3), r(I.3) R)/(max.str.NO.).
Ref.No. 5---VIr. = r(I.3)rVIC./r(I.3)0.
Ref.No-43---MI.. = A-.rI:r.m voinIr./m vIr.
Ref-Nos. 9;.,IO.,30.,3I.932.,33.-i35.138.,39.y & 40, C3r.C4:C.9 E(I.2) p ELDI.2):,#, Ei(I.2)r.l Esp(J.2),.q W(i.2)r_q r T2 r., P2:r.,, v2 r.,, Formulae for their derivation are as used for Stage I. Synopsis.
Sleet 25.
Rotor Blade Design Procedure applicable to Rotors which follow Staters. Synopsis Stage 2. Table 17D.
A Ref.No-54, Stage 2.(I.x 14.)0. = r80.vcm80.
Stage 2.(I.x 14.)R. = A R vcm8 R Stage 2.(I.x 14.)r=M.No. /2. = r(I.3)r=M NO.2vcln,r=Y,.No./2 Ref.NO-54, Stage 2.(I.x 14.)r.= (I.-x 14.)0. ((r(I.3)0. - r(I.3).r.)((I.x 14.)0. - (I--X 14.) R)/(r(I.3)0.
r(I.3) R))' Ref.No.14- vemI_. (I.x 14.).ro/r(I.3)r.
2 2 2 1/2 Ref.No.13, vaI (Stage J.(vaj r. + vemI r VOMI r.) Ref.Nos.15.,I6.and 17, TI r gpI,.and vIr. = T8r.,p8r.and v8 r.
Note:- It hasbeen assumed that the blade strength is capable taking an equal load as.the I St. Stage so W(I.3) RMR' of the nd'Stage has been made equal to that of the IstStage. W(I.3)0. of the 2ndStage has olso been made equal to W(J.3)0. of the Ist-Stage. Thus:- Ref.No.37, W(I.3).. = (I.7C 14.x 3Mr-AI..x 14.)r.
Ref.NO-53, (I.x 14.x 37.)r. = (I.x 14.x. 37.)o.+ Cr(I.3)0, r(I.3):r.
)(2.((I.x 14.x 3MO, (I.:x 14.x 37.) RKR)/(r(I.3)0. - r(I.3) R) Where (I.x 14-X 37.)b.r(I.3)0.vcmIO.Stage I.W(i.3)0.
And (I.:x 14.x 37.) r(I.3) VCMI Stage I.Y(I.3)RMR nm.n M111 171 rL Ref.No.36, Ek(I.3).. = WC.3)r, y.Ep(I.2)r.
Ref.No.I2, -va3 r.. = (Ek(I.3):r..2.g. + -vaI r 2.)1/2 Ref.NO.I8, -:.va2 r -- = (va3r, vaIr.)/C3... + vaIr.
2 2 Ref-NO-34- EgI.2),.. = (va2 r._ vaI r.)/2. g.
Ref.No.II, br. = (va3 r - vaj...)/(vbIr- vb3,.-) -Sheet 26.
Rotor Blade Design Procedure applicable to -Rotors which follow Stators. Synopsis Stage 2... Table 17D._ Ref.No.12.- Ba2 r - = br. + Bi(I.2) r 2.g./vbj., 2 lqef.No.20.- vbI r = (E(I.2)r-2.g./(va2r- vaj..)) + vaI r vb3 - = vb2, (va3 - va2_.)/b.
r r r r r m va(I.3)r = ((va3r, vaIr.)-C4r-) + vajr.
m vb(I-3),. = m va(I.3),. + X2r./2.t(I-3)r.
t(I.2) r 2.X2.r../(vbI r - Val r).
t(2-3)_r. X2 m VCMI Ref.No.21.lqef.NO.26.Ref-No.27-T?ef.No.28.T?ef No. 29 - Ref.No.42.- T?ef.No-44 - m Ek(I.3).,=, -?ef.NO.45-Ref-No.46, P,ef-NO-47, Ref-NO-48, Ref.No-49.Jef No. 50. Ref-NO- 5IRef-NO-52, m Ep(I.2),=x.
m m m T2 T2 Angle A Angle B Angle Cr. = Horse Power ./(va3r--- vb3,.).
vcmj r=X/2 Ek(I.3) r=x/2 EP(I.2) r=x/2 Ei(I.2) r=x/2 W(I.3) r=x/2 r=X/2 Tan. -I. (va3,./vcmI,.).-.- Tan. -I. ((Vir, va3 r)/vcmir.)- Tar.. -It. ((V-T r.-',a Vb( 3)r.)/vemIr).
= NI, I r=xm W(I.3)r=x/550.
Sheet 27.
* Axial Flow Air Compressor Design Procedure.
Stator Blade Design Procedure - Notes. Tables 7D. to 16D.
The axial length of the stators is divided into two parts by a short length interposed for the adjustment of total length for mechanical reasons. The basic planes being as fpllows:- Inlet Plane 5 This plane except for being divided by a different nuxber of blades is exactly as the preceding rotor outlet plane.
Planes 6. & 7. Air conditions at these two planes are exactly &like. Except for allowing for the rotation of the air, dimensions are also alike.
Outlet Plane 8. Except for differences in the radial positions of the intermediate streamlines and number of blades the dimensions of this plane are identical to the following Rotor Blade Plane I. Thus before calculating any Stator conditions it is required first to compile the Stage 2. Synopsis.
Planes intermediate between the above planes. The planes which divide the length L(5.6).,. are designated by the letter m. The planes which divide the length L(7.8),. are designated by the letter n.
The function of the first portion of the blades is to move the streamlines radial position so that at Plane 6. they are axially in line with their position on Plane 8. A second requirement is to change the proportions of va5 and vCm5suelt that the ratios va6 r./vom6r.9 va7r- /vem7r' and va8 r/vcm8 r. are of the same value.
The function of the rear portion of the blades is to reduce the air velocities va7r./vcm r. via van r./Vcmn ?. to va8 r./Vcx8 r.
while changing the surplus of kinetic energy into heat energy.
by diffusion.
An-assumption has been made that the levelling out of air temperature radially outwards is effected between Planes 7- & 8. whickthougk not exactly true is only untrue quantitatively.
Sheet 28.
StatOr Blade Design Procedure - Continued.
Outlet Plane 8.. Tables 8D. & 16D.
Ref.No. 3- m T8. = m T2 + m Ek(I.3),.(y-I)./y.C.
r R Ref.No. 4- m p8r. = m p2 R (m T8r./in T2 R)Y/(Y-I).
Ref.No. 5- m v8,- = m v2 R.(m T2 R' /m T8r.) IAy-i) Ref.No.22- T8 r - = Ref.No.24- v8r. = Ref.No.37- r8.. = m v8 (r8 0 2 Ax8 r. /,:,i.)1/2.
m T8 Ref.No.23, p8,.= m p8r.
Ref.No. 7, Ar8r. = M8r.m v8,./m vcm8,. = m Z8r.H8 r No. Ref.No.63- (37.x 21.)0. = r80-vem80 Where vcm80.= (vcmio.- vcmj RMR)(r80, 1948 R)/ (ri T_ 311 R.). + vemI RMR Ref.No.63- (37.x 21.) R 2. (vemI RMR IN8 R.). - (37.x 21.)0. Ref.No.63, (37.x. 2I.)r. = ((37-x 21.)0, (37.x 21.)R.)(r8:r -A R.)/(:r80---r8R). + (37-x 21.) R Ref.NO.62, Ref.NO.20, Ref-No. I, Ref.No.4I, Ref-NO-I7, Ref-No-34, Ref.No.58- v=8 r. = (37.x 21.) r -/r8r. (4I.x 2.) Rmr - = ((37-X 2I.)o.+ (37-x 21.)r. )/2.
m vcm8 r. = (4I.x 2.) RMr /RM8 r.
2 2 2 va8 r ((-vai r. + VOMI.), vcm8 2 2 2 m va8r. = ((vaI r. + vemI r m v=8 r W r. = (r8 0.+ r8 r.)/2.
m P8 r 2.-RK8 r Pi./NO. Ref-NO-I8- m Z8.
P8 r 2.x8 r Pi./No. Ref-NO.35- Z8 r Rv8r. (vaI, 2.+ vemi:r 2 1/2 Ref.No.5 Rv8 cr, r Sheet 29.
Stator Blade Design Procedure - Continued.
Outlet Plane 8..
Tables 8D. & 16D.
Ref.NO.561, L(7.8) r = X7r./2.Tan.0(7/8) r Ref.No.52c- A7/8) r =(Cos-I W-+ (I-+ z(7/8)r.)Rt(7/8)r./2)1i' (I.+ Rt(7.8) r))/2.
Ref-No.50- z(7.8) r = ((IIY)+ (I/Rt(7/8) r 2.
(I/Y.RtW8) r 2.)) 1/2.
Ref.No.49, Rt(7/8)r. = Rv7r./Rv8r.
2 2 1/2 Ref.No.58, Rv8 (va8 r. + vcm8 r.) 2 2 1/2 Ref.No.58, m Rv8 - = (m va8 r. /+ m v=8 r.) Ref.No.57- L(5.8) = L(5.7)r.+ L(7.8)r. r Ref-NO-55t(7.8)r. = L(7.8)r-/m vem(7.8)r.
Ref.No.59, m vem(7.8),. = (vom7r + vcm8r.)/2.
Ref.No.60, Ref.No.43, Ref.No.44,- Ref.No-53, Ref.No-54 - Ref.No.61, Ref.No.62, (41.x 2.) r =nM8 r m VOM8 r.
Ref.NO.63, (37.x 21.) r =r8,.vcm8 r.
slight difference in the values of va8 r -, vcm8 r the values of vaI r ' VOMI r. on the Stage 2.
Synopsis is accounted for by the slight changes of air mass flow governed by the intermediate streamlines.
Note:- The to M8 r - = As Stage I. Rotor Plane 1.
m Q8r. = Tan-,(m va8r./m vcm8.r.) Q8r. Tan-I(va8r./vem8r.) SPp8 Tan.Q8 -L(5.Cr.+ X7r./2.
r r SFAr' Ry r L(7.8)r./Sin.(2.(7/8)r.) SRp8 r Sheet 30.
Stator Blade Design Procedure - Continued.. Inlet Plane 5- Tables 7D. & 9D.
Note:- Plane 5. outer and inner boundary radii together with the radial positions of the intermediate streamlines are exactly the same as on Plane 4. of the preceding rotor blades.
Ref.NO.2. In.vcm5,.= AG.Ref.No.42. of the Stage Synopsis.
2 1/2 Ref.No. I, m va5.=No. (m. EEK(I.3) r =No - 2. g. + vaj r=No. /2..) Ref.No. I, m va5.=No. = va3 r=No./2.
Ref.No. 3, m T5r--- As Ref.NO-48. of the Stage Synopsis.
Ref-No. 4- m P5r.= m P5r=No. P1r. (in T2 r=110. /TI r.)yAy-i.) IAy-i.) Ref.No. 5- m v5r--- M V5 vI_.-(TI /T T5 To.) & r =No & - r =1 Ref.No. 7, Ar5r. = REF.NO.37- r5r. = D- e f. No.41- IIII..m. v5,./m vcm5,.
2 Cr50 Ar5r-Pi.) 7M5r = (r50.+ r5rs)J/2.
Ref.NO-I7. m P5r - = 2.Pi.RJ5:,./NO. Ref.No.18, m Z5r. = m P5r.
ef.NO.34- P5r -- 2.Pi.r5,./NO. Ref.No-35- Z5.. = P5r.
-Ref.NO-36,X5.., -Zero. Ref-No-19, X5 Zero.
r Ref.No.42, H5r.= (r5,- r5r.) Ref.NO.43, m Q5,.= Tan. -I (m va 5,./m vcm5,.) Ief.No-44, Q5.. = Tan. va5r./WM5r.) Ref.NO-53, SFP5,.= Zero. IRef.No-54-- SRP5_. = Zero.
Rgf.No.'3.- m vom(5.m),- = vcm5:r.
2 2 1/2 -ef-NO-58.-. IRV5.- (va5. + vein 5 r 2 2 1/2 Ref.No-58- m Rv5 r = (m va5,.+ m vcm5,.) Ref.No-58, Ref.NO.58- Rvx5r. = R1v5...
m Rvx5 - = m Rv5r.
T z c Sheet 31.
Stator Blade Design Procedure - Continued.
Plane 6. & 7. - Tables.8D. & 131).
2 2 1/2 Ref.No.58, Rv6 (va6 r. + vcm6 r. = Rv7r.= Rv5r.
2 2 Ref.NO.58- L' Rv6 -. = (m va6 r. + a vcm6 r.)1/2. = m Rv7r= x.Rv5r Ref.Nos-43. & 44- a Q6r. & a Q7r & Q6r. & Or. are exactly as a Q8r & Q8r.
Ref-No. I, a va6 11.= m va7r. = Sin.m Q8 r m Rv6 r - Ref-No. 2. a vcm6,.= a vcm7.= cos.aa Q8a Rv6.
r r r Ref.NO.20, va6 va7,o= Sin.Q8..Rv6.
r Ref.No.21, vcm6,-= vcm7,.= Cos.Q8reRv6r Ref-NO.22, T6 -. = T7r.= T5r. Ref.NO.23, p6,.= P7r, = P5r.
Ref.NO-24, v6r.= V7.r.= V5r.
Ref.NO-37- r6 r- r7r = -r8,. Ref.NO.4I, RM _r.= R7r.= RM8r Ref.No-34- P6 r- P7r.= P8r. Ref.No.I7., a P6 r.= a P7r.= a P8 r.
Ref.No. 7, Ar6:r.= Ar7r--- M5rm V5ro.m VOM6r.
Let RMR. = (r=Max.NoJ2.) Ref.NO.35- Z6 RMR - Z7 RKR= v6 RKR vcm8 RMR P6 RMR /vcm6 W V8 RMR Ref-NO-35, Z6 LUIM-I 2.((Ar6 RMR, AA RMR-I.) /(1.6 RMR-I-_ r6 RM R).NO.) - Z6 RMR Ref.No.35.- Z6 RMR-2.= 2. ( (Ar6 RMR-I. Ar6 RMR-2.)l(r6 RMR-2.--- r6 RMR-I -).NO.) - Z6 IRM R-I - Ref.No.35,, Z6 RMR+I.= 2. ((Ax6 IMR+I - - Ar6 RMR).Z(r6 RMR_ r6 RMR+I.).NO.) - Z6 RMR Ref.NO.35- Z6 RMR+2..= 2.((Ar6 RMR+2._ Ax 6 RMR+I.)/(r6 RMR+I.
r6 WR+2.).NO.) - Z6 RMR+I.
Ref.No-35- All values of Z6 aPPlY to Z7. with identical suffices.
Sheet 32.
)t,ator Bla-te Design Procedure - Continuet.
Planes 6. & 7. - Tables 8D. & 13D.
1 1ef.1To.I8- m Z6r--- m Z7r. = AA /No.H6 r -ef.NO-I7.- m P6 r.= m P8 r I ef.lo.19.- m X6 r'= m X7r,= m P6 r, m Z6 r lef-NO-39.- L(5.6) r = X6.a/(((6 r- VOM5r.)Ava5r--- v-a61..)) (va8,./vcm8,.)).
"ef.No.39- L(5.6)r.= Sin.,6,).
ef.No.64.- RP...= (X6_../(((vem6 vcm5.r.)/(va5X.#- va6r))va8r/vcm8r))(Sin..5r- Sin.,6,.)) -ef.No-38- t(5.6)r. = L(5.6)r'/m vem(5.6),# )ef.NO-33- m vem(5.6)_.= (((,,v5 2. 2.) (U6 U5:r + ( "v5 2 A.X Sin.(2.1T5_..) - Sin.(2X6..W(va5r--- va6r.)).
Where U6..= ((Pi.,/2) Q6r.) an.L U5 r= ((Pi.11/2) - Z5r.) Whe:,e 'li6r. and Q5.ro are in -adians.
L 2. 2. 1/2.
Whe re ?Y5:.. = (-va5 r + Vom5:r tef - No.31. - L(6.7)r# This length is optional.
ef.'tgo.30.- t(6.7):,#= L(6.7),#/vcm6...
Ref.No-39, L(5.7)r, = L(5.6)r+ L(6.7)r& ef-NO-38.- t(5.7)r# = t(5.6).re+ t(6.7)r ef.1To.53.- SFp6,.= Tan.Q6.oL(5.6).. ef.No.53.- UP7. Tan..6:r.L(5.7):r.
ef.NO-54.- 3-1P7. = SFP7r+ X6 r. Where X6.r.= Z7r -.ef.1To.54- 3-P6.. = SFP6.r.+ X6 r Ref.No-36, X6 r = X7r--- (P6 r, Z6r.) Sheet 33..
Stator Blade Design Procedure - Continued. planes m. - Intermediate between Planes 5. & 6.. Tables 7D.jand 91). to 12D. Note:- There are two ways of plotting the inner lamina profiles of the various areas of airflow, the first of which is to arrange a constant rate of change of the values m m r. and Qmr. and a constant rate of change of the value Xm r. in a radial direction. It is then possible using the required areas of airflow in a Quadratic Equation to calculate the exact values of rm, r. to enable the inner lamina profiles to be plotted. Initially this was done but the curves were inconsistant in form and for that reason discarded.
The second method which was applied to the example is to use the values m Q;mr.q Q.
pr and Xm r. as before and arrange a curve of constant arc radius whose radius centre would lie on a.radial line intercepting Plane 6. of the inner streamline, and in a similar way for the other streamlines. The latter curves are thus the mean of the calculated ones. The effect of the latter when the area Arxm r - is greater is to slow down the value of m Rvxm r. to m Rvm r. and if less to speed up the value m Rv=.. to the value of m Rvm And as m vcmxm m vcm5r-Ar5r/Armr. (Where Arm = No. 11M r m Zm r.)5 m vaxm r. = Tan.m Qn:rom vcmxmr.
Ref.No-43, m Qm - = m Q5,r. - m.(m Q5.- m Q6..)/M.
r -Ref.No-44.- QM Q5 M.(Q5r.- Q6r.)1M. Where Qmr.= Tan.-I(vamr./vemm r) r r Ref.No. I, m vam r. = Sin.m Qmr-m Rv5r.
-?,ef.No. 2, m vcmm.. = Cos.m QPirom 'v5:,.
Where m Qm r.= Tan. -I. (m vam r/ m vomm r.) - 2 2 Where m Rv5r. = (m va5,. + m vcm5.r)1/2..
ef.NO.20.- vam r. = Sin.Qmr.Rv5r.
Tef-NO.2I.- vemm Cos.Qmr. Rv5r.
2 2 1/2. Where '.1v5r. = (va5,. + vcm5,.) Ref.NO.2A, m vcmxm,-= m vcm5...Ar5,./No.Hm,.m Zmr.
Ref.No.IA, m vaxm. = Tan.m Qm m vcmxm.
r r. r Arm r - = N6.Hm r m Zm r.
Sheet 34- Stator Blade Design Procedure - Continued.
Planes m. - Intermediate between Planes 5- & 6.; Tables J2D. to 9.D.
Ref-NO.20A- vaxm r Sin.Qm.-."1-vxm r r Ref.No.21A- vcmxm r. = COS.QMr-R= r fhere Rvxm Rvm m Rvxia./m Rvm. I.There r R R 2 2 1/2.
Ref.NO-37, rmr.= (Rxr,._ (L(5.6) r, L(5.m)..).).+ (r6.r.- Rx.).
Where U! r.= (L(5.6):r 2 J2.(r6r--- r5,.)-).+ (r6.- r5r.)/2.
Ref.No-39, L(5.m).r.= L(5.6)r-(va5 - vam..Mva5.- va6,.). r Ref.NO.39, L(5.m).r.= (Rpr.(va5r--- vam.. /,Rv5...
I.There RP = L(5.6)r-Rv5r-Ava5 r.) r. - va6 Ref.No.36, Xmr.= (RPr.(Cos-Qn r- Cos.Cr.)) - (L(5.m).#Tan.Q6 Ref. No-17, m Pm,.=:U,,1m,.2.Pi.,/No. Ref.No.4I.,- IREM..= (rmo+ xmr.)/2. Ref. NO.34, Pmr. = fm,.2.Pi./1o. Ref-NO-32, Zm_.= (Pm., Xmr.).
Ref.No.I8, m ZM r=4= (Zmo.+ ZM r=4.)/8. + (ZM r=I + ZM r=2 + ZM r=3)/4 m ZM r=3= (Zmo+ ZM r=3)/6 + (ZM r=I + Zin r=2)/3 m ZM r=2= (Zmo.+ ZM r=2)/4. + (Zm.=I)/2. m ZM r=,= (Zm 0 + Zmr=j-)/2.
1 Ref.NO.I9- m Xm r.= m Pm r - m ZM -1 2.
ef.NO.33, m vcm(5.m) ((Rv5 2J2.)(Um., U5r.). + (Rv5 A.)( r r Sin.(2.U5r.) - Sin. (2.Um,.))/(va5.,.- vam:,.).
Where Um r.= ((PiJ2)- Qmr.). and IT5r--- ((PiJ2)- 0,5r.) 11 QP1r and Q5 are in Radians.
Ref.No.38, t(5.m)-- = LD.M).-/m vem(5.m),.
Ref.No. 7- Arm r.= No.Hm r m ZM r. and Ref.No.43- Hm r - = (rm c). - rmr. ) Ref-NO-53, SFPm,.= Sin.Q6 rL(5.M)r. Ref.NO.54- SIRpm_.= 'Fpmr.+ Xm r.
Z Sheet 35.
Stator Blade Design Procedure - Continued. Planes n. - Intermediate between Planes 7- & 8. Tables 8D.J4D.J5D.
Ref.No._58, Rvn r - = R-v7r. - n.(R-Y7,.- Rv-8....)/N.
Ref.NO-58, it RYn m RT7 n.(m RY7r--- a Rv8r.)/N.
Ref.No. I, m van.. = m va7r. - n.(m va7r--- a mit8r.)/N.
a van... = Sin.m Q8 r. a Ryn r - Ref.No. 2.- a vcmn -- = & vcm7.r. - n.(a vca7:r,- a vca8,.)IN.
jia vean r, = G05-m Q8.om Rv%.
Ref.No.20, van - - = va7r--- n.(va7,,- va8,#)/N. = Sin.Q8:&Rvn...
Ref.NO.2I- vemn.= vcm7,.- n(vcm7,.- vc&8,.)/N. = Cos.Q8..Rvn.. 2 Ref.No.22, Tn Tn T7 + (Y-I.)(RV7 r=M.No./2= RMR RMR RMR 2 Rvn PAR)/y.2.g.C.
Ref.No. 3, a Tn r=M.NO Tn RMR 2 2 Ref.No-22x.- T=.= T7 (y-I-)(RY7 r Rvn r,.)/y-2.g.C.
- r Ref-NO-3x, zt T= r:x - =" T= r=x/2' Note:- For streamlines whose number is less than the Streamline (r=M.NO. /2) = RMR. the value n.(Tn RMR--- T=..)/N. should be added to T= r - For streamlines whose nuaber is greater the value n.(Txnr,- Tn RMR---)IN. should be subtracted from the value T= r. It will thus be seen that in the temperature levelling out the surplus heat is presumed to move radially outwards between Planes 7- and 8.
Ref,No.22, TA_. = T-M r - + n. (Tn ERR - T=r -) /K - Ref.No- 3, a Tn - - = a Tn r=x - = Tn r=x/2' Ref-NO. 4-- m Pn,- = a k7r-(m Tnr./ma T7,r IAY-I-) Ref-No- 5-- m vnr- = m v7r-(m T7,./x Tn..) Ref.No.23.- Pn - = P7r.(Tn -/T7r-)Y/(Y-") r r Ref-No.24-- vnr' = v7r.(T7r'/Tnr')I/(Y-I.)' 0 Sheet 36.
Stator Blade Design Procedure - Continued.
Planes n. - Intermediate between Planes 7. & 8. Tables 14D. & 15D.
Ref.No. 3_.- m Tn r m T= r. + n.(m Tn 2. RDIR: - m T=.)IN.
Ref'.No.22.- Tn r Txn r. Tn. (Tn IRMR Txn,.)IN.
Ref.No.23.- pn r = P-7,-(Tn,./T7,.)Y/(Y-I.).
Ref.No.24.- vn. = v7r.(T7 /Tnr.)I//(Y-I.).
r r Ref-No- 4-- m Pn,- = m P7 -(m Tn r /m T7,o)y/(Y-,')' r Ref.No-5.- m vnr' = m v7r'(m T7r'/m Tnr.)I/(Y-I.
Ref.No.7---Arn r. = Y15..M vn,./m vemn r. Where M5r.
Ref.NO.37, rn r. = r7r. = r8r.
Tef.NO.42.- Hn r - = H7r. = H8r = M4r.
Ref.No.35, R0 R r=MIax.No./2 RM R PMR RY1 R R Zn. = Zn. = Z7. v=7. -vn 1.1re--myl -1r7 Ref.NO.35- Zn r=I 2.((Arnr =2 o- Arn r=I)/NO-(Hn r=2- Hn r=i.)) - Zn RYL R Ref.No.35, Zn r=o 2.(Arn.=,./llo.Hn r=i -) -- Zn r=I Ref.No.35- Zn r=3 2.((Arn r=3- Arn r=2)/No.(Hn r=3 Hn. =2)) - Zn r=2.
Ref.No-35- Zn r=4 = 2. ( (Arn r=4 Arn -,=3)/NO("n,=4.- Hn r=3)) - Zn r=3 Ref.NO.36, xn,.= Pn..- Zn.. Ref.No-34- Pn r.= 2.Pi.rn r INO.
-1. 2 1/2.
Ref.NO-52, V(7/n),.= Tan. (A r./(Ry r.2.A r, A r Where Ry r.= L(TA).. /Sin. (2.0(7/8) r)' And A r - (X7 r - - Xn r.)/2.
Ref.No-56, LP.n)r.= -!-y..Sin.(2.0(7 /n)r ef.No.55, t(7.n)_.= LP.n)../m vom(7.n).# Ref.NO.59- m vcm(7.n),. = (vcrfl7r.+ vcmnr)/2.
Sheet 37.
Stator Blade Design Procedure - C'Ontinued.
Planes x. - Intermediate between Planes,7-. & 8. Tables I4D--& I5D Ref.No-17-- m Phr- = 2.Pi.RMn r -INO.
Ref.No.I8.- m Zn r - = Arn r- /No.Hn r Ref.No.19.- m Xn - = a Pnj.- m Z.n r r r Ref.No-57.- L(5-n) L(7.n).r,+ L(5-7)ro r Ref.No.53,-- SFpn Tan.Q7r.L(5.n - + (X7ro- Xa)/2.
)r r Ref-NO-54- SRpn SFPn r + Xn r Ref.No.41.:- Wn FM7r, = RM8 r Sheet 38.

Claims (5)

CLAIMS,. I. The COPYRIGHT FOR THE BLADE SHAPE DESIGN SYSTEM described on Sheets 13. to 37-, Tables I.A., & I.D. to 20.D. and Figures of the PATENT SPECIFICATION. 'OF A REPEATABLE AXIA-L COMPRESSOR STAGE OF COMPRESSION which LIMITS THE EXISTENCE OF THE ENERGY DESIGNATED Esp. to the AXIAL WORKING LENGTH defined by the DIMENSION DESIGNATED L(J.3). 2. Tke PATENT reserving to us the SOLE RIGHT TO DESIGN? MANUFACTUREt AND USE ROTOR BLADES HAVING SHAPES vhick are aefinea by SETS OF DIMENSIONS OBTAINED BY USE OF THE ABOVE SYSTEM whick can be identified by the SUDDEN CHANGE IN DIRECTION OF THE BLADE CENTRE LINE AT PLANE 3. which using a SYNOPSIS as TABLE I.D. is at a xaximilin on the ROOT STREAMLINE decreasing with the decreasing thickness of the blade on PLANE 2. radially outwards, and if using SYNOPSIS as TABLE I.A. would be the same as TABLE I.D. on the ROOT STREAMLINE but depending on tke rate of taper of blade thickness on PLANE 2. could increase or decrease up the blade. 1 nn)-1 Amendments to the claims have been filed as follows What I claim: is:- I. The copyright for the blade skape design system described in the application. 2. A;@Qt-;a '"--a multi stage axial flow compressor each stace comprising of a rotor disc supporting a plurality of circumferentially spaced blades projecting radially outwards whose maximum thickness optionally inereases or decreases outwards followed by a plurality.of circumferentially spaced stator blades supported by a tubular outer easing with running clearance between the rotor blades and both easing and stators, each rotor blade having a shape functionally divided into three portions the first shaped to add kinetic, heat and-4ir-sPrirrg energy to the air the second to add a specific amount of kinetic energy to eradicate the air spring energy and the final portion being used to streamline the blade thickness to a point, tke following stator blades being divided functionally into two major portions the first to change the lamina air (tangential velocity/axial velocity) ratio to that required at.the inlet plane of the following stage rotor and the second major portion to change the surplus kinetic energy into heat energy without any alteration of the above ratio, distinguishing itself from existing axial compressors by producing wore silently a. vibration free air output. 3. As claim 2. except that the rotor blade streamline starting position can optionally start at any position from the end of the first portion to the position as claim 2. Sheet 4-0. TABLE 1 A. Compressor Stacle 1. Syno sis. Values r = 0. r = 1. r =2. 3 3 Z2. Z3. -2483-T2)31 '3 -2070993124 -19,-82-64L914 4- X?_ Vi 288.1 G 0 11 1896.0005P5 - f= b -T70 3R1 R I? B21..81?J-73il<99,31 -8690-710 ROB 1'va I -)C)).9,9 R-39) 8f 19 33LR&, I _:E $. 28d-1'7ig(?001,4 16 A:)j. 17C2-00C7q0q 17 v 1 15; ^3-713q-7032 IB vl 2. -v 5 -2. "0-e-2q4L4-E?b44L2-3q),9284421-4p-2125ps 19 va 3.;6:?.73-3q678;4cg-ga94.024 5277.1961]?, -, b 1. S74-c?189CsS7) S94--5;522-7j67 '5-72-5-723354. 2) vbB- 329-624111 1 302-9-791166 2-7q-0-IS(-70 22 ---4 Q 1). 4L5J5--722-7255; 40-q-39 3-:1441.002-7275 -23 (va 2. -va 1.) 3&0.500c3BqS 3-55.228-7R10 24. 7,6D-9'71961,S -72-6611379 -79,(.-3-7EqWS va-3.-\,h3.) 2 ' 10q7c4;7 26 -y-n v20.3). &2G-92E14-78 0 - 2). DOQQ9)R-705 -0000-750321 -DO0070G125 2q -000)'CS9-35 -00011894794,.0001118959 (1 -.2). 40c( -73-73Qk 1 31 3(.grd-9-756G2 - t --- 01 32 E; 1- 2). -35 ( 2). 1866,Bt, 4L729 9ZLj5G,D79320 8220-"1954 aG 2.59 li2k3 44r12ic-7ZL-7191 4203-90/1.955 S7 - - tl-704 W.)99-3 93-7l.'i]c77J;7 113 -T2. 2c7.S.S G-74 1 jú 39;6-2- 2121.694 6",6 :) - 4d A-r I. -b? -rp Zcrn 4039'? r_ C) 3&12.69 4L 7Z 5-7 5 20D 1-6 J 45-36.74L71C1) 4-5 4-G rn Et i (1 - 2). 1479-2:3111 LO - L-7 -rn W 1 -B 99,60-9182306 9-704-96 1 C93- 4,8 m -T- 2. &,-3. ?-q7-5S&-71414 4-9 ANCLE A. 57.925694J2 5;,6-569)9209 B. _45; 44=-22652453 43.652q457? #1 49-SO-2,6a5; 5: 1 11 C - 53 37ú76 lt?Q8 -50-c2:3;32 4- -;474683 52 bORI;E POWER 1 ,L 1. v 1 _) G( 10 2-7.2-3)39490 L>60-6733957>1 1 r Sheet 4-1. TABLE]A. Compressor Stacic 1. Synopsi Values r = 3. r = 4, Units -66J2r-,9-7"71L6 FT. 2 PI. PS Z'2 _z 3. FT z z -C)26165963, FT. BID-4842660 F-r. / SEC-. A T i GTAT 1 C -T- - "7 A2 J \:I - -)4-59()3-7rp-78 vT5 7 -E W- 7 cl C 3. - 1.31552764) FACrOR C 4_. -6i36C2563h4 FACTOR- b. -72193SSB83 -9 7LBS; LI3J L5. l 562 7 12 fBa - 66,43C) 1 1 - 1 J5. 000 F-r. 5F-C. 359-00 fz-r - /:S r= C, 282.)-780004 KELVIN 16 Jb 1 n(:,2.0091ROII LR - / F )s V22, vb2. ErT. /SEC. 119 Er - G - \Jbl. 956-SOC)7]ADI -7-75-9'7R64 F-r. /9Ec. 2) FT./GEr. 22 F-r,,GF-C. 23 (va2.- \j2 0. 3B?.4 '791543 FT. /SEC. 2 4 v 1 - \12 1. - -7c?2-cl'kOW42 -760-C17I9644P, FT /-SEC. 1 250-'20'73R 1(, 2A0 - loq79,Q.7 26.10267q2 32'7.910'705;5 27 -rnib(].3). M: 2)..000OG5993(1 -00006&56W,4 SEC(J4D 29 t(2-3). -00010-5;767 -00o1023)82 SECONC, B0 E0-2). ff-r-La-1 n 31 E&I.2). FT. LB. 1 LB. -1,- F-M-2): 1(4-79.2391140 FT.LB.1LES, 3,3 Esiz 1 2). 407.2,1-7lqO F'T-LB.1L.BL 34 EM1.2)..>q28 2026.451'7!29 FT.L.B. LIB. 23-76.975 W0.2). 7602-4-283)0 F-r. LB. U5. 3G Ekki.3 - 38-q.73"JRI F -LB. S L 38 2q7-j58674J4 KELVIN- 5C1 Per - -&0 V15 -- = V V2- IB-4A422-& & F 31/-LB. -.62340-7-915(. R0795465rg FT 42 Yn 14CM). 43 "1- -44 -m EM1.3). 1ú0fso./,16 r-T LB. LB. -rn Ep (M2).:3689-87 Fr. LB./ U3, &rD-- -irn'-t 1,2). J Ibn jr-r.LB.AB- 9 5Z:2- 029:,a(i q37 1.9 19-7 57 F-r. LB./ LB. 5Tn " -F?. b3. KELVIN 4tcl,97902R DEGREES 0 4 t- 1-7c77!B'73 5; 3'R-115'5c]65"75; DEGREES 51 t,(,,2-73G2269 r->F-G5RrZEG f> C RiS PoWC5R H P. 9KY, IL.) -377.39Z251l - - PRODDc-r 1 9 2 X 'I -5 71 c',5E7? j ú:9 9 -:5 1 Of LI L T--b510b-91bt 1 1)X- 5q l L?,'31 - 1) 1 -3 uk 'I] -t7 Uk-3- L 66 jV 177 !91-,a577úia ?536!;?7b-2.9bl 55 (b. 1990. C)LLS!595. 2-L "- 0 8,2,9 - S ()5991b-00ac-?. CS. 1 rtE P Q5L920b 2, 5 U 1,25 -5 3 ( 18 b.4 -S ?,7, 9 - M. 1) q 5 er-iE 756ZS-QF-01 OPM5b91 Zk)G"79-65L2 658b98-977Z2 (3.1)s -0-57 SeLco. 5159b2,(200- nsgbQntOO0- b 7, og- 190000. t-77C)211F-:1-1,179 L17b9096.0LIS 9L! 2,3 bbb77(ZgF-65 "Eel\ b( bb 00 -2,')U 6,7 L19 1 a S - 2, 5 E 0 P9 5 -77,5-5 2, E z17 5 T.- -35T C V7 1 -zCP-(tO IF: 1 1 -e-3 at -bob -7bP_ 1100-69 6 1 p\ 5 j908úSVbIQtgobt'qgú-10- 0315 to. ebbL')OLú0-2.- ISLLb I b91-2- 7-- () s; -LZ' -I -j 7 P- - -az 9 b P, G71_. c- b 1 F-0 b L g- - 1 Z = A. 1 = j 1 A = j s:D n 1 e /\ -0 N A 9 8 -SlsclcuA( -1 owels iossoiclwoo -0 1 3-15V1 ,-7:D 3 q S -LDR(:10A<A C771 V-1) '5 1-Dn(ioHd ?,Lg-1b775'7 L9O.W30 'L- C?;b7I503.9'7 la 11 9'2gbL-9' 13 9 ba Lot -25 V 2'-]5NV b U1 -Das/-L-A 6,7Lcalas-8-U 1WID^%-u U951 1,3-bgoa 2cr =,7,Er bE ->i '71'7Lc95.Lb2, L2059l-Q-5be '2-L =2 -L SE C8-1 -19-111-A b.5QQ80-80c):B -7c?9909-OL-IL L E I.L::f 05 9 bplc) -" 112 O(F-9277-2(>'SIZ::& bSLPS'7-9ZO3 <:INOD1'5 cl N 5 0,4 92 D915 -L4 LLk 1-3 9 1:1 155Qb01b-LZE bZI'ILSI'I.b'-IE uu 93 12 3 6 a 1 T LL LB 03 A 5 IA 1 9-1 60bbQQ-ZVI--( 91 5T 2, ? 9 ' B 9 1 ZZ 1 LS cl- LY N k f\71 il'A, Q91. e 1 -L --,) W-LS 7-7- 7W is 7K -L-=1 _d '2 ld 2 si!un ---7 = j!t A -sonl-eA SISCIOUAS 1 - 0DI2JS JOSSOACWO3 01 ú"'7 10OqS --)hoot 4.,. TABLE 2 D. Plane 1. Plane (n=l.).,(n=2.).,(n=3.). Values r = 0, r= 1. r V2,n = 0. 4,23 101.69c)q3qI 86.)q:,3SB bn = 0. 61q-SZ144.522 "72-7-326()28q van= I- 160.i035q)8-7 vb-n=3. 5;6444(.4966 60'7-2q7331-7 F-k(l.'nz'l.)) q6-01) 2498 200-250651-7 1 c? 6- 0910 5 66 57 E 0.'n I.) 650.elg72i 1 9(D8,&731496 9'7 1 E9 c93-Q3"7 -58 Kb 621-2075684 763-L355605 925-4-330069 D7 1 10t4C1 -9913532314 -85;q6-1849-79 000012 ?.C30001'271,6q -()00012qz73 614 LO-'n.0042[4-4t07& -004r.3911115 -0050R3-3&A (,,5 Rh-a-n 1..007321Wk6, -008);26-158 -00199:3)591-7 R'Epa-n1 -.004-53q3231 0 0314) W1476 --ú)02195;7555 S-a-n-- 3. -.D)O)(zG3S?7 R-b-A-n =I - - '>;0 0016J7-766h R -.010166'18Z7 -.00qc?L91970 --006hf7O5BJ va 206-06 5951 ?03-18?-7-728 iq6.97c]")q4 '1 h-n 545-7 53J 296 581-6591059 5; 6 E kQ_. -n = 2 7-f960&6c?4 4SO-22433-7q 1.197.580-7931 2.) 1157.012838 1437-677;e863 17(=(w.OP,4L50& 58 H04.3G9010)357-212774. 16145-21-a36 62 BIRn=2. -8q74i()18325;4 -963226q63? 6. 3 LO-Y-1=2.) -00002443142 -000024BBk8 -0000253888 G 14 L -i- --n = 2.) -0087&-4t]6? -OOA9561ql-7 -013-7q17989 -01516? 72 26 2. --0074703"6 --005;E1-72874 -00B G-7 R -n=C- -003ú? 10349c..00379585;,5k-.003594r.71q4. P, Rh-;4n-2 --01952C075E} -OIE?8367984 -,0182313918 54- va-n --s;2-3-7.25867 n 56 5-7 E0 n=3.))5]E3.57q350 ISS7-S7068-3 2318-0?193!5 58 EbO-Yi=B.))449-4&E3b-,32, 17ú51-349(o40 2l5X?-3436Fs7 - k2- R', = 3. o a-n- i-^n=3-.)- -0000363332 -000037)SZS.00003,759-73 Gi F- -01q50-75,7-7 A-ay)=R) EL6 --0153360121 --OIP-3-3-325 --00'70q52668 ,(, -00(o65072811.00661324417 -0063-,14.51?64 &-7 R52Ti=3. G-7.006650-7289 -0066(5Zb-4t.17 -D0636145964 Sheet 4-5. TABLE 2D. P[ ane 1. Plane (n= L). (n= 2j., (n = 3J. E F. Values r = 3. r = 4. Uni t NQ. VGtyl = 0 J55; \Jby)=C). 77E30&W-94 7 75-9784 FT. 1--:)5- C. us 4- vay) = - 94.28--64t]22 F-r-/SEC. v =I. 695-818 7983 6q3.O(o65;5;70 5 E. 56 177-b-1?4&4tEa 106-IB9S9274 FT.LB3LB. 57 121)-7208-70)47úL-FS254-t37 FT-LI3.4LB. 5:B Eb)--n=l.) M1-651(47h-)327.995238 FT.LB./LES. GZ Say):= t, -96245?-3r,'7 L GZ L2.0000130743 -00001368q4L GEcot-lD ---n =; 1 _) -00&6230736.004Lc?144Lgb-(z lp-r- 8(0 nz - OQDI601?-'qJ --(3C)0362)674 'F 616 Sa-h r. 1 - -OOICW9?1-5 -00067C15;66-7 F-Y - 87 R SR-n= L -0093655991 -.OC)q7-377743 Fr. 6-7 RI-)a Y) = 1..0006-7q566-7 Fr. T:-r, cn E 185.1330451 15.3-5;6-72Q2k Ec. F.T vbyl:::.2. 613..c?15;472 cl F -T. J f; r-- C. 6/C)-1544LG'i3 56 Ekl--n='?-.) 469-34,-&2'74703(.2-9q2r,,,-7 FT.LB./LB. 7 J3 9 Eb(E -2.) -R 2160.23p?3;:T.U3,/IB. 78 In 7C.-26q287 -6 Ba =2. -8]4tl)'?5.57 - LB./LB. -9276719'32-3 6-3 t, -(D00025-98G4 -000026r.909 :WL(I---p= 2.).001704-73535 -0095784072 FT. -a-n = 2, 01'7950526S5 -0j134915-702 V7-r- n=2. FT. C56c=2. -00-3)8b-90 - 022&E3-7f,5_9 t-- --c. R Gan =2. --0175r2?-4L702 -0)!905k-7641 F-r. 6-7 D03 19b-904L.Iú -00221ú'a"7549 F-r. --0175;;24&.-702 --01W5;4-7641 FT. 7W vayl 2- a4.5;-78'?6aG7 FT-/sc-c& 57;,i b-n = -3- 5al-495;2"61 EkWn=3.) - _; 7 -283927q F-r.LB./L3. 6 E(F-n=3.5 -2u72--7-.-8 3441-2E>'LOI FT. B. 15364 58:3098-655557 F7.Lf3-A-8- 6 Ba-n = 5. --7930'79&,(, 11 -8c?o4IIA) 5a> LB./LB. t I-n = B.) -01DOD"-3-7'7961 -OC)00393012 SECOND -0)33;4C7043 -01-1091308 F-r. IR.02L74-9495c7 -0296090-751 Fm G5 RA R'-Gin=3. P-r sad=3- Fr. R 5:a^n=3 - Rba,-n=3. ji - R42-a-n'3 -792128 -1025 -024 F-T -- -- -- Sheet 4-6. T ABLE 3 D. 1 Plane (n= 4.j. Plane 2.,Plane (n =51 1 EF.1 V a 1 U eS r z 0. r = 1- r = 2 Jo. 4- v an -:.-- = - a9B-109947s 30--04,6065 30'7--7(o5654 v b-n = 4_. 399.21a539s 4)B-660'?54L 4,15-992-IB28 5(c. Ek(l-n=4-) 11-7c?-0'72817 12-7c]-B-0811 1356-536-e506 5;-7 E(I.Y)--- 1-735.51,R'25-7 W4- 9, Eb 1 ^n = ZD-35-BalBI60 62 B' --77b-5;02253G -016c?'74034LS -01"735c?672-7 7.01C009?.(.-71.0c),19b,3c)c)oc 54c V.GY) vb-n=:5. 344-1-34,-62-k2 355-1?-0523-3 z Ek ,6 TI-- 57 E (1 - -n]SO-7-93ZS;58 2246-86q961 2,75C7-514q9Z.,21 5;q 1--n=5,.) 1-725;,5;76!77 a120,65;b--334 'aG70,64C7?b8 62 ESp-n = 5. - 93 5 G2-7-7 5 --797018692iL -760r>1442D75 4G3 bk I-Y1=5.) -DDC)060336cl -0000614&C)0 -00006Z0a74 6 _ LO-Y1=5.) -0204t-c113'728.0,ai 6 rp Fba-n= 5.).()2Bq-7r27314-7 9(0 R'EbG-n-75. ---6 5 -l = 5, -01'3-775'73(,0 9-7 FR 5a-n='3. -.041-3995611?0 677 R,b-a-n=5..01-a93600440 ss- F:a-n=5- --039406647 P, 1 a n e (m =-1.). ('s 353-95199C1:1 6C1 v -rn=). EkQ.1n=0 106-504914-5 134,.-7Z90ZO9 166.8504269 71 Esb(2.Yn=1.) 3-ZcIOZ392 9.014LB(020(, -7-155610-7' 72 \^/[2-,rn=),) IC)3-Z]4LG-753 773 b'2.,rn=l.) -0000-306-743.00002-8690.0000267Z7- 7 L(?-m=0 0 -0,31095.03OR 2 9 51-74- 7(. F,,hbyn= I..0'393l(,3b-8 04-15;95461?1 -D432-714-335 qo 'rn---). -,047736440!B5 -,0401-IE6'3'70 -,03'305(or23Set 7. 7 1 Urn 9 1 -R sbln= 1. --062(,0r,-,6480 -.05-75-7a2E;6 --t)r22-ciZOO1 - 1 i 1 Sheet 47. TABLE 3D. Plane (n = 4,.)- P[ ane IPI ane (n = 5J. 611 V a 1 U e S r= 3. r = 4. Uni ts 4 \lan = L. 3OG-L4LGz103 FT-/sF-c FT./SEC, 5G Ek(l-n=4-)1,39(M100929 1:a22-7-70001 FT.LS./LB. 5-7 3291-7199999 3q32,86'7986 FT.LB./La. 5s Ei:)0-n=4_);>q6.I.LO39-51:1 E13. L5. FT.L 62 E3an = 4 -"715'3'73(-j56c?7 -854L9IP-C'3 LE5JLB, 63 bo-y-l=4L. OOC)C)4999-7!9 DC?0051G39-7 SECOND 01-76590105.01961047LG FT. (65 F-ba-n=L..0'30(.4,4L05;7 C)3163c)'224/. FT. R Fban = 4_. -.0099?-iaqr>l, --DU79ie(,9c) FT. F6:5El,h=4L. C)C)q24LFIB(:,8-0C)'79608818 FT. 9-7 F 5:R-n = _ 0 -03 122 9 6 G 43 - 09 10-818 02 FT. ;7 49IV1 = 4- - -OC)924513COFS DC)-7q(-,OBBIS FT. M: R' Rba-n=4_. -.031229664-3 --031&IBB0229 F-r. 54 =C). 36-MO2793q 3G1.4L]IBZOGI F-r. GEC. Yn = 0. M7-JO?'713q 361-4-1B20(21 F-r. / SEC CEk 1.2). 2031-010829 20ZG.4151'789 CYW', 57 1-2 TS-66-446862 4-09G--737SOjl FT.LB./LES. 51 Eb(1.2) 30?,-7.9'Z0'761 PT.LB./L5- -83562-nb!B5; Lf3JLB 1.2.0000622338 -00006-56?>- sr--COND (1. 2).02'20058-7-72 -028)800E>56 7-r- 6 9 Fba F-r. -W R Fba2. FT 66 Sa'P_..0134099"77(. -0121rR3GOG F-r. W7 R S:R 2. --D'370305381 F-r. l;7 R 1:)-,12..013408c?-7'76.0(2)523606 FT. 99 R' Rpa 2- --03"703053BI -.036c?SZR]29 FT- P[ an e (m =Jj. 1 i 69 \,a-rn = 1. 38BIL>-7913 10 F7.1SEC. G9 vb-rn=1. 343-&5964ii FT./SEC. EM2-yn=),) 25'2-9955S115 11)&31446%-7 72 W'(?-Yn=1.) 1c12-6603806 FT LB.ILB. (2-yrf== 0 -0000,2 209 -0o00Z-327c? SECOND 7 L(2myn=0 - oo ep, 1.00Bn-37319 $7T. k7 fj - -m = i.) FT. 76 Fbb..0 4519 42-7 15; FrT. --022-591U 7-r. 77 Gbm -02'a73-13265 F:-r. qi R Sb-rn.= 1- --04'79001865 F-r. E7'f6 R-bb-m OZE'Z6?9095 -0206E66BtjJ F-T. 2 FT. 2 1 bheet 4- 8, TABLE 4.D. _P I arie (m= 2J. P I an e (m= 1). &-(m= 4.j. ivalues r ='0_ r = 1. r =2. 69 va = ?-. 69 vb-rn=2. EW2-yp=2.) -34rO,,ZZ92-3r>5 -71 2,yn = ?.) 13-160 9 5-? 1 19- RL48b-0 2 IIU(2-rn:=?.) 202.844LBGO W -'m=2.) 2 7 7LA L2-'rn=?. -019084.6SI/-0 TCLO-m=2.) -76 F -OL593(0Z,9z.05060000,31 -0,51 G 59 9 1 OFS bbyn=?R'F,0brnt:2, --DGG3Z51675 --0717(cq44 -0"2G9OLU 7-7 Sb--n=l- -035031P-9G9 9 1 RS:,byn=2. 79 Pb =2. 92 R'EJbyn =2_ - 08192 5 IGG 1 -097201 1 -,G B-va-m - 3. G9 -,Ib-m=3_ --OC3-9S9>6(0 4,-1-7-GZ2133c 71 F--,b(2.rn=g.) 72 G2.-m=3.) 298,-W9úLSOIA 7.3 b(2-,rn=3.) -000C)9ú51901.00009) -000075LG51 2, -7-714Z 74A L -010b502;7c?(..0281-7(,4-017 -D2G3'20442)2 L Z.yn=s.) -7L L([-Yn=3.) -0,505417F24- -00q569SQ, 76 -05-7-77013491 -0159-7-75(44,54- -0 GROG 5 1^764G -Zio R Sbyn=3_ -.C)96822064G --095'7046 --iY7,5'Z5--7-750 79 q2 P,'Rpb-rn=3-.09 cgto 1403.1,3 z0 6q 72 3 ' 73 4A L Yn 4A 7, 76 Ebby-n=4,. qo ELF-4h-rn-4. -$C32)1795925 b -n = 4. j13 1 R Sb^m = 4- -.11243Z2,99 098,73 12GS - 0 1 r7(i qL 137 79 Rbb-rn=--D5:0-7)U7109 -O(j.BG95-20t - z Sheet 4-9- TABLE 4- D. P[ an c (rn=2..). P[ an e (m= 1). &(m= 4-J- Val u es r = 3. r =_ 4.. U P \ 1 2,rn -m?. gol-qq-71-356 4-05;-1400139 30q,0'760q32 FT.ASEC. _70 Ek2-rn=?.)4LI-7-0644022B 71 E-.b C-vnz2_ & 5G41-762 6.5.25-79760 -FT 71 72 Wr2.vn=2.) f7 4-cf9846,6 LS,5.5.^ V:-r.LE3./LB. --- 67f,92 -74A L(2.yn=2.).0)(,99-76i51q OJG-70(,-J!94 74L Lo rn=?.) -037C)035291.0-,jqgSGe,6f F:-r. 7G Fb -rn -C)5?1&4S9;4!.5 Fr. pb-rn2. FT. CIR'E Sb-tn = ? 7 91 R >byn = ?- --0575,nr,,2951 F-T- 7,p> R j. bTn % 2. -02-qqlgiG)-7-7 92 R --059490?7 VT. G12) \ja-rn =3_ 4LI 9. -44'306, 4L2-7-00091-77 F-r-/SEC. Gq v b-m = 3. 2c,6-17,.3662 292.q-3503c?6 F-rdS FEC. F-k(?--rn=S.) 6-3c).-79-7-7 927 loOS. 54--733 U t:-'-r. LB./LES. "71 E-,b(2-m=3_) 100-26939(63 14e-G-SSO'a186 V: T. LIS./L3. 72 W(2.,m=3.) " F:L L -73 CL?- rn z 3.5 OC695;f51? OGDO(60,z,2(1 SEC:01,P 2&A M2- Yn =B.).0,a-60399;09 -0212,9,9Z-n-75, FT. 74-. Tf n =,a,) - 6(2098?-80 -0-716Z93-3) F-r. 76 Ebbyn = 3. -05Z7-1100(C7.0G92-814e377 V:-r. R'FA3b-m-z5 -0481235088 --041736459c] P-r 77 5 b-n =3..0&0-7'7-3&Z31.0,844938-Mf FT. q; R Sbn -.06W606Q4 -.06)490-7265 FT. 76 RA2)byn=g- -033G000556' Fr. VT. G's \.ia-rn=-. It3G-Sq]4--7"7S F-r./SEC. 69 'a-7a-591135G'q'25;6--7731?540 FT./SEC 1 E; 71 g70 -yn=4.) >c? 3J7)CC) 315 _0.0 T./LB, =2 (2 -721107 F. LB 2 134 - 73 OOCC)Ii>95;-7ql OC)OC)55lr-7cfB SECor-4D 3 -74LA (E-Yn=4-).0 1(o-75)9q] FT. 74- L(PM=4.) -C)536ú5)0663 F-I". -76 byy)lz F:-r. -40- FT. 7-7 r- T. 91 --073(.224,76 -0-755'71?73 F-r. 79 Rbh"z-cl. F-v. C -0909840545 -0755554 1-10 r--r- m 1 1 3 :t 1 9b -ú=cnDS-d 5b "EzúnDU-TA 1 "b !E = ú'l D k4 08 -5 5 8 LESS 8 31 - ba-n(D089ti. 39bsbbgzxt. 5 =cn.1 y-l b L T7T7772L910. fn y, 9 -?,=MJ- '7_.9 50910955!51-- IZILSS3L't-- M -30 3 5b 886bla,7 I-C)ijb9-:-:úbO. p's ^779Lbt.9fL(--!BSI-4A009L[-- -5 b 50"712,9951(- b5-"-LE--i05901- Oc)(L(E-LbbO- -a = Jer.' D 5 19 c)b'at-,7bDbtO. 'I =MX -78 rn J 2LIC)SSQ-at.- Sb- b A 96 PILOSSú01 1 Pc)-c)L72L5-t.- 52.9LIBiEL'.280. - 1 = rn:) 9 --i-IF bL U P- Ild 01-ic)b-:c90. 2677!2 5-15 9Q Uk LL -IL98810101- ceSc3ibOiSbI I. Ob 2- = UJ-q (TA 9 L 2L 29ZS!(P,-c)Zk b- CS:-u-k-8) - -: IL _BC)9b1ST--5-b6B CS=U-k-2))'13 OL ObQ(ZbS-:-!G93 5-=tu(f\ bg = -c, C) s -a n 1 ia A E a U 12 1 CJ 18 (s = W) 0 WE 1 C] Cis 3-1GV1 OS loaqs Sheet 51. TABLE 5D. Planee((mm= J. & Plane 3. Values r =3. r=4 Units kg \1a,3., 1 4:70.-722-72;55; 6q v b'3. 24S.e8&74-7-l E k 1113.6188 5ZO l13.513GI FT.LB./LES. -11 E cb Z778-!52 102q]4C)"7.2 (2 1" 1 q 0 FT.La./LB 7 W (2, 3) 5-z)q2-750(> IC)C)5-(n517&IR M2-3). -000108180G -0001022)62 -SECOND 24- L(2.3). -03(.-7322338 F-r. 9 L.3). -()6025B54-70 -05991C21Bg- F:-r. FADb3- -OG"700-1-1274- F-r. go R'F, b3. -- 9 (G h -R -0]5W)23q41'7 FT- q 1 R Sb-:5 - - - 0 902-77 1 53 -0-122-13 197 0 Fr. -7 S Rh bl. -04G7281449 -04244D14cC)G F-r. 92 B'Ebb3. --0913qDO9;1 F-r- P 1-an (w= j., (w = 2_).. (w = 3_). 717 L -0961GC)gtLr2G P-r. J1Q '101-793"77(.5 F-r. q4 R' F-t-)cuy 1. --095GI4P-01 -CB55;q2S5B F-r. -091 1229153 P-r. - - 1 GG3G5 G622 -.09-13SS24(-l -o8oi;-5ors5440 q6 R RhCC=1. -) 1-703-71Z35 FT. 93 ui 3 L PT. SIL ui== I. -02)34,292zs.0235qo-7-715E Y-r. 7q LO. uY = 2.).11 2062 5444.3 -12203A1AG21 F-r. hC-W=2- -53'37493'7ES9 F-r- A4L R,F,-bcuj-e. --12910S38(.7--112174G)5-7 r- 51 ISCj=?,- -12444(j363qo -1,36i84LG-:no FT. R Scul=2. --)3Z454;266 --)2,21;P3i2959 cw=2..11505;7E991 -125855;19;68 416 "'ún CWc? PT. 63 1 r c --70G2ILX;4,02q FT. 94L V, uy,. R- -020(o5'736014 F1-- -7cl L(I. W=3.) -159102184- FT. = &.184-7c?4?c]2r. FT. qL -.13C7'73903'7"-3 FT. 8T 17Gctlt.qe4t7 FT. 9 r. P, CZ) c uj - 3. 1159 G42 J59 08 -147 6 1 S34.91 PT. Rhew-3. FT. -r FT. Shoct52. T A B L t-:-- 6 D. P ane(w:t4..). & Plane 4, F. values r= 0. r =2. No- 711 L (1. W = ú50 Fb C U-r q 4- R'FbCU.T=4-. -.222154-7Z,9'1 -.20-711557Z62 BI Scui -&-, -1i9DI.]AtOGB R SCU-T=4. --224LeOg 4G--24-2111'332"76-7 - 20 03315 14. 82 RbCL -1'30'1(o2869-7 -14t-586-705;6'1.)66!a2-7g5O-- q (S R --'214:3108172 -(?C 84 Xuj=4- -nossoq/4265 -006,15510) 1 007 19 619 69 7q L0-uj=5.) -14-21499905 -151.L10-7(0q13 C50 cw 5. -15077105162.1-703122n J 97 712 8 5a 17& R'Ehcui=5_ --?-93594-3G19 61 ScLir= ú3..150-7 1 0S 162.1 -7 0 3 ( 4,2 Z1,5 - 1 9'M 128 GlaIR, Cl 5 R Scii-y=5_ - -293 5,7 L3tB -.23GG)(.1.4L4 --226912;39'78 92 pbc W = -5. - 150-71 C),r 162.1 R 'R42r uy=s;. 0236-161ú -v-W= 5- --7c):28-76DS;1 -75;b-cj 16-19 G-B E3 b- Xw=g, 0 C) 0 7 A-f L.204LG406958 -3q553a199-7 3 -m -T4L - Z90.185145 75 291-03(0j50s 4 yn J2 4,- 1942-9'7094.'a 1962.94t-399'2, Yn \j 4 14.-39-778 OJ IIA-233445275 -rn \4a- - 415-)395724 2 Yn -4c-m&. 344.5G38352 va&. 393-221W9-99 I,-15.)39E;-72h 123 sic: Misceltaneous Values 93 FR -36011-SOG 7 R IUS D. li6Zb--T5208(o -696249Z229 M4-.0002160'733 -00025;G174tg -000313]9S3 L (5 - 11_) G-73(.259858 -OW'260 -log?-4Ia969G X 2. -0 1520.01-75409031 A-c/(y= Q - 1 /('f=c).) -20-6úL0'6958 - A-i-A-f=2.) - A--/(-f= f.) A-f/Cr = 3 A.- (--f - 2.) -7qc --bú 1. úL).. -OC)C)[A1-71"785 -0004L4-72J5 3,7 5-7 ?' 1 Sheet53. TABLE 6D. Plane(w=4j. & Plane 4.. REE. v a t r =3, r = 4 Units No. ues -7cl LO-uj=4,.).19 4,16 5 li-S 01 Pbcuj=4-, FT. q5 R Scuy=4L. --19463)0552 FT. 82 bcL&--=ZL. -JEC.9467683 F-r- R'R4CW=1 --19865:05735 ---77)72997 F-r 8-21 -1- W"= 4. --711-1q55;914.6-7262-36IE;8 F7- 94 Yw=4-. -0012o-390362 -009979!9021 Fr. -g E () - 1). F T. e50 F-OC4. P, F-p).210-7-17,9]q4c. --19-784,2b-4e4- FT Gr-L- -224-2-476101 FT. R Sc-,.210-71q51q4_ -.1q-7949(44- FT. 1B2 Rb c 4. -224L24-).101 2533-7,5690 P,r. (- RA Rpr-4- F-r. 93 4L. -71J564:70890 r-r. -a 0 PT. -7 JS-726C?25122 --73(.1013(o5'35 F:-r 2. 3 -m 74, agl-ct444ú)58 2c?2-915;18092 'KELVIN., 4L rn 42 4_. 1'7E34L.142q808 2{)07-5c?-663 LB./F-r12- 57 vb-. 14.18.3P-S25c] J4.006770415 1 F-r./SEC. 2 yn 4L -79; 3145-9 Z 1 8714R FT./SEC Irn VC: --2cl- -2clo 4c70-^-]'2'2771299 FT./SEC- 21 3 5'3.6000'89713 J59 - 000 FT./5ecMis-cettaneous Values F- F? --7602157S26 F_ 1. Pa ius D, -55;49 I"785BS -4,287-7q4- 51 F-r. b, C>, - 0 - 0003662(.1? SECOND L C=S - _)..1295099c?32 FT. 4r- X 2. F-r- I-TW. FT2. -AC b(1.4_) M I. 1 t Sheet 54-, TABLE 7D. Plane 5. to Plane(m=7.). Mean Values, RUF. Values r 0. r = 1 =2. -204640695'B -3953o)9q-7 3 - YIn 7- 5 -1.2qO.iS545-73 2ql-0,36)5;03 -yn v 5 - \ja5. &04-944,7613 4c 15, J3S 5 7 2Zy- 2 -ry-x VC rn 34-12 -60,4039<? 7 A-r (-r-n -1892154L'184 -361A(,a96 o 58 vn va(Tn=l.) 378.842743<? vy. vc m (--n z i. - 3-70,6081423 3-74.613,5954t IA -m vax(-rn= 5 37e--76>,70-17 397-3695;26,-2 2A " -,lcyn)c(yn=).) 53'3-7.549 W3-77 ( 5 1 1 C? 5s ' Tn R.4:x 529-!967,l E,9, -7.1 7577204-G6 1 m va 351-4.057L?-4- 359-1682219 2 -v-n v c m Crn = 2.) - - - 39&-7193265 402-56q!R)go iA -n,) R= 2 3G3.5)54-497 360-02)92,51 ?A m vcTnxCrn=2.) 398.9 7303)7 40B.E;E66831 51B -m R \ X (yy) = 2_) -.574-0.-78-1c'>OW72 -7 A-c (yn = 3) - 14-30 --3115.9014359-7 1 yy-x \]a (y-n - S.) - 1 Zi 2 -rn \1 C Tn &aO.'3OL?270 L!2c?-:31)%)G4, IA -m -,iaX (yn =3.) 32 6- 5e6 5D4 7 531- 5; 5 0 51,0q 2 A -ri-,x \j cyn -jc (-rn = S.) - L-'26-56-77057 58 M Rvx(yn=3.) - 5'3'7-2324t.940 7 A-C (yn = 4.) -.1r.50051,4,9 -2c?6)'815)93 V-a(yn=4.) - 291-2z?69236 '29E;-180?251 vcTn(Yn=b--) 1t4E,.7759ús2-78 4.51-5;89-310-7 IA -rn Va jc (-rn = - Z97!;c?40409 300. M66155 2A Tn--icmx(yn--4-.) k52.3)J3!863 5s -m Rvx(yn=h.) - 5;4-)-431Z545 54c?--73-230Z 7 -7 ^-r (yn = s;.) - yn va (-cn= S.) -i Tnvcrn(y-n=g;.) -- ' )A yn v '267-012Z9190 2A Tn '4CYnX(-Yn. 4LS'3-C7-76)4C74 m R\IDC(Yn=5- -i R 55?-7LC?2525 -479 -7 A-r Cm = G).14,9009-31-7 1 -m 2'25-2&-a5993 2?4-60',?9743 2 m \i c -m (yn Q9.772652-70 4,c1D-SRS0r,-70 1 A Tn vax(yn -:.) 2A rn VernxCm-G.) 58 m -.F 4L -7 A--r (" -=7.139 3 G ','9 37 4 q r5-R 6 2 1 m Va (-rn = -7.) 190-409;&241 j97-3-309J31 2 1 cyn (yn = -7.) 4=9 4- 588 7 1 ? c 1 A -rn VaX (-m -7.1 Ic36úSO 1377 1 190. t300-7462, 2A VG-M-x(-Ki=-M 5. 0 03-0q4,620 5;/ 4-97 1'? 34- _Tn 'Rvx(yn=-7.) 5;39-0896)G4 - Sheet 55. TABLE 7D. Ptanc 5. to Plane(m=7.). Mean Value-s. R G r_. Vatues r = 3, r = 4- t S N c). Uni 7 A-r 5. -r7-72625122:-r2. 41. --cn b 5. 200-7,5946(D'1 LB./P72- 1 1 "(,n,/ 5 l.j232g,2Sq 14t.006-704LG FT3-/-B- 1 Y-n \]as L2G-5;76694Lci 435.623'2292 F-F-/sg-c12,4 rTn15. 3&6.6)32906 34LS.9?.12749 FT. /SF-C- -7 A-r CfnJIi.) -5263r,,])?96 -6-74473qiSIS 1 yn.) 3c]-7.2)42984, 405.714.755l F-r. /SEc. 2 y-n v c m Cm = I.) 3-71a.lr0200,7638B.196961'5 F-r-ISEC- IA -m vax(yn= 1.) 395-4.939057 403.0661G4Z FT. /SF-C, 2A YV) Vcym->c(,m-n-l.) WI-7-151grL>6-7 31c)6952625 PT. /SEC 56 -f-n RV.:)C("=1. 5;&6-4Z9'7Z55; 55;4.4a8-72i8 li=T./5uc -7 A-,r (yn.&8621:311'27.6V4L71C'799 F-2 1 YY) W'3-W)(098-3 F-r.7-S-EC 2 Y-n vcrn(yy)=2.) 4;J5,01-7373a r--r./SEC IA -rn 366-1-74--1q0IDS-7J-4t-34L4]41 I=T-/sec- A yn vc-rnx -y-n:2.) 408.2B6582241-3.1627747c? FT3SEC 58 -ET 5AA.43F76D90 5;55;.;78083B f:--v. 7-s--= c rn R v x Crn - 7 A-,r (-n-) =. 3.) -4520<700738.;763;&60ú2 -y-n 51 a,m =: 333.4-0?--q]5 2 --rn v c m (yy-) = 3) '36-0[q4,?-62 1 A m va-2,c(-rn=3-) 3357-7606563 339-092973(7 F:-T./SEC. 2A -m \]C-YY.I'JC(Yn=3.) 4L9.1034-03-3 45;-5;053294 F-r./5r--c. -y-n R\Ixfyn-;Z-3.) 55;'2-763075O 559-87-)313 F-T-/SEC, PS 7 A-- (YY) =.) -4a4108015;s -5;39-335;08?9)=-r2. 1 m 298.3426517 300.64:80337 2 Yn v c-m (y-n 460.711B8118 U70.16492-55 T=-r35r=c. IA -rn \ja:)r-(-MZ4L, 303-106(f70 304.4--332933 F-rjsr_-c. ZA Fr-AEC. 58 -y-n 5:!;7.644,4639 565.09325,63 vZT,/SE!c. 7 A-r (yn = 15.) -,L5-23226126 -5;10516:,?'288 FT2, --,rn \layn=5) 261-461&332 261.2qobCIL F-r. /SF-c. yn v cyn (-r-n = s.) F-r,Isc-c- IA -m \jax(-rn-=5.) C(>7.3?0'75-74266.50J815c7 F1,15EC. A -M \jc:-rncyn=5.) W73,4,206550-90?.95;76292 F-r-tSEC. ?A 58 Tn Rvx(-m;5.) 57G)-18119117 56ct-2025C17(> F-r-ISEC- -7 A--r (-,rn = 6.).3 8 6-89-4 ToR -WI_ - W? 00 ? 5 3 0 F-r 2 - y-n va(Tn=G.) 22?-c[931q28 2EOlclO9%-79 F-r-ISEC- 2 Yn 5;(?.-7q6476&- Fr./sr-:c. A ^rn jax (-rn = G.T 2C9-114 761 224.792008: r_ e 78 2A Yn -,c-rnx(-m=6.) =-r,/sr=c. 58 2CLi Rvx(-rm=6.) F:-r /SEC. -7 Ay- (m =-7.).-3-7-J3q061405; -47757'20408 F: - 1 ---rn \,ja (-rn 177-G?371a-7 FT. SEC- 2 -rf-i 51-7'b-2---3744 5;29-05;019'77 FT./"EC, IA -m \IaXm=-7. 180-5;1?7327 F-r./SEC._ 2A Y-n VCYnX(Ynz-7.) 926.0190532 5;37.655130 FT./SEC- 56, -rn P,,,1:c(yn=-7.) 55-7-c?17695;16 G6-7-1-8E923 PT-/SEEC- Shoot 56. TABLE 8D. f p ' lane 6- to H anc 8. Mean Values. j REF \/dues- = 0. 1 y Ne). --r= I. -7 A-f (D. & __]. i.113ú53C)5qq32 J-1t 1 -m,ia 6. W7. 1 -7- J54-5 47,34t) 1&9-01 1q9C5 -,cyn (o. & -7. 5OG-q24-73GO -m -T6. ?9C)-)8515'73 29).0361503 4- -rn,b (6. & -7. 1q4C.ú170q&2 1962,94399-3 ' -m \,/ f. W7-, - 14--2334-52'75 7 A-,r CY-x= I.) - -27(),6632e> 1 -rn \1 a (n isq-0;9j615 2. -M\Icyy\( =1.) &74-P-770619 453.1206-322 3 -v-n -T-Cv)= I.) Eq2.6369)-7-3 293-3424-7ú?3 4- m b(-,n= I.) 201-7.0a016B j -m v 13.9,56019c?g -7 A-r (-n = 2.-) -29CO02 1032 1 -mja(.n=2.))?-'?.f043-702 2 -rn Vc-Inn (,n 2. 878 Zú4tg-2444292> rn v (m 13.-7,35463J 12-70000792 per (-n -161 U9 1 q 4.9 5.3 1 QC?0 5;,27 m 1 19-1509;7qo -m vr-yn (yi 1-7V3G 4LI4:-601922514 -m -r (-n 2c?7-21C4629 2q'7-9174 OSO-7 Yn b (---fltz 3.) 211 2-b-'75Cs2 0 Z121.86-m 10 yn m (-n 13-46d09657 7 A-rf-n=4.) 03-33823650 yn va(-n=4L- - 11 &-7,6''09 1 1 109. 19,67879 yn -"/ c Yn (-n = 4.) 3-76.331L03:ig -37q-9'7'20220 3 yn -7 Eqq-343-83 2c?9-5'3q359L yn J2 (Y1= 4 -2 21(og;.-7999;9 2)-70.-72226- yn v (-n 4- 13.2Gg(o3Z33 13-20101-39 7 A-r 9 -36171935745 1 -m v a2) m cy^ng. 2) -m -7- 9. - 30-1-9642739 & rn o 9 - 22.1-7.?-'79232 C217.279232 h " VB. - 13.0Lt-7q5'990 13-GL-795.qgo 5513 -y-n Ps,48- r,,q.3)3'23'38 Y-n Rv 6. -rn Rv-7-.5S9-!;Q3726>t, V (-n C61) 539.503-7264 Y'n' 12 2!2-2 2 -nn Rv (Y-)= 5 A n L-ffi m Rv 4A -'n p v, (-TI - - ' 7 i 1 Sheet 57. TABLE BD. )1) 11. i LO 2 Nane 6. to Pla. e 8. Mean Va[ues. R V.A ues U-ni ts LE. 7 A--r (o. & 7. FT 1 Yn va. &-7. EL/SE-c- 2 -mVcM6.(5J7 541-'1'7758) -ry) VG. &7: 2Q2.9f5%092 K LViN'. 4. m h G. 2007-594(3(03 LB F-r m v r--T- 3 / LB 7 A-r C5 - F -Te - 1 Tn v3 (,n F-r. SE -2 Tn vcyn (-n FT. IGIE C -3 294-917183696 KELVIN.' 1.) 2035,1769092 e05.4704?-2 LC3./FT2, --n V(-n L) 13.967)62(4- 19.77312132 7 A-f. ( =R.).4195B642J3 -553510634t!l F-r Z - 1 -rn 122-5;4ú.52774H4.900-7690 -r /SEC- P- Y-n\icyn-n=?-.) 456.q 53q77 &64.5950449 - Tn r (---p = 2.) 296.-73"961? KEL'-JIN'- 4. -m b(-n=2.) 2100.5317qB L5JF-T;" -n \j (-n = 2.))'9-/o32733)g)3.5;Gie;"7J3] FT3.AS- 7 A-c (-n = 3.).41,.B77SC)953 -5753-755;-7)7 F -r 12. 1 -rn va (-n =.3.) -1 12."7,:'97249 105;-2649748 T./GEC. 2 YY) 14c -m (-n = 420. 961154 426.C)63q882 r.. /SEC. 3 -y-n =3.) 2C?'7.4?9r-,C?35 a99-424]crO KELN1W -TT b (-vn = B.) 213 1.99G;2c)3 2142-6)8423 L5 /F-T - -,ryn v (-n ='3.) 13.419 ? 6.3 2 5 3S.3-709q827 F-r _-/ L B - -7 (-n = 4L.) -4.8-4771169 -,62k60-3?7J7 r-r 2 - 1 -rn vgL(-n=4.) 102.902)72&- c75-72917957 Fr-rJSF-C- a -y-n \ic-rn(-n=4e-.) 383-666929o 3'B7,41129 -9 15 F-r./SEC. 3---m-f- -n = li- - 29q.74670:33 CCI9,q6-744,90 K t-: I-V 1 - tA 4 -yy-i P(-n = 4_.) 2179.976-7Rq 219J'SIR049>9; LS - / F7Z' -n,i (.n = 4- 12,22 26050 13.2C000582 3.703. 7 A-V e' -.5;29&5'71277 F-r2-- - -rn va 2; - C? - 08 06) 9J33 B6.1933" FT - 9 E C 1 vc-rn S - 54:7,005;"6 3&.i3.'32)g749 9T./SEC 301.362729 2217.2'7c1232'2,al 7.27qR32 L-B- F-r 3,59 "R] ?? Z-1 359.]3Z339 fr-r- /SEC Rv e. -m R.4 7, F, 4.S- B3 1) RE A2; 52 ú5'0119 6L El. 115 E C s -r-n R,i (-n = 0. 549-S!3082A2 55;12.U7 19" FT, /ssEc,- Yn R\j(-n= 1.) 510-9ú30-77 ?6- rn v (-n,613 F-r. /SEC. v -n b- -?,ci-7-r2267523 3c?9.064R?G3 F-7. ASEC W rn. Rv (-n = g.) 359-3132339 5q-3)-32339 FT, /SE" Sheet 58. TAPLE 9D. Plane 5. & Plane (no= 0.) R Va Ue 6. _r 0 T 2- 5-7 -m P 5. - )s ---m-Z 5. 19 -y-n < 5. c 0 V;R IL]5-13195-72L 21 vcmS gh-O--7454-132 '344 15638352 22 715. lasg-395s-M6 291-0-3(0150:: 292.9)5%0?,2 -?k-- 144-3G7914L3 3b- z 5. 0 3 r 5..83933a-333 --7940163958 377 8 C, (5;. Yn). 0 0 0 38 3<? L(5. -m) 0 0 39 1 m 5. 53 5 0 C3 5A 5 R t) - 0 n 3i- 1 jc-rn(5,yl,) 34. 5CA Rv 5;20.-3n-7727 c Rv 5 55'3-C))CI 18 - Plane(m= l.) 1'7 yn. *y-n Zyyn -09201i-jcl 1 2Q vayn. ial VcYnTn S-74.6195994 2 \J;txTr. 3(>G.6i6%209 1,03.032QG1]5 CIA vcyncYn. 36-4,.3725ioi -R 4L -rn -DRi85q 3G 3-7 V, 38 3q L 5;.M) -DOG5f15730 4"a H Yn -0)-79-J2461,,.2 z Sheet 59. TABLE9D. Plane 5. & Plane (m= 0.) REF ---r = 3. Y U-n its. 1-7 -rn FT. 1 P, yy-l -Z5. -C)8155-1-36-7q2 F-r- 19 -m)<;. Q C) FT, va 5. 4:70.-7ZZ7P-55 FT./SEC. 21 v C-Yyl 3F>3,6C)Oeg7 -:159-000 r-- -r - /S s c - 22 2 T5 - C) 7 f) 5 70 P-7 Zú?-7-59674)44. KELVIN.' 21 v5. 13--7923c15C75 r-ra./ 34. C)-7&-7735Rol. Er. -C)71,,-7735Rol F-r. 3G X15. ' c) C) FT. 3-7 -r. 15. --71,5G40019C70 1=-r. t(5.,rn), 0 0 SEcor-4p) 139. 0 4p EM5. 44'?02-1 12 FT. -'7-74 42 - -11'7o962,4-3.15500053134 FT. 4ti 5;0.<3"7(3c?"72-7 5;1.514-'Z734L.9 DEGREES -UJ, W-2 _ 5?.IC>,-7295ZI DEC.REC-PP3 s;3 5 F7.b 5; 0 C) F-r- 54 5 R.46 J5. F CD 0 FT. 3-9 vc-m (5 -6DOO3q7 35C1.000 F-r. SEC. s;8A Rvx15 5--151:121n- 0,29 59 1 M91 360. 1_; F-r. /SF-C, 58 Plane(m=1.) -rn F". 1 Oga"60075 FT, P8 yn zyn..0-774241"702. FrT. 19 m X-rn. W57'70,.1'70 oc)wijs3,77 FT. vavn- F-r./5Ec. 2) \icyn Yn F:-r./st-zc- 20A \jaxyn. IS-0693335: 42CI-4q01250. F-r-/SEC. OV7939 1 G5 FT. /SEC Fyn..079M3279.015019ú;808 FT. Zyn..069U795033 FT. 36 X'M - FT. Z-7 Y m.6dC)Sio]5129 F7- 32 C0011C7c11.0000160638 55CONC) L(5. -rn) - 1 FT. EMyn. PT. ) 1595-7'321-7 F-r- 4.3 c)EGRESS 4& 46.c?09'24,,65 DEGREES 53 Done65-i;(. F-r- 54 5 P07 (00.91 -Qo,7a04531 FIT. 3ús2-49c?1761 F-r. SEC. 5?2-13 dR Fl"r./5c-:c. 575.-7Za70Z9 5q 1.99 FT.ASEC:- 1 i t.. 1 E9'7b1LQ-855 '1792LF-O5-bS!5 L2LLLIS-025 95 2J91"7L8-655 eL'08bb-12,5 V-1 v Lb22,Cbú-00-7;-'090999wmSL-<E Cu-k- 5) F c 5,17mbebopo()0z.!55ú9blo. a 1081-2,990. P3(539-2r9j.-LIE C?'lbbiS,T.LIE -uk--u --U T-- 1 L C. " U -=15LQ. H [C2 82 LL770515bL- -17 ds bE Q 9-,7 5 10 - ZW-3 5-1 cie- (Q55'5LbLi0. ZLO. Ql-nSb5LO. -7' llc cj -qs. Via 61 3 9 b t 3 -P-LC) - is p- 2,7 S 5 S G F 35SQOLLS30. 21-90L't-b80. 1 U-k cj LU L 1 1 (c _= W) 0 ule 1 cj L3t-LI-IE-03., ' ^M t?,2,'jb6-Lig LUXf\d V&5 9 - 101. 53 L 1 LIM 10. 5 OZ-- 10. ^1 6 0 1 LS 5 - U5P snags 3, 0-7 00. --b"l Cc; SLLO2Cú-L-P7 5--[9LI6c)a-1'7 - -7 6,7O3b89L.17 11 C)5B--95 J' - "-D U.--lgbbc95-L0. 6BL219390. 1 1 kj, -TE 09ELL2,Z-Ef-17 t'P-(bl<at-OC?n W-X U-k D^ 7(bs")139-1-qE. UjDCUP\ V0,2 bQ3gzgo.gi-7 bl ?7-15-123LLC). U),.z ujj -91 2LF-'r--?LSQ- Q 1 LZ 19 1-b810 - "d U-k. L 1 so n 1 e /\ A 1 1 '(Z =W) oulelcj Cot 3-1GV1 "09 403qS Sheet 6 1. TABLEIOD. Plan c (m= 2.), M. V a I U cs r = 3. r = 4, Uni ts V7. -rn P-m. -iDB5;5;72Q2t-1 fl-. is -cn -ZYn..-C)-74,:7-79197.0-7235-7g72 F 113 -rn)yn. -0] Fm \7a-fn. 39-3.q06'3779 399-535699G F-rj5cz:c. P- 1 \Jcyn". F-r./SEC. ZOA S13'2-19130?,4 38'7--7q4-q"g;G ?IA 42-7-ilqO521 443--79)3044 35.0 6-724A l 0-6 OG2q 1) 77 442 FT. 36 C)IR0440c)-32 IF-r. 3-7 --71q2(.-3c156L -(826430J22 F7. 39 (J5 - YM.. 0 0 0 03 'B82 9 -00 0 0-3 1 q 22 5 s E c o t. Q' 3q L (5. -C)1372q3331,, -0 1'2c13E34j691 F1r. IL) R M-m --7-76-PIR86.5kq -'757q8121728 F-r. (A 2 Hyn.111,-.0693169.1J3069CJ:3'211 r- T. L3 " C" 4LJ.ú5912696e 41.955-6Z407 C)EGREES U4 G-y-n. 4rl-8225;655J bi-J4,j7'70302 r-> E G R E E G 53 -00266084513. FT, 54 5 R C)14j704,85;2i -0138.3C)33-7q F-r. 33 -n \Icyn (5.yn). 393-582-nio 405-3105032 P-7r./SEC. R\j:)cyn. 5;-73-14-9q6-37 989-3!5)90'5; F-Tjsg-c- W'BA R. Plane (m= 3J. 1-7 --y-n Pm..-095f,)GW7198 -683G652093 Fr. 18 -m Z-rn. -0-7056-713r7C9 -061901 FT. 1 q " Xm..015e)q-7g5;q8 -C)15653-756!B F-f. ?-] \i(--yn-rn. 461--71q3103 49,2.630,3530 F-r-/G9c- 20A vaDc-Tn. 345.01-741'2S 34L3.93 M615 PT. ASEC. 21A vcYnx-rn. 484-1819139 FT./GEC. 3- F>-rn -07.94,7C)006Z.U7;470q'B4L5 FT. Z-rn..06256G2360.0;i31212241 FIT- 36 X-m- -D16q037-701 -0173-,77601 F-f. 3-7 -r M. --72C)936-5262 -(>!96600732 FT. 39 CAS-m). 000052)825.0000M285 Sff COND 3q L(5.yn). D?-19265812.0203926105. F-r. -n71359Cc]8.'7589136,-JOS'3 FT. -fn..1b-96'722601 FT. A 3 rn 3-7-ILOB355813 3-7.2"7629113.6 DEGREES 4LIA (7l^m. 36.G2020066 35-32715;'9'117 DEGREES 5:3 eEt:2yn. -OC)41'720)IA6 -0023ú;2-7396 FT, 54. 5 Rjzim, -D2107r>-!B47 -019702-qq7 FT. yn \ic-rn5;,,rn) 112"5;26-4L5c(f 4L?-7-052.600-7 FT./SEC. Rvxyn. 5; ilA R\j-rn. 575--722762< 5171-Rc?73685 FT./SECY Sheet 62, TABLE 1 1D.s Ptane (m= 4-.) 1 ues.,(- = 0. --r =). y == 2_. -087-79qq?771 Fyn. -08q7987C12 113 Yn -Z m,.072732,6795 -06'785G231 1 q m - -01-706G0416 -017q0030G vam. 2Q,5.15227cq 3oo-493,5565 Z) yc-rnTn. 4t34c-141-761; 4c51-60'7JS757 4c-70.2-7006D;2 2oA \1a2yn. 290.4-260q7C) 21 A -4r--M-X, Tn. 31 F>.m..09 SIP, 9174U3 -08BGGC)4211 215 Z-rn C)640-3415-74 3G 37 -r-rn. (5;. Yn)..0000-732474.0000744539 -DODO-70,7234 Q5;-yp). QBD035963(> -0'aq5C02-7eG 42 H-rn. -3 yn Q-m..33.34254269 33-1705;3-77;C W 33-166Dgq222 22. 5769335 5;3 -0096277448.00-7272 5092 D251,30q224 -0a>"796079'7 C)2,5;2q4729 33 3c71-79q780E 4-03.0'973?1,, LIG.R270c?2B. 5,B A Rv -X y-n -..0 59 TZZ4--,M, Planc (rn=S.) 1-7 v-nyn. 50 501 C)8780c11&317 is -m -Z-rn..0702102473.06-7L324AS;G. 1 q rn Xm, -- -019.6)_48027.0205;76966C). va-yn, 21 \icyn-m. 20A \ja:)c:yn. 2,65-790515137 z A 4-61.7 451-$?0704 5, 5;03-0760?ú,? 34Pyn. Oqiar>q&3&3 09-77qoccsq 3 5 Z--m..0-7351-70(.91 -066qD3425;G 614059&25, 3G -/"yn. -015.3423651 3-7 E523333-333?, as yn). Ooooctl4OO2 OC)00c?28629.0000e2448' 31.0366T5 5577.038J2S8588 &I RMyn..9 1 B-M74 -,-79/o5c)23920 4.2 H" -.036'7( 11515 -iY73-!81:8529 4.3 -v-n Qm. 29.246985% " clyn - 29.53 9-70.5% 1 9S44(. 27- 21.5q758 5& SPt-rn-0301S133J-? -0320OC)7054--03194LiG-7699 33.n vc-m(5.Tn). 25% 1 -1W Rv Yn- 5;30-6915cl "t 550.264D cli 5; c? 2CC;9qP 1. RA -5. 5 1 53 Rvyn -5-?-0.-31-7"7-7277 539.5037Z64L - - - 598 071 _z 1 Sheet 63. TABLE 11D. Ptane (m= 4_.) X -7 -m P -02,5;7LG9652.08.376b-r7031 F-r. 1 ig.06-70q03360 -C)6,gC-37010 E-r. lq.0)81.566Zgl -01934Dús020 yr-r. v aTn. 301-1383904 292.691:366 FT./GF-C. at VC m 514.6028)% FT./SF-C. 2CA SCkq298i,jR, 29G.34:3ci F-rjsEC. 21A \icTn'-)Cyn. 21.08123cq F-n/sEc. -31A_ P y-n. - q 6 a 53.0'7156(>,95718 FT. Z-rn..05970c)0661 -05414s-7525 36 X-ro. -020q3"217f -021r72202 FT. 3i3.00006,731802 -0000634939 "eacomt:) 11 YE. F-r. 41 1 RM-m..7779!a?O22.-75;ggc?74"7q4 F-T. 42 Hyn..) 1 D170C5;SZ2.1 469 7)-70-72s F-r. -m Clrn. 32-5%::>c774C6 PF-GREES 31.5;3'79,-3581 PN-62G(6)576 DEGREES 00578776!31..00132757891 54c- SR t02G7?220t5.024L-7978304L. FT. 3 47--3,93076 FT,/SEC. 5;1A R- 5;81z-ú] 7.12416 GEC. 15-5- Ry-m 575.7P-Z'7029 Ptane(m=S) 1-7 '0958 15ri;5;0 N3$75691? PT. 19 -Z-m..06867354,0 -0616llqBc?& 19 -022233795 f7T. 120.4 ayn. 2.31.62?21 SEC a 4 v cynyn. 5; 1 J5.'7018299 j941.3778 Fr.. j EC. UE 9FT. SEEC. 2- 1 A V yn. FT.'fSEC. 3 P-m..0'7q'lltg657 -07593530.36 P-r. IFT. 3-7 -f vn, -'723676c34,53 -6E'79651J6J FT. 38 k-, (5.yn). DO0096-959-DOOC)790(>i7 SECOND 3C7 L(5.m)..03BiG-IZq)oi -036'I3-5;5470 F-v. h- 1 EMm.:T. 42 loc?6 5G382s -1453692172 -9k- Yn Qm. 2-7.q1764W,5 DEGREES UL 26.31?54-70c15- Zgj.l9G6072:3 DECREES 3 -007t 2,53036( FT 54. 5 Rj;>yn - 1 J59IK4qfi FT. 33 In -VCyn5;.yn)- "-V5359q? 2-7-5121),-R() ET. /Gr=C FT-16EC. 5"75.,n277ORC 591-92-739 FT, /SEC. 1 1, Sheet 64-, TABLE 12D. Plane (m=6.). ---I Values r =0. r= 1. r = 2. 1-7 -rn Ern Dú576R201 18 is -D( S4001-2,72 -OG;3 5896215, 19 -02]4i4i7991 -0223E30492 \jam, 12,ag.or.?13666222L.5574-L21 2)9.q218,987 -2 21 yc--rn rn. 20A \f:a,5cyn. 224-7230b146 21 A,i CTn X W1 - - 501-E58144S 524.10931R02 3 b- P-rn. _z -(Y-1 - -0-719101050 B(. 'Xyn, -DZOC)493?q2-O22814OW9 -024C363651 t!(5.Yn) -000)094q-79 -0001112223 d000109?073 3 I-G-yn)- -04-5;:33Q7919 '04770-71a4'.'9 4_ R M-y-n. 42 Hyp - :5-6?95;D0'2 24.5q677670 '25.'aOIb2627, 1Fbm - D]4LrpAt.20IC) 01a703943S -0i160'7ú7J5-7 Rbyn. 1 1Q3461553c)-2.036r24&192 3's 'm 1 VCyn;.-rn). 1531-67-6c?031 4L29-91411(.48 41b_. Oorsg;l 159A R.,ixrn. 5-70-255?c?34 5S P 1 an e (m=7j. 1-7 -yy-l Fyn - IS m 1 cl yyl IZyn -02 54-65,'72.02365-77909 21 v c -m -nn - 2.OA,,laxrn. 21A vcynxrn. 0 1-244 5 510 9;14.)95-74LIS 3 zt pm Ocl)95914'liB Z"..1.07C)7!B27-9-74 1 M. ' -0210-76.69.0'2401643c11 -0254916 W2 3-7 --7q"loloc?75& -'7ocfgc?qoao 3, L(5.yn)..0541061q-14.0576404.1-74c.0564L2886SIA IL 1 k-2 Hyn 43 -M 21,()5;5;5725-'7 U)8.52lcl?"764 5B.513c)01612ZL 54 5 t:,-rn. ' 713 -040izO 11362 -1539393?967 3-3 &-4cO3'25q614045;"7-51;73 úsA Rv-:cyn. 94e-2-786643,6-7. 1 AS9932 5;3 R\jyn, 93c?-5;03-7264- 1358-0-7)c4G5 Shoot 65. TABLE 12D. Plane (m=6.), R 9 F- Values r = 3. r = 4, U n i t s 17 -m F-m.08 9,9( G76577 -0i - FT. FT. V:ayn 208.(-9'2 9SE, FT. 21 vcrn-m. 5;62.6!B506C7 F-r./isEc. 20A)87-9q02840 FT./sec. 2)A 5;-S-RS06.15;74.9691195 FIVSEC. BLIL RY9. -D7'?87,58912'-07 176045-75; FT. zyn. -048774814 2 F1r. 3G xyn. -0263855;q86 Fr. 377 -v- Tn.689 10049019 FT. 3s 000,03,"575 -00009L-6526 SECONID 39 9 -.y-n-) Y:,r.' 4L 1 Rm-m. 12) FT. 42 H-m. Yr-r. 4-3 Yn C-1-m. 2-3-96961/L51 25-a-3S-525;Z4 t>EGRE-E- 4-4- P-1-25:310610 18.1055?850 DEGREES 3 -00c.280275;- FT. 54 'H.035"5a71t.1) 33 Y-n'-,/cyn(5;.m FT./SEC. 5RA Rvxyn. Fr./SEC. R m. 575.-72270 9 SCII-9CI-73695 F-T./GEC. Plane (m=7j. 1-7 Tn pyn - -013G-9003455 -02394-90C710 FT. )8 -rn Z". -06f236(:,506.0,59377262A: FT. 19 -rn.025;,;718C85; FT. 2-0!E6-5,6-751'73 F-r.GEC. 21 v C Yy1 Tn t2-310 5'78,309'214 F-r./SEC. ?OA 162.31525o69 IZS.626116B TT.7s-Ec. 2.1 A %v c -rntc Yn 562.1087122 F-T./Gr:C. 1 3 41. pyn. -07q7-q4IE?5;G(o -07603&7h-77 PrT. as Z-rn -.0;E179036.9 -C)4:74191:5ú70 PT, 36 X-rn. -0277C22197 Fr. 3-7- -r m. -68q810-72'70 FT. Bs D001205-,-cl6'9--00(t 10?4 19 SECOND 39:5.--Fn-.0974-224-951 05-,BL(.7ogi.' FT, 4L 1 1 RMyn. --7-7q2-794.B23 -76157ieoaoe =T. IL-2 H YY) 1 -Wal 19-7021 FT. 43 -rn C.jg.Lqi-700-71)6-55900054LnEGREE 4Q- G-Lyn J6-110-714125)2.-34_9e/AF,7 ' j DEGREE'S 3 5. -0) 1)2814-7 -DC9:,33019876' FT. 51k hyn. cr -(),35504767 F-r. ER-,Inc.v.n. 3ggqll3[4, 585-086736- 601.(,'2Gloj67 F7./SSEC. 158 R\/-m- 5-75;-,-722'7029 1 1 Sheet 66. TABLE 13D. Plane 6. Plane (m= 8.) Values r = 0. r = 1. r = 2. 1-7 m:P b 0899G 1838 -09^7 8 7 R 6799 1 B -m -Z (:], -06-39L54A79 19 -m XG..0'22c11445;9(2.024,39.32 5 va6.)59.1298609]&-8-'7477-791 1-33.//-9330G'2 V(: 4,95-38G9857 518-535273ú5; 5&-1-S-706806, P 61 -Dqlil;c743L3 6. 3-7.-T9708<?630) -76110-724L7q 3B (5.6). -000 1 -4r5-53-6' ' 0 472W Q -00014-0-75C10 -D661G35D96G 3q - Q J 14-l li-.0659990845; 4-3 EM6. -8(521 1481-7 --7q-72205'70J 42 --53-(o2(-3-7D32 -C)-7E!2?5485;4 4-3 16-03:365;2 16 4 =. 44_ 5_3 5 Ep 6. -0202737S IP.D)q I 554 SRID6. 0(1-16q34ú,5c/.04-3,5;499757 C)-21701072 1 4LO 918 L.7 3 07 3 5 0 53 0 4-,G5 -12 J cO 67 5 82, Rx. C>c15- 'T0q74L57q -2:15;37<?2538' 58 -R-45. tQ R.,77. 520-31-7-7-7 3e-5;03,7e6 -958- 0-7 I4613 P I an e T Plane (n= 0.) 1-7 yn P.7. -097WI79c] Is s: =_7.. Oacf4-7-3-ligg 1; q -v-n)-7,.-02e9.1445c/7.024033,23.0.' T791 13-:5-49306'C ?1 518-5;352-73.r,, F>4)-!9-706806 -7. -Z-7. -7 Q>, -79869657 - () 5; 36 v,,-7..02440'23U -025qt 1057q 377 38 -000J9,20560 -0001( 721?61'7-0001552"77q. 41 RM 51 148t 7 122059061 42 H -7..03(o2Q^37032.0'72?25b854- 4:3 nCnl.7. 16.C?599;596 1&03365216 L4, W. 1-7-80ús!23247 13.83959?52 E l 7-77 -'n 156 F_ U-7=-Y]. n Q 0 3 0 (6J7) -C)ODC)194154 31 L(G-'7) C),a,3020r>74,7 -010OWc?776 - _ 1 - t Sheet 67. TABLE 13D. Plane 6. Plane ( = 8.) Values r = 3. r = 4, Uni ts 1-7 M r b. D!959116110 -09-39625 FT. IS -ro 7- (o..0 6 0 7 5 15144. 0 58031 GDO6 F-r. lq M.025 F-r, 2 Cl]0q-5LLI 130 6-7.&C2-39t363 F'r-PSE 21 vc-rnG565.205G01 1 5188.09Z5155 f:"TdI-SEC. 34 P(O. -0-79q65'7876 -0-76065p722 F-r. ZCO. -0517 14.994-.o4(,6qG6-IB-70 F--r. 36 5, FT, 37.690054075 fFT. lis 61 -00 0 13776'323,. ODD 12; 8 63 5 SECOND 3R iF-r 41 42 H G..1079 1 r,- &-3'2-7c72588 43 yy- CI(.)3,8-7q6-7!,9'3 DEGREES 44 (16IC).'165kS764-0 G,5;9444L412:3:5 DEGREES FT, 33 yy v C Yn 64 Rt..1 16 5 7 R:)c -28&3-7s L 1 S 5's 1 1 a-7 F-r, 58 Rv5. bo R\1-7. 575h-722702c 591.9q-786'25; P-r./sr=c. 1 1 Plane T Plane W= 0.) 1,7 -m P7. -091C) 116110 - OSSCG2503, F-T- % -1 iF yn _z -7- - 0 60 8 5 1 r7 14- -015 9 0 3 [ 5 0 0 6 S:-r. =9 -Y n 7. -0290349q5; -025q3 1,0026 t:-Y - 20..va)09.;4t 130 67.8B279565 FT,SEC. 21 vcyn7. 565-205600 F7./SEC. 22 -V7. 295.0-765027 2q7-586-74-14 KELVIN. 3 4. -0-7C)(n59;-722 =-r. Z7. -051hl-991- F-F. 02132223291 --7251J.119C)286 69005;45-745; -00013-762A -DC)D7?-q74778 SECoND 3q. -(3732 io,: - 'PT- 4-1 R M -7. 7 R S, -7 5 6.910 --7(> f 69 3 7039 F-r. A2 H7. -tO-79i55d42 -1432-792,588 Fr - 4,3 TY.1 G1-7.)3.W(7,>758-3 DISGReces 144 (L7. 10c?683-7640 PEGREES 153 '---n'FI-)-7%.)1301,,-711?.78. FT- ;4L - ' ' fSR,,b7. 5259 FT. 0 L (-7-in) Q_. c) so ' t(G.'7) -CDDOO'01'722 311 L(G--1). -0001096153 1 1. ''. b.9 CM, M 9 IS, SLS-",5b1Q?Q- '(Lk.)-1 95 ljlgfoi 1QD0. -)'A a Lkl- d S5 223 Z_C). ago t_ú'77? - 91E0. 90bi02aLbL. LIB'7112SPE. bL7-3L01 19L. I VJ9ES6tLIO. 082')686910- 9E 155-1901-7590. SQ!Bbi99CLO?,9Q9b939LO. 5ú 05'7?,n5BL80- UCA -rl!E ISILS194.9f IbLOGOOL-St 7 2, P-bLI'Efi0012 S b%"úL-9bE 195-7829.'SbP, 2,8b-75"."7b2 23 Z7 1\ 691 L5L-MI 1 aOLL9-0-b'3( bL P, -;-c-kx U-L bl !69Z-981-.5Z-so- -U2-Fjw 2-1, 1 ( =U) 2U12 JCJ 09!5912105' LL161-50.0817 - LLk bS SUSLIS-M- 0228L!G53'91 1. OLOW'ú-,l 9) -1 LS 53LSLSt b!52,SbbcIP-0. (U.L)__1 <)5 5361-LLOQQQ19a9900Q(7. (-q90LI-0000. L5EQBzi9.:50- 9ZL.TLb77b50. L,-cr l S 1-47 b Ll 8 LO r 19 L- 1 Q F-9 b% (3 fl b L - P- 5 9. 'U J- t-9 lux c)s TE bbbIQ956.-"-t Ut\ 9 2Lb96L020.. U,-X w, bl bb210LOO1Q 91 j-iiu -t--T sonl'2A = U):J U 21 0-71 g-lgvi 89 looqs Shoot 69. TABLE14D. Plane (n.= L) Values r.= 3 ' r = 4- Uni ts 1,7 -m Fl-n - -0259116110 -083q625D33 FT. ] a M.Z-vi. -0149?85178 FT. 19 Yn Yi - V-1a FT, -0?_1"705Z va-n-)OJ-30>0065; 62-5;4653?)9 F'r.1SEC. 21 VC-M-n- 522.-7)4-3L58 F-r-/SEC- 22 -f-n. 29.-651?5t) KELVIr-1 2-3 209'q-2152'2-6 2150.4)qqtL LP Ar-r 2L ' j -3- 5; tz,'76 4 1 -7 3 G.3B5P T g 6282 F S.7jjg- 3- F-n. -07c?9G8787,.07606r,>5722 FT. i5; F-r 1 36- 'R-n- FT. 3,7 --r-n. --725;,180?-86.6qC;C)540-7iL5 FT, 4-1 R M-n- -'7-7q-3-156%09 -76).693'7639 Fr, 1,.2 R771- -10-7c7159 0 L7 - j Z327 9 2,5 97 FT 73 SF:bn_ PT. -9 -5 R pn 4 -0b--77t44761 FT. 1 L C7. v-,). -0000'791'722.1)000-74,,99P-4 SECONZ) U-7 --n).04LaG4?24-91 -0b.23690q72 CT- 157 L (5.,n) - '-]D996!6)"70.10ús85257182]FT 99 -m CYnCTn)- FT-/SEC. Plane(n=2.) 1-7 m n -000517116110 -0999G25033FT. -0655721211 5; i van. C)3-U7088301 57.21026227 F-r. IS rEC: 21 \7 cyn n 4L90-2231306 0 5 - 8 4 0 r- r. /s E c. 22 - 298.1124D25 299.69q8212 KELVIN 23 21314807598 2J'74-.-79'7940 LES-YF-r2._ 214 Fr 3 34. F-r. 13 s; Z-n.; -01997(P4&1332 0576;6,5;)52q4-. FT. 36.0201.1?qZD43 -02t0140427 FT. 37 -690054 P74-5 LL 1 R M-n, FT- 42 -)0'79153C)-7 -J4327q258'7 P7T, 52. G6 (-7in). 3.6291)-7aE4 3.7206521?1 DE-GRF-ES SF-Pn -o2931 6 6,9(:) o.0 1 F-r. R -0495;160D03 -040OC)IC,237 F-r. (7.--n). -0 00 1 20'i95 - 000 11 G'a45C SECOND L L (7:-, yi).063214922179 FT. 5.6 s7 FT. Tn rn (7, -v)). 1 .A q k (U. L -1 ú99 90b502,2Lbl-- e-18-11 12918.. lk "A 1,17 n---5f7 glbO- 2,8500()OZ.ú bj79lb:aa-a.16( --WIZ 1 nC3 T7a b5 L.3 L 09L31185-.!Sb 219Lb-1.601 09b5L'EL-blt 021 uj- b 1 I[QfLBOISO, 1 U-:Z_ U-k 91 cl Ll U) 0 U 21 cj LkI hs (U.L)-1 95 (W7,-L 92 as UH kAX c)E L-- 9 0 L b b 0 53 l ú Q977, 9 ?LSO - 45 L07n(L175.út Qb7199.9,0 lZ L0907b5-Lb2 F-LLI lc)8.9,b2 7 -18 % 2 2 J I' 5 LIE - U 13 -62f - F-22,6;99b.0( L59c,Ib60-bH i9995535i-bZ( 03 2b99-SJIO. 99921b91 10. b 1 b1090Lt 2;E-D-- - - kAZ w- 9 F sonlc/\ U) 2) U le 1 cj CS[ -TI9V1 OL looqs Sheet 7 1. TABLEI5D. Plane (n = 3.) Values r = 3. r = 4L. U n i t s V7 ro P-n - -.095c? 116 11-0.09311625033 FT - is " Z-h- -0-72qG79272-0-704.5;)q95, F-r. 19 -Yyl -m. FT 5)-97&012559 F-r. /SEC-- E 1 \1 cyn Y). frT./Sac. -W 29'1.36996G7300.4.55;3278KELVit-1 21R4.C)DC252 L5-ly:T Z-n. P-r. 3 6)<n FT- 3-7 no..725419028G G900540746 F-r 41 R.-7-7q3-75 FT, Hn. -1071 15 3D4-7 -14'327'721;e7 FT. DEGREES 53 -t)5?5;252934 FT. 54. -QSC)1316r20-77 -D4O9l5ci93l FT. 1 b(-7-1-i)..0DDIG25L54.DO0156q4--705F-CONE:> 56 LU.,n). -DgIS;f 15-314111 FT. 57 L5.%n. FT- sq Y-n v c-rn(-7.Y-i). 501.468-74'92 -516.Z77)-77 7-r-/SF=CPtane (n 4) 1 7 -0859 116110 -1 33 F-r- 18 -C)7,6L7,772;4 PT )q y-n -D0741827478 FT- 22 'T-n- 3DO.b-539)39 301.01014,54 <EL-\1,N 2,3 '219396619) 2208-1995S9 LBJF-r2- 24- v-n 1,2.08627-31'7 F-r:. / La 21 F-r. -00e,272S2q5: -0097;C43'3- 1 F-r- -n.725-)1a02,99 -6q0Cj'540745 F-r- 4-1 RhIn. --77q3757(,909 -'761C.93"703cl F-F - &? 1--4,n-.10^7915304--7.1 2-7c?219-7 _ 3' -W- -6-(i7-n) - - 5.8-353-;7996 D1;:CREES 5-3 SF -049"336;52.02936-76328 FT- Y-)l 1 lqG. SF-CoND FT. 5q yn 4cyn(7-Y-)) 90.'2231-3CY,. 495.632-7S40 F-r./SEC.1 1 Sheet 72. TABLE16D. Plane BA Plane (n=5.).. REF- Values r =0. ' r = I. r = 2. t-o- )---7 Tn P 8. - -08'7B786-78Pi Is m 7113- -08-28-7S6-78q 1 Cl rn 'gB. - 0 0 2 0 vas. 109-8895235 99-2D02%75; 21 \]C)-ns. 3.4?-Q969D53 35;-3&B0c?84 34!B-89208q2 2e T8. b OcI 1 %G,94,-34Ll -087iB(,L2430.08"9'29'7q23> \A 8. 0 0 0 377 --c 8-.77T7CO?(:301 --76110-7809 4.1 RMIB. -91521)491-7 -77ú772?05'06 4.2 HS. -0-36r24L3-7032 0-722?5L85;4- 43 -rn 0-'5 - 0- 16-Ilr7-991586 16-03B6521G 44 (0 1-7-80!R'232&716.02,65;611-7 4A RtCISI 1-50(4t.8'5823 ZC7/8). -c122)010975 -91691600)6 -912:87,&B'75 51 Tay). 7 -.) 1'6ZI(,521 52 -0018). 16- 16 1 404.-71 C 6 9 0,7b-C7 5 0 L(718 H I15-7-7514R 57 7 L(5.8) -)(3534.30041 -1853LL3004i -195;31P300!J 59 RvB. 359.- 132338 C yo (71f8)_. 61 62, 1/ 1 1/ 1/ V, 1/ I? 1/ J 1 Sheet 73. 1 TABLE16D. Plane 8. & P[ ane (n = 5J. R5r. Values r = 3. r = 4- 'Uni ts N._ 17 D9591 1G1 10 DZ,9,625033 FT. ls- -Z la, -0959) 161 W FT. lq Tin X8, 0 (D FT. vag, 68.365512594f-2015122'3 FT./SEC. -9L --v cm 8 - 3,52--7i94;24L8 35;6-9&31823 P-T-/5g-c61 2? TIB. 301.364273:,301-364z2-739 KELVIN 23 22)-7-27c?23:3 221-7-279233 J_ -- V G-nli 344 F g-. -679055;722 F-r. _z -07q-963:7c-i6 -07G06,5,5722 FM V R - 0 0 FT. 377 -rj3. --7125;41E30296-6900540-745 Pr-r- 1A, Rms. -'7-793-79;6310 --7616C?37039 FT. 42 -js. -10-79115304-7]&-92-7c?2F89 FT. 4.3 -rn C1S.)5.013-786q? 13-9-7q6-79;83 r>F-GPEF-5 &L jo.q68,377(.40 6-581L&41235 P2CpEES 4.q RL(7/6). 1.602286386)-60580)80 RA-rlo 570 t C-71---)_ c70e4400457 c?051064i350 FACTOR 8. 5) Tan. 0 0/A). -11q563?01 RATIO 52 DEGREFES -3 SEEf B 54 51 sEcot-40 5; LC7-ffl: FT. - 5;'7 FT. T./SEC. sq " \ic,-rn (7. 8) 4r-9;8'9'M5;130 472-5178Oli PT-Mc. ms. 18^33)-78)OFS LB./SEC. o 61 Rv. -5006-310"-)7 -4927-72945;5; Fr PRODUCT.1 A/ 1 111 01 1 I,' ll i c91091.75 ')biggS'?8"7-LS 098(56077.09: 'D Is tu-9060b.15 9P-17-,b77-b5 -9 3-5NV 0-5 logb(J0865-b- 9LLL!i.OIIE lbgú12,8.6OP- W (9.0m li-l- -L-:f is - cp, - 1) i -A U-,- c) 1 9'7 9.1:a Q;3 DA U-k 1 59q9bF-01 -2,1 -2p, =.,P^ W7 lp-cr:zliCY bg b8b93-!9.'7c?77,!BVOQ-q-,9.9 91E 5b11710.981T ise VIC 75'95<)5.57701 209967 175-L-900-búl- P, -0:3 Z5 209ob.,,-qgt. c. Is -700,-92-IbLZ (P',03 OS 1 5L9!5?,CICOO- L3 -905L99-t-ZE (----1)-,^ U-,. 93 62,LISLBLbll (: -- q ^ - 1 1\) 5 X9 (1et\ iq -119 let\ _q 1\ 17- ,'1 C89bg.F-OL '19^ 0 l3 b -t b j 0.!P- 1 1 1 1 ^ L ( 7-- F- 2, b L Z - L t z z 91 L>SLZI')EIIOF- -15 1 7 E F_5 0 b 9 b 0 - 2,-17 E UJ- =) t\ 7( 2aogg().p57 LO'RL78!Eú.bb 'ICt\ (2 9907 0'9<bLn91 18. 6C "7'7190b'531 agi L9L9OF-ú1-3-J "--D b 89IB!55.9L9 IVE9bLL-Lib -b21300-b!Sb 1 A bLE2]0!-10- o 89L.2,1 0- LlúCOO?,5LI. CILLSIEb..=91. 2,01"9jt99bt -F-- 2 771 bt. bgOQL<nC)0,- ld Z = A.1 = j o = j so 12A s IsdouAS Z obp-; S joss:a-jdwoD OLL l-lgvl 7L 0OqS heet 75. TABLE 17D. Compressor Staqe2. Synopsis a t u es r = 3, r = 4. Units () - -3). F-r. 2 FL P12. F:13. -J192b--320062 -1-734295c)-q FT. Z 2. -Zl - -)6ZL464'2172:5 -153-72t35552 FT. X3..01796-7713-7 -019'70C)c]5;16 FT. V 1 -794.1 t 5 1642 FT./Gr=c. 9 1-299q165;'91 FA CTO R G 4.."71340131,57.6T7 1'72)4:78 FAC7r0R 11 r2 62-7 5 8 ( 0 L.B./LES. tz Bal. LB.LS. 1-3 val. 68--71 C74,04-5, 4J.20) 5 V223 F-r-/SE C - 16 2217-2 717233 LB./T 17 V 1)3.04C79.5q80 r--Y3-7LEs. )s 2;7-7.51'?&-797 F-r-/SEC, )q 1455-BI6933Z, I.L72-3868(JBJ FT-/SEC. \IEI. T72.764q652 -7q2.66q1034 V:7T./SEC. 21 26D-130-7-7"3qo 253-00q2JC77 FT. /SEC - 212 - 14-3-7. 1.953058 FT-/5r-SC. 273- 1.) -3-BJ-31-7qU723 F-r-/SEC- 24 b 1 - - 7;a 1 -704e--OG3?248 -751.4,.-75912 FT./SEC. (va V 194--9091',2,b-4 229;3;7-7598, Fr./SEC. 26 -rn v a ( BU,-2-76Pq)3 34L5.9c)514-95 FT,/SEC 2,7 -y-n 7.6013305 416.4350-282 FM/SEC 28 -000015104.07 -0000524332 G-ECONI:> 21 2,!), 01DO0921850 00008-74L)30 SECOND 55- -E:7 1 -.Z) 3---171)3-7C)c)3 3c127.58209q r-T.LB-/LB 31 306'2-912932 3574.2q6239 F7.LB./LB. 32 EW-,a). 1226,22BD196 143342q2"791 F-r.LB/LB. 3:3 Esin(t.a). 254.a24.)610 Ira.285!B610 P'TA-B-/LS- 34 Ek(I.2)- ' 2U75;-1272399?1,9%-46532 1:7T.LB./U3. 3 5 W0.2) 662)-2a'7537'754L'7-,40622 FY.LB-/U3- 36 E k 3-7 W(IIB 7446.60646 'F353-7.-7)24c69 FT.LE3./LES. BIB T3. t 1:816.294 1 K E I-V 1 3(4e 16-93)65 39 V3. = -\JE. 1;-"7G28G728 4-1 A-r 1 -5263-786915 -69J5714L8598 4L2 -rn vc-rn 1 3447.026?5 4L 1-3.clqqG1-704 IS,331-7810g L12-/SEC. -4 -rn E k 2584.5r40398 2-778.65;614i- FT. LEI-/LIS. 4,5 -n-) E-jb(1.2Y7 2466-81ú-773S 260c?-SIB"24 FT.LB. /J-B. 4d) Tn E, (1.2), F-r.LF3./LB, 47 FT.LB.1LS. U 78775 312-2'959'796 KELVIY,1 4q GLE A. 52.2.6c357554 53.'2-7)955t;5 PEGRE-ES -g i ANGLE C 50.1L9327289 L6.61706-189 1PEGREES 52 HORSE PQWER)G-1-61020 53 1q063.51.354 '210'2q24--789 PRODUE-7 0-X 256-DO2?616 22L6-3)00q73 PROI,Uc--r Sheet 76. TABLE 18D. * Dimensions of Air Duct and Rotor -r = 0. -n= 5. -n = i. -n = 2. -n t= B- p = 4-- LC-n)--- 0 O-OE5o6 0.01199 0.1q-71 S-An C) o.0203 0.0LG9 o-O791 0.1 192 P, -0-1220 R,t)a,n. 0 0.020.3 O-OL6q 0-0-79g 0111.92 R Ron - n 0 - 12 -2 0 - - 0. - 0 -&154 ayl - C) o1655 R 0 -0,115-7 -0.ELLO -0-2600 X-h. n 0.06-75 041ICSIG 0.)543 0-1,754 r-o. 10.000 10.000 10.000 10.000 10.000 t. y)=0. -n=1. -n 727 -n.= A. LO--nT C.) ()-orp?(D 0.10a9 0.1t'3-7 0.203-7 San. C) o-C)PC14 0-045G 0-0-794t 0.1201 p\ S an - n -D. 11 c4,-0,21a60 -0. 42-75; Rban, 0-01q44 O.OLI-5(o 0.0-)9LL 0.12-01 R Rba-v, - (7) - 0 - 1 19 4- - 0.212 6 0 " - 0 - l,' -7.5 - 0.-pjz 6 a-n 0-09-78 0418t9 0.2-G-7-7 0.3226 R -0.0410 -0-OE?C?G-O-IIAIRI -0-12150 0-0-794-- O.CZ6ti- Q-V783 0-2025- Tn. -,9-LB3IB Cl-4-9-3!R 9-41SS 9.48,38 -r=2. n=j. =2_ -n=s. -n=lt-. LO - Y1). 0-0541 0.106-3 0.15-74, C).20'B2;) -a-n - 0 0.01-7-7 0-0-764. 0.11-7G R Sa-n. 0 -0.115-7 -c), a) 99 o.,3 1 1,4, 0.39 5q Rba-n. n 0 0 1-7-7 0.04L-3( 0.0-U.4 C)-117(0 R Rhan. 0 -0.115-7 -0.21E59 -0-511(. -0.39r79- Wn - 0.10-72 0. 199 li- 0 - W7!B 9 0 -3 W 4L R c). 02 62 -0-06,21C, -0.662 vy.) ry-x. S.9c-76 6.9G76 8.967G _B-96-76 -n=0. Y-i= 1. 'n=2. -ntS. y)=4-- C) 0.0555; 0-106G7 0.1C04- 0.'al 19 Ga-n. 0.01477 O.C)ISZ 0-0-1012 0.1109 R 5.a n. 0 -0, 1 124 -0.210(6 -0,2,q-74 -0-3'7W7 Rbl c)-01477 0-0382 0-0-702 0-1109 R Rban -0. 1 12- -p-21OG - 0.29'74. -0-3747 FEa.n. c) 0-1)5G 0.'a13-7 0.2R-70 0.3C7C F n 1-0,-01 1 E; -0.03152-010'706 -0.11'79 ha.n. VIn - 0 0-tooiES 0-1-7g11- 0.2269 0-?-563 r-n. 9,4513 S.L5)3 9.-513 Is T =4., n.=0 "0= X_ LO -Y)), n D-o5C10 0. 1 14.9 0. 1 ("q:a o. 2253 !ban 0 O-OOEt n-02TO 0-05(i O-OCW? R 5 -,?,y) n -0-1 IGIR -0.2f6-7 -0-BORB -0-3-T7q R-han. 0 0-o081 c)-02 0 0-0961 R R -avi. c) -0.1 168 -0.-;"5028 -0.2-771:3 a^n. C) O.)Z0-7- 0.3c)-73 0.3"19G O.f 12,5 O.)q4R 0-2512 ().-214D Sheet 77. TABLE 18D. - Blade Portions 'a'&'b' in Inches. P L A H r= 2 -r = 0. Y-n = 1. -fn - -2. y-n m 0.2tl=C29 0-3-7V3 C)-4q11"0--716-7 0.1C5B Sb-rn- 0.293p, 0-667C? R Gbm, 0.1655 O-RIB98 0.404,8 O-GOSS; -0.526?> R Rbbm -0.-75;52 -o.c?-78'3 -j.J961 _).&-OB6 FLbyn D'4722 0.5B-72 0.(og33 0.-7907 F!Db-rn 1-0-5728 -0.-795' -1-015-7 0 - 1 X-cn. O.)R&L 0,1úSZIx 0.13?LL 10.000 ---Cy-n.)0-000 10.000 10.000 10.000 PLA N E: 2. -f = 1 - -rn = 1. -M='E Yn='ll. m=L. 0-2541 Ul."). C)-4853 0,5922 O.G937 0.1685; G-byn. -3-65-22 -0.5022 R5b-m. 69OC? -)- 1-792 -0. 0. 16535 Rbb-m - 0.2>96-7 0'048 0.5;173-3j 0.5%2 -0.5022 R -0-8643 0.3-790 bYn O-L9W 0-6072 -0.-acll-7 F'byn -0.1-est -0-6-72?, 0.2)05 Rrb-T 0-2105 0.2105 0.2105s 0.2105 C? - 45ES 3 S -C-M- 9-4-1a39 Cl-49-1!b 9-493s 9-44138 PLANE-9- -c= 2 Y,1,1: Yn: 2. Tn t:t 3. yY) = 4. 1. 0-25;Cyc, O-W767 0-5-75.5 0-66,04 0-1672 5bm. O,ZSGQ 0.40Z,2 0-515-7 O.GZ6B C. 1 (o77 2 RbbM 0.2B0-7 0.31513 O.WM2 0. 5 4.B 1 0. 4:72 q R Elbm. -C)-'lcfag -0.9ZgG -1.0997 0.0'5B P 'byn. 0 1 5 19 3 0-6199 0.-7093 0-79G7 1 R bm -0.3"16-7 -0.5552 -0.-7 100 -0.S611 0- 2 3 8 (b Yrn. 0.,23BG 0.239.6 0.23B6 0.2386 e. 9 Q;7 G r" JR-9;76 g.9G77G g.96-76 BIqG-7(0 PLANE 2- -r =L,3. yn = 1 - Yn = 2. yn = 3. rn =. _. 0.26&-] C)-3(099 0.4620 0.15ST3 o-6,42 0- 1 Goq SbYn. 0.2728 0-,81b27 0-4F3ú:1 0.5930 0.1(o" Rbbm. o.e672 0--sgcio CD-143-7?, 0.501A-7 F 0-!53-:39 0.625-2 0--7o45 0-T714 -0.1-7-7-7 Tn -0-3138 -0.4e.W71 -0-5-7-75 -0.-7051 0.2 6 G-7 x-n. 0.266-7 0.266-7 0.26G-7 0-'26;7 13. 4,5 G3 -ryn. 8.14513 8-4-51-3 PLANE 2. yn 2)- Yn = 4,. 0.27S2 iLlnykyl 0.3930 0-86 0-5660 <)-6459 1-Tn - 0-11 byn. 0.4G19 0-560s R Sbyn. -0-55-72 -0.6J5;4t7 -0.-7'319 0.8083 0.11458 Rbbyn o-,a4i75 o--333<:) 0-h-042 0-4(o?4. c 0.44Q6 F15by-n 0-612-7cj ().61190 -0. 14L90 R Fbbyn -0.3186-7 -0.5008 -0.6) IC 0-2914S - 0-29L8 0.29L9 0.29448 Sheet 78- TABLE 19D. Dimensions of Air Duct and Rotor PLANE 3 ---f =. 0- W= 1. W=2. W r- 3 UJ!= O.S2-2-- L-Q--W57 C)-ci9<lD I. 1-7.9-7 1.352&)-5291 0-71b90 Scw. 0.9qz9)-196s P400-7)-60&G R Scui. - 1-e)B-7 -2-1121 -2.40 5 5 - 2.69B9 0.69^77 RbcW, OX)05-3 1 - 1 >13(3).3L21 1-5-716 RECW_ - 1-q06,3 -2-14611-1 SC60 1 ehy, 1-0905 1.27-35 1-4517-3 C U-Y- -7,1) 1 - 2.03 54L 2 -'E 1,4 6'-? - 2-6 6 5'T af 15 - V 5 j 0 - 1 0-11"72 Q.06461 )0-000 -,rw- 10.000 lo-wo. 10.0oo lo-oc)o 0 L(3. W) 0j-167 --35-34 0.5301 0.-7065 PLANE 3. -r = 1. Lk-r= 1. UJ=Z. UJ='3. W=4. W c). 90) L0-UJ). 1-001C1 1.2x3S)-4-25G 1.63-74 --7 67 G scw. 1.022e 1-,71Be]5 cw. -J-6 -).92;-7 - Z.Z2q-7 - 2 - p21S 0.6625 RbcW 0.921-7--A-ol-B9-5 1.4L6J7 1.-150 - 1.4L2S1 R R-bcw. -)--7Z29 -Z.0 14L 0. 9'7 ?fS cw- 1.3>6(o 1.6009.92;7 02105 UJ. 0-'202 0.)-7-71 Q.13,5? o-o-6i5 9-4E33'5 ú7-4:BJ5,3 cl-4898 q.&q-71 9.50-71 L'3- WL o-21]R 0-42-3-7 0-6-355 Q.504 PLANE3- -'='2- W= 1. W= 2- UJ=S- W= 4_. o.'7 598 L(I. wy- 1-0190 1 -2802).5jk21A -906 0 -"7 3 5' Gcw. 1.062S V7 17-7 12.0451 -(.1281 Rscw. -)-41,7.0 -)--7M6C0 -2-0850 -2-40LO O.AI60 RA:,cus. 0,q4-8? 1-2 CIR 64-1 1 a-0019 - 1. 2 4-74 P, 'R c W - 1 5 616 -2.1,61G -'2-4tb,71 0-91546 F ul 1-1-7-73. qo 1.7943 -. 008-7 R F -)-3'325-.66 - GO e _ Ei. - 1.6657 Z. 003 L 0-2386 W, 0.Vag 1 0.200-7 y UJ, 13-9-710 8-991.3 L (3, W) 0-Z6ZZ 0 - rp 2. 4 0c7866 1.0k-es 1 L)-r= 1. W= 2. W=S, W=4. WSC9 1.3 -(,55G 1-c1664 0-6q41 1.0q3L 1 4,9 2 1-29ZZ - 0 9 613 R Sew. 1.1a-7 -1-59 - 1.9029; -2-21 6 0.5607 Rbcui. 0.9654-.?B0-7 113066 2 2 '.1 - 1. 0 96-7 R R 1 - LOU - V7016 -)-9(3 1 n-a2-74- F-Yc - 1 Z15 1,6050 I.T7 7a 9 0.266-7 0 - 2 96 1 0.2243 ojill 0.09G; 0 L(B.W). O-Blos - C5.2 1, ú2 1 - a 4-5-3 PLANE 3. -r 4. LA-r= L W 2. W = 3. w 0.-7190 L I-UJ) 1 091-7 1-46457 l.'a-Y7 2 2.Z100 0. 6167 SC W. 1-1b-55 1-6--3k2 2.12,30 2-611-7 c) -1.4n00 0.5093 Rbcti- 1.003<f I'SW3 -).01&--7 R RbcuY. P-3102 -1.5c?4,0 -1-8660 -2-5261 O.W4-1 F c).CE70 P-7,582 12,Z1-79 2-(065() - 0.7 Iclf? R F-heUT. 1.02771 - 1- 3 4L (0 1 -1-6-76c? -1-2-01913 LAY 0.2-94-8 0.2831 0.? 0^12C1 4 0-10(0 7.q35) T Uj- -7-9441-5 -7-9WEq a-C)143 0-3-7291 0 L (:Es. w 0--7L5-El J.119-3 - Sheet 79. TABLEI9D. Streamlined Portion V in -Inches. j - 5-30 9 -6 5 C- 2.9q23 R )9035 -2.9q2:1 R R6c4, F C4.. - 2.qq213 R F-bcL -,5 _4. 10.0000 -r4. Q.9335 PLANE -r 1. 49 L- (1 2. 9S-7 5 R CR c úr- - ' 2.0 43 121 bCI4- 2.83-7 15; R f?,)C4 2-c438 'FhcL. Q X - 9.51 q5 L 105q2 --- P LAM E iG., -r = 2. 2-0 6 6 S L (1.4). - 2.-7 2250 R Fb-C b - X4. 9.0492 r4_.
1.3 110 L(3.4) PLANE 4_ RhC4.
- 2-5'2b(o R RhcL.
2.3n42 R R6 c 4.
B, 1005 FJoc4-l F, c 4 442 R - - - 1 Sheet 80.
TABLE 20D.
Dimensions of Air Duct and Stators Plane 5.
(r = 0.). m=2 m--3 m=4-m=5 m=6 n. M-0m=1 0 -0-781 -1618.25,07.3443 -44-23.54-41 0- -0251.0520.0805 -JJ06 -[4-21 -1-7-2> 0.0942.1C28 -3156 -302.2 rm. r h. io.oFo io.oo -)o.ooo lo.ooo to-000 lo-DoD Plane 5.
(r = L).
n. rri--0 m= 1 m-- 2 m=3 m=4. -m=5 m=6 L (Slm.). c) -o8o8 -261 -103G)B?) -164C4 SF 0.0232- -0'751,4 [9E] 0 -0q0-3 rm. r n. q.ú q.52%2 17.5346 9.544 q.55;1:3 g. 1571 q-5G14 ;t95 -- Plane 5.
(r = 2J. - m= 1 m= 2 m--3 m = 4. nn-- 5 m-- 6 m= 0 rrn").'-c) L (5 -0-785; -164-1 -2562-35,42 -4-575.5651A S FD - -0)q3.0404 -0651 -3779(.-4'301 -5 R 0 -0q02.1769 '214qR -0873 r M. r n. c) -3183 q-04 plan -5. -- (r =3j, n. m-- 0 m= 1 m= 2 m:. 3 m= 4 m= 5 m= 6 L(5.m). 0 -0-784.1647 -25e --3584t. - r77L(:> 0 -0192 -031q -0501 -32T7 - 099 9 -1114 S 0.0919 -17(.- -252cl -92 l,aeo -S- --- 8. 978 - -g-. -6 2 _d 2 8.6951, r m. r n. 8.607- P t a n e 5.
(r = 4.-.). rn= 1 rn= 2 m=3 m= 4 m=5 m=6 D - m= 0 - L (5.M). 0 -.07-34 r2 5 9 -2&4-. -05.1p&j94 - r-, -3-05 W7 9 A rrp rn. C.) -018Gq (=>60 2394-2-9 -34-'P>I2> -3895 -1(:160 -2197 -76!9-255'. 8.26q2 8.1qI - 0.-23-75 Iql 77 1 Sheet!BI.
r T ABLE 20D.
jp Inches See Tables 7D. to 16D.
Plane 6. Plane n=2 n=3 Plane 8.
M-7 m=8 7. n=4. n=S' Ti=0 t-l=1 G4-93 -757b- (.0336 [.076 1.6812,5 I-S-7111 2-DL7L:,- 2.2241 '2086 -24-33 -3320 -4-925 -5810 -6646 -7506 -8430 W-000 10.000 10.000 10,.00010.C)D() 10.000 1c)-DOC);0-000 Planc6. Plane Plane8.
rriz 71 m= 8. 7. i n= 1. n= 2. n =
3. n =
4.. n =
5.
n = 0.
694-5 --7'196 q20-7)-4-023 1.933-3 2.02-72 2.221L 1 )c16G -22q7.2C45; -11-226.5121 -517-7cl.(jS-75.^785.,l -4.84-8.522G -55-7&.6759 -7185 -7ZcB2 -7-700.7855 9.5641 9-56l q-565;J 9.5651 9.5651 9-5651 q-5651 Plane6. Plan n= 2 n= 3 Plane 8.
m=7 m=8 7. n=4 n=5 n=0 n= 1 6771 -7920 6664 1-3742 1-6099 1-9155 2,016<i 2-224) -1668 -1991 -21S4 -3590 -521-7.60715 -'70--94- 4--797 -?060 -5211? -62C10 -66>2.61,3377 -7034- 9.1 1333 7.1333 9.1333 q-1333 9,13: C1.1 gs q.)333 3 Ptane6. Plane n=2 n=3 Plane 8.
m=7 m= 8 7. ', -.1 n=0 n=l n'= 4... n = 5 68 c? 1 -8065.8078 1.319 5 1.5 66 9 V7 8 6 0 2. DO 11 2.22& 1 -1335; -156-3 -156,6 -277G -3518 -416,7 -4950 -4.9G2 -5726 -5C?L.2 -40&6;6C),9 -600 8.7026 8.7050 8.7050 97050 8.-7050 8--705;0,S.,-7D50 t 9,70JO Plane6. Pianel n=2 n=3- Plane 8.
m=7 m=8 7. n=4 n=5 n=0 n=1 Pn -65,82.7703 J7c778 1.3062 JJ7-74.G5 1-qgb,0 2.224-1 1,3 8.2777 8.280 8.2iO 8.2804 2.2806 8.2806 9,2906 BS.'2806
2-69)o F,C4.
- 2. 5266 R Fbe L.
0 13.15!B"7a 1. 5 5 4.1 FLAME4- y ?=.58?7 L(J-41 S.1005.. Sc-L- 2.3-744,2 P. - s c- L. - 3.1()05. 1 Rbc44.
GB8920415A 1989-09-08 1989-09-08 Axial flow air compressor blade Withdrawn GB2250322A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB8920415A GB2250322A (en) 1989-09-08 1989-09-08 Axial flow air compressor blade
EP19890312535 EP0416186A3 (en) 1989-09-08 1989-11-30 Axial compressor rotor blades specifically shaped to confine the existence of the energy designated esp. to within their axial working length defined by the dimension l (i.3)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8920415A GB2250322A (en) 1989-09-08 1989-09-08 Axial flow air compressor blade

Publications (2)

Publication Number Publication Date
GB8920415D0 GB8920415D0 (en) 1989-10-25
GB2250322A true GB2250322A (en) 1992-06-03

Family

ID=10662808

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8920415A Withdrawn GB2250322A (en) 1989-09-08 1989-09-08 Axial flow air compressor blade

Country Status (2)

Country Link
EP (1) EP0416186A3 (en)
GB (1) GB2250322A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6945723B1 (en) 2000-09-21 2005-09-20 L'oréal Packaging and application device
FR2814651B1 (en) 2000-10-03 2003-08-15 Oreal PACKAGING AND APPLICATION DEVICE COMPRISING A COMPRESSIBLE APPLICATION ELEMENT FOR APPLYING THE PRODUCT AND HOUSING FOR RECEIVING THE APPLICATION ELEMENT LOADED IN PRODUCT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB741797A (en) * 1953-12-21 1955-12-14 Sulzer Ag Rotors for centrifugal pumps, blowers and compressors
GB944166A (en) * 1960-03-02 1963-12-11 Werner Hausammann Rotor for turbines or compressors
GB1599633A (en) * 1978-04-17 1981-10-07 Hodgson D I Aerofoils
GB2104975A (en) * 1981-08-31 1983-03-16 Gen Motors Corp Airfoils for land vehicle fans

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB741797A (en) * 1953-12-21 1955-12-14 Sulzer Ag Rotors for centrifugal pumps, blowers and compressors
GB944166A (en) * 1960-03-02 1963-12-11 Werner Hausammann Rotor for turbines or compressors
GB1599633A (en) * 1978-04-17 1981-10-07 Hodgson D I Aerofoils
GB2104975A (en) * 1981-08-31 1983-03-16 Gen Motors Corp Airfoils for land vehicle fans

Also Published As

Publication number Publication date
GB8920415D0 (en) 1989-10-25
EP0416186A3 (en) 1991-07-24
EP0416186A2 (en) 1991-03-13

Similar Documents

Publication Publication Date Title
RU2407619C2 (en) Method of weight calibration of parts to be mounted on rotor periphery
SA515360227B1 (en) Centrifugal compressor
GB2250322A (en) Axial flow air compressor blade
TW282399B (en)
WO2001075192A3 (en) Thermal barrier coating having a thin, high strength bond coat
Roe et al. A solution of the low-speed wheel flutter instability in motorcycles
Childs A modal transient rotordynamic model for dual-rotor jet engine systems
Davies Equilibrium poloidal magnetic fields in rotating stars
CA2184960A1 (en) Iron-nickel superalloy of the type in 706
CN108779707A (en) Turbocharger
FR2361528A1 (en) RADIAL INLET GAS TURBINE ROTOR WHEEL
ES8504722A1 (en) 4-Quinolone derivatives.
US4671738A (en) Rotor or stator blades for an axial flow compressor
Boury et al. Pulsational instability of a Star of 0.5 M0 during core hydrogen burning
Dring et al. The relative eddy in axial turbine rotor passages
Ford et al. Improved performance rhenium containing single crystal alloy turbine blades utilizing PPM levels of the highly reactive elements lanthanum and yttrium
US3325144A (en) Blade for use in a fluid flow machine
Sarka et al. The kinetic energy contribution U (ρ) to the potential energy in the Hougen-Bunker-Johns Hamiltonian
Neilson A theoretical and experimental investigation into the component losses in the working passages of turbo machinery
Cyvin et al. Condensed Aromatics. XII. Phenanthrene
Zhou et al. Treatment of arthralgia syndrome from Zang and Fu.
Butler High school orchestras in Texas
GB662090A (en) Improvements in and relating to radial inward flow type turbine or compressor rotors
Canal et al. Study of controlled diffusion stator blading. 1. Aerodynamic and mechanical design report
Krogulec Alfven wave driven wind. II-Models of cool giant and supergiant stars

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)