GB2246779A - Antitumour molecules. - Google Patents
Antitumour molecules. Download PDFInfo
- Publication number
- GB2246779A GB2246779A GB9017083A GB9017083A GB2246779A GB 2246779 A GB2246779 A GB 2246779A GB 9017083 A GB9017083 A GB 9017083A GB 9017083 A GB9017083 A GB 9017083A GB 2246779 A GB2246779 A GB 2246779A
- Authority
- GB
- United Kingdom
- Prior art keywords
- upa
- region
- protease
- molecule according
- receptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000259 anti-tumor effect Effects 0.000 title description 2
- 108091005804 Peptidases Proteins 0.000 claims abstract description 46
- 239000004365 Protease Substances 0.000 claims abstract description 46
- 108090000614 Plasminogen Activator Inhibitor 2 Proteins 0.000 claims abstract description 35
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 20
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 13
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 9
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 8
- 229920001184 polypeptide Polymers 0.000 claims abstract description 6
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims abstract 7
- 102000004179 Plasminogen Activator Inhibitor 2 Human genes 0.000 claims abstract 3
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 claims description 64
- 108020003175 receptors Proteins 0.000 claims description 36
- 102000005962 receptors Human genes 0.000 claims description 36
- 150000001413 amino acids Chemical class 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 210000004027 cell Anatomy 0.000 claims description 16
- 239000012634 fragment Substances 0.000 claims description 15
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 12
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 11
- 210000004881 tumor cell Anatomy 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 4
- 239000002753 trypsin inhibitor Substances 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 3
- 239000002773 nucleotide Substances 0.000 claims 3
- 125000003729 nucleotide group Chemical group 0.000 claims 3
- 239000008194 pharmaceutical composition Substances 0.000 claims 1
- 102000009816 urokinase plasminogen activator receptor activity proteins Human genes 0.000 abstract description 12
- 108040001269 urokinase plasminogen activator receptor activity proteins Proteins 0.000 abstract description 12
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 56
- 102000035195 Peptidases Human genes 0.000 description 39
- 102100039419 Plasminogen activator inhibitor 2 Human genes 0.000 description 31
- 108090000623 proteins and genes Proteins 0.000 description 25
- 239000013612 plasmid Substances 0.000 description 24
- 108091034117 Oligonucleotide Proteins 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 14
- 239000003112 inhibitor Substances 0.000 description 13
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 7
- 241000235648 Pichia Species 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 239000003102 growth factor Substances 0.000 description 6
- 229940012957 plasmin Drugs 0.000 description 6
- 230000002797 proteolythic effect Effects 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 5
- 108010088842 Fibrinolysin Proteins 0.000 description 5
- 108091081024 Start codon Proteins 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 241000235070 Saccharomyces Species 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 229930182817 methionine Natural products 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 102100029516 Basic salivary proline-rich protein 1 Human genes 0.000 description 3
- 101100364969 Dictyostelium discoideum scai gene Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 101001125486 Homo sapiens Basic salivary proline-rich protein 1 Proteins 0.000 description 3
- 241000235649 Kluyveromyces Species 0.000 description 3
- 101100364971 Mus musculus Scai gene Proteins 0.000 description 3
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 3
- 102000001938 Plasminogen Activators Human genes 0.000 description 3
- 108010001014 Plasminogen Activators Proteins 0.000 description 3
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 3
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 241000235013 Yarrowia Species 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 230000020764 fibrinolysis Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- BSSVCYJMQUYSRI-YVQNUNKESA-N pdbual Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCC)C(C=O)=C[C@H]1[C@H]1[C@]2(OC(=O)CCC)C1(C)C BSSVCYJMQUYSRI-YVQNUNKESA-N 0.000 description 3
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 3
- 239000003016 pheromone Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 230000005030 transcription termination Effects 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 2
- PMKKIDFHWBBGDA-UHFFFAOYSA-N 2-(2,5-dioxopyrrol-1-yl)ethyl methanesulfonate Chemical compound CS(=O)(=O)OCCN1C(=O)C=CC1=O PMKKIDFHWBBGDA-UHFFFAOYSA-N 0.000 description 2
- 108020005065 3' Flanking Region Proteins 0.000 description 2
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 2
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000010911 Enzyme Precursors Human genes 0.000 description 2
- 108010062466 Enzyme Precursors Proteins 0.000 description 2
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 2
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 2
- 102000013566 Plasminogen Human genes 0.000 description 2
- 108010051456 Plasminogen Proteins 0.000 description 2
- 108010005246 Tissue Inhibitor of Metalloproteinases Proteins 0.000 description 2
- 102000005876 Tissue Inhibitor of Metalloproteinases Human genes 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- LLXVXPPXELIDGQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)benzoate Chemical compound C=1C=CC(N2C(C=CC2=O)=O)=CC=1C(=O)ON1C(=O)CCC1=O LLXVXPPXELIDGQ-UHFFFAOYSA-N 0.000 description 1
- 102100036563 26S proteasome regulatory subunit 8 Human genes 0.000 description 1
- 108700036240 26S proteasome regulatory subunit 8 Proteins 0.000 description 1
- 101150021974 Adh1 gene Proteins 0.000 description 1
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 1
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 101100179978 Arabidopsis thaliana IRX10 gene Proteins 0.000 description 1
- 101100233722 Arabidopsis thaliana IRX10L gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- -1 CYC1 Proteins 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 241000282461 Canis lupus Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical group CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102000030595 Glucokinase Human genes 0.000 description 1
- 108010021582 Glucokinase Proteins 0.000 description 1
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 description 1
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 1
- 244000286779 Hansenula anomala Species 0.000 description 1
- 235000014683 Hansenula anomala Nutrition 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 101100118545 Holotrichia diomphalia EGF-like gene Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000645296 Homo sapiens Metalloproteinase inhibitor 2 Proteins 0.000 description 1
- 101000706977 Homo sapiens PTPN13-like protein, Y-linked Proteins 0.000 description 1
- 101000609261 Homo sapiens Plasminogen activator inhibitor 2 Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241000235650 Kluyveromyces marxianus Species 0.000 description 1
- 241001304302 Kuraishia capsulata Species 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 241000221479 Leucosporidium Species 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- PKVZBNCYEICAQP-UHFFFAOYSA-N Mecamylamine hydrochloride Chemical compound Cl.C1CC2C(C)(C)C(NC)(C)C1C2 PKVZBNCYEICAQP-UHFFFAOYSA-N 0.000 description 1
- 102100026262 Metalloproteinase inhibitor 2 Human genes 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 108010008707 Mucin-1 Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000320412 Ogataea angusta Species 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 101150012394 PHO5 gene Proteins 0.000 description 1
- 101150101314 PRB1 gene Proteins 0.000 description 1
- 102100031669 PTPN13-like protein, Y-linked Human genes 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000001105 Phosphofructokinases Human genes 0.000 description 1
- 108010069341 Phosphofructokinases Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 101710118538 Protease Proteins 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 241000223252 Rhodotorula Species 0.000 description 1
- 241000235003 Saccharomycopsis Species 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 241000228389 Sporidiobolus Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102100033571 Tissue-type plasminogen activator Human genes 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- 241000235033 Zygosaccharomyces rouxii Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 101150034884 ado1 gene Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003024 amidolytic effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 239000002257 antimetastatic agent Substances 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000003837 chick embryo Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 101150004703 eIF3i gene Proteins 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 101150059349 gut2 gene Proteins 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 208000037841 lung tumor Diseases 0.000 description 1
- 230000027739 mammary gland involution Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 230000016087 ovulation Effects 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 201000006845 reticulosarcoma Diseases 0.000 description 1
- 208000029922 reticulum cell sarcoma Diseases 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000012807 shake-flask culturing Methods 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6456—Plasminogen activators
- C12N9/6462—Plasminogen activators u-Plasminogen activator (3.4.21.73), i.e. urokinase
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
- C07K14/8107—Endopeptidase (E.C. 3.4.21-99) inhibitors
- C07K14/811—Serine protease (E.C. 3.4.21) inhibitors
- C07K14/8121—Serpins
- C07K14/8132—Plasminogen activator inhibitors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K19/00—Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21073—Serine endopeptidases (3.4.21) u-Plasminogen activator (3.4.21.73), i.e. urokinase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/32—Fusion polypeptide fusions with soluble part of a cell surface receptor, "decoy receptors"
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/61—Fusion polypeptide containing an enzyme fusion for detection (lacZ, luciferase)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
A molecule comprising a first region which binds to a tumour (preferably the receptor for uPA) and a second region which inhibits a (preferably tumour-associated) protease, for example uPA. The first and second regions may be respective antibodies or parts thereof specific for appropriate parts of uPAR and uPA. Preferably, the first region is a uPAR-binding part of uPA, e.g. the 12-32 region theeof, and the second region is PAI-2 or a uPA-inhibiting analogue or part thereof, and the first and second regions are combined to form a single polypeptide, expressible from a transformed host.
Description
THERAPEUTICALLY USEFUL MOLECULES
The process of activation of the zymogen plasminogen to the broad spectrum serine protease, plasmin, is medicated by specific plasminogen activators: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA).
tPA is primarily responsible for the generation of plasmin in fibrinolysis and its activity is stimulated when bound to fibrin. In humans, and many other species, uPA is important in generating proteolytic activity responsible for extracellular matrix and basement membrane degradation associated with tissue remodelling. Such processes are involved in cgrWçh and spread of tumour cells, mammary gland involution, ovulation, embryo development, development of the nervous system, in the normal inflammatory response and in a number of inflammatory diseases (dan# et al, 1985). Elevated levels of uPA have been found in malignant tissue and there is believed to be a general correlation between the amount of uPA and the invasiveness of the tumour.Studies of experimental Lewis lung tumours revealed concentration of uPA at the invasive edge of the tumours. In addition, anti-catalytic antibodies to uPA inhibited the establishment of tumour cells after i.v. injection into mice and inhibited metastasis in chick embryos. The proteolytic activity released by uPA is locallzea T;ne binGuna or plasminogen, plasmin and uPA to specific cell surface receptors (Vassalli et al. 1985; Miles and Plow, 1988) and the importance of receptorbound uPA in tissue invasion has been demonstrated (Ossowski, 1988).The receptor-binding region has been localized to the growth factor domain of the uPA molecule in the region of amino acids 12-32 of mature uPA since peptides corresponding to this sequence are able to block the uPA receptor interaction by competition (Appella et al, 1987).
The apparent central role of uPA in malignant disease indicates that inhibition of the activity of uPA might modify the course of the disease. Of the natural inhibitors of uPA, only plasminogen activator inhibitor 1 (PAI-1) and plasminogen activator inhibitor 2 (PAI-2) are sufficiently active and specific enough to be considered (Sprengers and Kluft, 1987).
Although PAI-1 is a faster inhibitor of uPA than PAI-2 it is also a very effective inhibitor of tPA and administration of this protein would be likely to compromise fibrinolysis. PAI-2, on the other hand, is a slower inhibitor of tPA and is reported to be inactive against the physiologically important fibrinstimulated tPA. PAI-2 has been shown to inhibit receptor-bound uPA (Kirchheimer and Remold, 1989a; Pöllänen et al 1990) and uPA-dependent tissue invasion (Kirchheimer and Remoldr 1989b) and thus represents a potentially useful anti-tumour or antimetastatic agent. Natural sources of PAI-2 yield very small quantities of the protein but EP-A-238 275 discloses the production of recombinant PAI-2 in E. coli.Our co-pending application GB8918191.1 discloses the advantageous production of recombinant PAI-2 in Saccharomyces cerevisiae.
Fusions of PAI-2 and other polypeptides are described in
EP-A-238 275 (page 30) but only in the context of obtaining secretion of the PAI-2 from a transformed cell producing it or in the context of detecting PAI-2 production as a ss-galacto- sidase fusion.
WO 88/08451 discloses uPA-tPA fusions, but the portion of uPA which is used is the B chain and the intention is to retain the activities of both tPA and uPA. As is described below, the uPA-derived portion (if present) of the molecules of the present invention preferably has substantially no uPA-like amidolytic or proteolytic activity.
One aspect of the invention provides a molecule comprising a first region which binds to a tumour cell and a second region which inhibits a tumour-associated protease.
The specific tumour-binding may be enabled by the existence on the tumour of structures unique to the tumour, for example tumour-specific antigens such as CEA (carcino-embryonic antigen), pan carcinoma antigen, placental alkaline antigen or polymorphic epithelial mucin antigen. Alternatively, the specificity may arise from the existence of a higher level or density on the tumour cell surface of a structure which is found on normal cells; the receptor for uPA (uPAR) is an example of such a structure.
The tumour-binding region is preferably an entity which will bind to the receptor for uPA (uPAR), as is described in more detail below. Alternatively, it may be any other entity which binds preferentially to a tumour cell, for example the plasminogen-receptor-binding domain of plasminogen as disclosed in Miles et al 1988.
The tumour-associated protease is preferably urokinase-type plasminogen activator (uPA) as is described in more detail below. However, it could be any other protease of which high local levels are associated with tumours, or at least tumours of a given kind. Preferably the protease is one that can be activated or converted from a pro-enzyme or zymogen form by uPA or receptor-bound uPA to generate localised proteolytic activity.The inhibitor region in the molecule of the invention may be an inhibitor of plasmin such as the Pittsburgh variant of 1-antitrypsin, an a1AT variant having lysine at the P1 position, a2-antiplasmin, a2-macroglobulin, aprotinin or any other inhibitor with plasmin inhibitory activity, or it may be an inhibitor of a collagenase such as tissue inhibitor of metallo-proteinases (TIMP) or the related TIMP2. In all of these cases an inhibitory portion of the protease inhibitor may be used instead of the whole molecule.
The molecule thus provides for the targeting of the protease inhibiting region to the tumour cell.
The protease the activity of which is inhibited may be free or bound to its receptor.
The first region is preferably a peptide sequence corresponding to a receptor-binding region of the protease.
Thus, the first region may comprise amino acids 1-32 of uPA or a variant or fragment thereof. By "variant" we mean a region with one or more minor alterations to the amino acid sequence thereof which region is nevertheless recognisably similar to the said 132 region and which still binds to the uPA-binding site on the uPAR. Incidentally, although the region is generally "EGF-like",
EGF itself does not bind to the said site. By "fragment" we mean smaller sequences (preferably at least 10, 15, 19 or 20 amino acids long) which still bind to the binding site of the receptor, for example the 20-30 region of uPA. "Variants" of "fragments" may also be used. The receptor-binding region of the protease may, in the molecule of the invention, be accompanied by other parts of the protease or a pro-form of the protease or a mutant thereof. Such parts or mutants should have at least 50% homology, preferably 60%, 70%, 80%, 90% or 95% homology with the protease (or, in the case of parts, with the corresponding region of the protease) in order to be regarded as parts or mutants thereof. They should, however, at least when present in the molecule of the invention, not have any undesirable level of protease-like proteolytic activity, since otherwise the point of the invention would be lost. Preferably, the protease-derived part of the molecule of the invention, at least when present in the said molecule, has substantially no protease-like proteolytic activity. In the case of uPA, it may be possible to achieve this simply by using a pro-uPA mutant in which Lys158 has been altered, for example to Gln or Gly, to prevent cleavage by plasmin.The 12-19 and 31-32 residue regions adjacent the 2030 binding region of uPA seem to help the binding region to bind optimally and are preferably present, or functionally equivalent flanking regions are present.
The first region may alternatively be a monoclonal antibody or part thereof or a genetically engineered counterpart thereof which binds to the protease receptor, preferably uPAR.
Preferably, it binds to the protease-binding site of the receptor or it binds to an area of the receptor which is sufficiently close to the said binding site for the bulk of the molecule as a whole to block binding of the protease to the receptor. In this way, not only is the protease-inhibiting region targeted to the receptor, but the protease-binding site of the receptor is blocked, which will prevent binding of the protease to that receptor and thus may further help to prevent the protease from activating its substrate.
In other embodiments, the first region consists of any peptide which will bind to the protease-binding site, or sufficiently close to it to block it, and need not be homologous with any part of the protease.
The second region may be any compound which inhibits the action of the protease (preferably uPA). Such a compound may be an antibody directed against the enzymatically active site of the protease, or against such a part of the protease molecule as to block access of the substrate to the active site or against any other part of the protease such that binding of the antibody to the said part prevents or at least reduces the activation by the protease of its substrate.
In a particularly preferred embodiment, however, the second region is PAI-2 or part thereof or a mutant PAI-2 or part thereof. Preferably, the mutant or part of PAI-2 retains a useful level of the uPA-inhibiting activity of PAI-2. Fusions of the uPAR-binding domain of uPA and PAI-2 or a part or mutant thereof (hereinafter called "uPA-PAI-2 fusions") may exhibit the following properties: 1. binding free uPAR (i.e. uPAR unoccupied by uPA) via the
growth factor domain, thereby blocking binding by uPA to
uPAR, 2. in solution, inhibiting free or receptor-bound uPA, and 3. when receptor-bound, inhibiting receptor-bound uPA.
The molecule should be stable in vivo. By "stable in vivo", we mean that the molecule is sufficiently stable when administered parenterally, preferably intravenously, to allow useful quantities of it to reach a tumour and bind to the receptors on the tumour cells. In practice, a molecule with a half-life in circulating human blood of 30 minutes or longer is considered to be stable. Preferably, the half-life is at least 1 hour, 24 hours, 3 days or more.
The molecules of the invention may be dissolved in suitable delivery vehicles and administered to patients to inhibit or prevent the growth or spread of an actual or suspected tumour.
The patient is preferably a human but may be another animal, preferably a mammal, such as a pet (dogs, cats, etc) or an economically important animal (sheep, cattle, pigs, fowl, horses, etc). In these days of transgenic animals producing valuable pharmaceuticals, it may be increasingly worthwhile to apply sophisticated human medicine to such animals. In the case of administration to animals, the tumour-binding domain is modified for optimal binding to the animal receptor and ideally is the sequence of the said domain of the protease of that animal. The molecules are preferably administered parenterally, for example intravenously, intramuscularly or subcutaneously, by injection or infusion. Clinically qualified people will be able to determine suitable dosages, delivery vehicles and administrative routes.
The molecules of the invention may be produced by chemically linking the said first and second regions by methods known to those in the art of protein chemistry, for example using the methods of O'Sullivan et al (1979) and bifunctional linking reagents such as m-maleimido-benzoyl-N-hydroxysuccinimide ester. However, it is preferred for the molecules to be produced by expression of a recombinant DNA sequence in a suitable host transformed therewith. Such hosts are legion and include E. coli, B. subtilis, Aspergillus and other filamentous fungi, and yeasts.
Exemplary genera of yeast contemplated to be useful in the practice of the present invention are Pichia, Saccharomyces,
Kluyveromyces, Candida, Torulopsis, Hansenula,
Schizosaccharomyces, Cíteromyces, Pa chysol en, Debaromyces,
Metschunikowia, Rhodosporidium, Leucosporidium, Botryoascus,
Sporidiobolus, Endomycopsis, and the like. Preferred genera are those selected from the group consisting of Pichia,
Saccharomyces, Kluyveromyces, Yarrowia and Hansenula, because the ability to manipulate the DNA of these yeasts has, at present, been more highly developed than for the other genera mentioned above.
Examples of Saccharomyces are Saccharomyces cerevisiae,
Saccharomyces italicus and Saccharomyces rouxii.
Examples of Kluyveromyces are Kluyveromyces fragilis and Kluyvesomyces lactis.
Examples of Hansenula are Hansenula polymorpha, Hansenula anomala and Hansenula capsulata.
Yarrowia lipolytica is an example of a suitable Yarrowia species.
Yeast cells can be transformed by: (a) digestion of the cell walls to produce spheroplasts; (b) mixing the spheroplasts with transforming DNA (derived from a variety of sources and containing both native and non-native DNA sequences); and (c) regenerating the transformed cells. The regenerated cells are then screened for the incorporation of the transforming DNA.
It has been demonstrated that yeast cells of the genera
Pichia, Saccharomyces, K1 uyveromyces , Yarrowia and Hansenula can be transformed by enzymatic digestion of the cell walls to give spheroplasts; the spheroplasts are then mixed with the transforming DNA and incubated in the presence of calcium ions and polyethylene glycol, then transformed spheroplasts are regenerated in regeneration medium.
Methods for the transformation of S. cerevisiae are taught generally in EP 251 744, EP 258 067 and WO 90/01063, all of which are incorporated herein by reference.
In the case of PAI-2-based fusions, the protein is preferably produced as a soluble intracellular protein.
Suitable promoters for S. cerevisiae include those associated with the PGKl gene, GALl or GALLS genes, CYC1, PHO5, TRIP1, ADO1, ADH2, the genes for glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, triose phosphate isomerase, phosphoglucose isomerase, glucokinase, a-mating factor pheromone, a-mating factor pheromone, the PRBl promoter, the GUT2 promoter, and hybrid promoters involving hybrids of parts of 5' regulatory regions with parts of 5' regulatory regions of other promoters or with upstream activation sites (e.g. the promoter of EPA258067). The preferred promoter is the PRBl promoter.
The transcription termination signal is preferably the 3' flanking sequence of a eukaryotic gene which contains proper signals for transcription termination and polyadenylation.
Suitable 3' flanking sequences may, for example, be those of the gene naturally linked to the expression control sequence used, i.e. may correspond to the promoter. Alternatively, they may be different in which case the termination signal of the S.
cerevisiae ADH1 gene is preferred.
Suitable secretion leader sequences, if the molecule is to be secreted from the host, include mammalian leader sequences, such as the HSA and pro-uPA leader sequences, S. cerevisiae leader sequences such as the a-mating factor pheromone pre- and prepro- sequence, the invertase (SUC2) leader sequence, the PH05 leader sequence, or hybrid leader sequences such as the leader sequence of WO 90/01063.
The amino acid sequence of the N-terminal portion of uPA encompassing the growth factor domain is as follows:
10 20 30
SNELHQVPSNCDCLNGGTCVSNKYFSNIHWCN
40 50 CPKKFGGQHCEIDKSKTC The sequence of residues 20-30 is responsible for the specificity of binding to the receptor and this sequence may represent the minimum requirement for binding to the receptor.
Sequences adjacent to this region provide the proper conformation for optimum binding but may be substituted by a functionally equivalent structure. The uPA sequence incorporated into the fusion molecules preferably includes residues 12-32 and in the preferred embodiment includes residues 1-47 to ensure optimum binding to uPAR. It is not necessary for the first region of the molecule of the invention to be at or adjacent the
N-terminal of the molecule. The second region can be N-terminal to the first region.
DNA sequences for expression of the molecules of the invention may be prepared by known techniques, for example by fusing cDNA fragments prepared from mRNAs corresponding respectively to the receptor-binding region of the protease and to a protease inhibitor or a part thereof.
Monoclonal antibodies may be prepared generally by the techniques of Zola (1988) which is incorporated herein by reference. Useful antigens for preparing either monoclonal or polyclonal antibodies are (for the second region) uPA, low molecular weight uPA or the heavy (B) chain of uPA, and (for the first region) uPAR or peptides based on the uPA-binding domain thereof. Antibody fragments such as Fab fragments, may be prepared therefrom in known ways. The antibodies may be humanized in known ways. Antibody-like molecules may be prepared using the recombinant DNA techniques of WO 84/03712.
The art of "antibody engineering" is advancing rapidly, as is described in Tan & Morrison (1988), Williams (1988) and
Neuberger et al (1988) (all of which are incorporated herein by reference), and is well suited to preparing the first or second regions of the molecules of the invention or the whole molecule itself. Thus, bispecific antibodies, specific for an appropriate receptor and an appropriate site on the protease, may be made by any of the methods described by Williams (1988). Such molecules will block the protease-binding site of the receptor and also inhibit the protease. The antibody may alternatively be bispecific for the receptor and the protease inhibitor (or a mutant or fragment thereof) so that the antibody acts to bind the inhibitor to the receptor.The combination of the antibody bound to the inhibitor (or a mutant or fragment thereof) thus constitutes a molecule of the invention, whereas the antibody itself constitutes a precursor thereof, forming a separate aspect of the invention. The antibody specific for the receptor and the inhibitor may be combined with the inhibitor before being administered or may be co-administered therewith. By "coadministered", we do not necessarily mean that the antibody and the inhibitor must be administered simultaneously; it is sufficient for them to combine in a therapeutically useful way in the body.
Chimaeric antibodies, where the Fc region is a human immunoglobin or part thereof, may be desirable for long term treatment, to reduce adverse immunological responses. Single chain antibodies may be used for either or both of the two regions of the molecules of the invention.
Preferred embodiments will now be described by way of example and with reference to the accompanying figures.
Figure 1 illustrates the construction of plasmids pDSPl, pDBP2 and pDBP3. E = EcoRI, P = PstI, Bg = BglII, H = HindIII, B = BamHI and A = AflII. Only the BglII and AflII sites present in the PAI-2 encoding sequence are shown;
Figure 2 shows a DNA sequence encoding, and corresponding amino acid sequence of, PAI-2 in pDBP3;
Figure 3 (on two sheets) shows the DNA sequence of the PRBl promoter;
Figures 4 to 8 respectively illustrate plasmids pAYE333, pAYE334, pAYE335, pDBP5 and pDBP6;
Figure 9 illustrates the construction of plasmids pDJB117 and pDJB118; Figure 10 illustrates the construction of plasmid pDBUPl;
Figure 11 illustrates the construction of plasmids pDBA2, pDBUA1, pDBUA2 and pDBUA3.
Figure 12 shows the DNA sequences and amino acid sequence encoded thereby, for alantitrypsin in pDBUAl.
Example 1
Standard recombinant DNA procedures are as described by
Sambrook et al, 1989 unless otherwise stated.
General
A plasminogen activator inhibitor 2 coding sequence (Figure 1) may be derived from EP-A-238 275. The DNA may be obtained from E. coli deposited as ATCC 53585 in connection with EP 238 275. This contains the plasmid pBTA438, comprising the PAI-2 sequence. The sequences encoding the uPA growth factor domain may be assembled from synthetic oligonucleotides by standard procedures.
However, we obtained a cDNA sequence for PAI-2 ourselves by analogous techniques. An expression vector was constructed in which DNA encoding amino acids 1-47 of uPA, preceded by a methionine initiation codon, directly preceded DNA encoding PAI2 such that the two coding sequences were in frame. Expression of these sequences was under the control of the S. cerevisiae PRB1 gene promoter and transcription termination was effected by the S. cerevisiae ADH1 terminator.
Specific Detail
PAI-2 Coding Sequence
A lambda gtll cDNA library constructed from mRNA isolated from 4-phorbol-12-myristate-13-acetate stimulated cells of the human monocyte-like histiocytic lymphoma cell line U937 (obtained from Clontech Laboratories Inc) was used as a source of PAI-2 cDNA. The library was screened using radioactively labelled oligonucleotide probes corresponding to the DNA sequences encoding the N-terminus (oligo 1) and C-terminal end (amino acids 400-410) (oligo 2) of the PAI-2 protein, respectively.
Oligo 1
5'-ATG GAG GAT CTT TGT GTG GCA AAC ACA CTC TTT-3'
Oliqo 2
5'-GCC GAA AAA TAA AAT GCA CTT GGT TAT CTT ATG-3'
From the putative positive clones we selected one clone (lambda gtll-186) which appeared to contain the entire PAI-2 coding region. This was confirmed by sequence analysis of the
DNA insert in this clone following transfer to Ml3mpl9 to form pDBP1 (Figure 1).
To facilitate insertion into expression vectors, restriction enzyme recognition sites were created at the 5' and 3' ends of the PAI-2 gene. A BglII site was created at the 5' end of the gene using the oligonucleotide Primer 5' -TGCCACACAAAGATCTTCCATTGTTTCAATCT-3' to create a mutation in the third position of the second codon as shown below: M E D L C V A 5'. ..AGATTGAAACA ATG GAG GAT CTT TGT GTG GCA...3'
3'...TCTAACTTTGT TAC CTC CTA GAA ACA CAC CGT. .5' changed to: M E D L C V A 5'...AGATTGAAACA ATG GAA GAT CTT TGT GTG GCA...3'
BglII
An Al 11 site was created at the 3 end of the gene using the oligonucleotide primer: 5' -CAGAAGCAGCACGCTTAGTCTTAAGGTGAGGAAATCTGCC-3' to create mutations in the third position of the last codon (proline) and in the first base after the stop codon as shown below:-
G R F S S P STOP 5'. ..GGC AGA TTT TCC TCA CCC TAA AACTAAGCGTGCTGCTTCTG...3' 3'...CCG TCT AAA AGG AGT GGG ATT TTGATTCGCACGACGAAGAC...5' changed to:
G R F S S P STOP 5'...GGC AGA TTT TCC TCA CCT TAA GACTAAGCGTGCTGCTTCTG...3'
AflII
These two oligonucleotides were annealed to single stranded pDBP1 and then used in an in vitro mutagenesis procedure (Amersham plc) carried out according to the manufacturer's recommendations. A clone derived from this procedure and with the correct changes was designated pDBP2 (Figure 1).
Oligonucleotide linkers were then used to position restriction sites at either end of the gene which are suitable for insertion of the gene into an expression vector. The linker positioned at the 5' end of the gene was
Linker 1 5'-AGCTTGTCGACGGATCCAAAAAG ATG GAA
HindIII BamHI Bgl I I and the 3r linker was
Linker 2 5'-TTAAGTCGACAAGCTTG
AflII BamHI
These two linkers were ligated with the BglII-AflII PAI-2 gene fragment from pDBP2 into HindIII + BamHI digested M13mp19 to form pDBP3 (Fig. 1). The DNA sequence of PAI-2 in pDBP3 is shown in Figure 2.
PRB1 Promoter
The structural gene, PRY1, for the Saccharomyces cerevisiae vacuolar endoprotease B has been isolated (Moehle et al, 1987a) on two prbl complementing plasmids called MK4 and FP8. When the yeast Saccharomyces cerevisiae is grown on glucose in shake flask culture, very little protease B activity is detected until the cells have c?tabolised the glucose and are utilising the ethanol accumulated during growth (Saheki and Holzer, 1975;
Jones et al, 1986). This is believed to be a consequence of a transcriptional control mechanism which represses mRNA accumulation until the glucose has been exhausted and the culture enters the diauxic plateau (Moehle et al, 1987a).
Studies with protease B (prbl) deficient mutants implicate protease B in the protein degradation that occurs when negative cells are starved of nitrogen and carbon (Wolf and Ehman, 1979;
Zubenko and Jones, 1981).
The DNA sequence of the PRBl gene has been reported, as has 150bp of the PRB1 promoter (Moehle et al, 1987b). A more extensive DNA sequence of the PRB1 promoter is also available as an entry in the Genbank database, release 60, accession number
M18097, locus YSCPRBl, Figure 1.
The whole of the PRBl promoter may be used, or a smaller portion thereof, as may readily be determined. For example, the roughly lkbp sequence extending upstream from the start codon to the SnaB1 site is effective.
The 1.435kbp HindIII-EcoRI DNA fragment containing the protease B promoter (Figure 3) was cloned into the polylinker of the M13 bacteriophage mpl8 (Yanisch-Perron et al, 1985), generating plasmid pAYE333 (Figure 4). Plasmid pAYE333 was linearised by partial digestion with SnaB1 and the double standard oligonucleotide linker 3 inserted by ligation.
Linker 3
5'-GCGGCCGC-3'
NotI
This generates a NotI restriction site at the 5' end of the protease B promoter. The promoter element was further modified by site directed mutagenesis (oligonucleotide direct in vitro mutagenesis system-Version 2, Amersham) according to the manufacturer's instructions. Mutagenesis with the oligonucleotide 5' -CGCCAATAAAAlAACAAGCTTAACCTAATTC-3' introduces a HindIII restriction site close to the ATG translation initiation codon:
HindIII
Plasmid pAAH5 (Goodey et al, 1987) was linearised by partially digesting with BamHI. The 5' protruding ends were blunt-ended with T4 DNA polymerase and ligated with the doublestranded oligonucleotide Linker 3.A recombinant plasmid pAYE334 (Figure 5) was selected in which a NotI restriction site had replaced the BamHI site at the 3' end of the ADHI terminator.
The 0.8kbp NotI-HindIII modified protease B promoter sequence was placed upstream of the 0.45kbp HindIII-NotI ADHI transcription terminator. on a pAT153-based plasmid (Twigg and
Sherratt, 1980) to generate pAYE335 (Figure 6).
The large 6.38kbp HindIII-BaniHI fragment from the yeast E.
coli shuttle vector pJDB207 (Beggs, 1981) was treated with the
Klenow fragment of E. coli DNA polymerase to create flush ends and ligated with the double stranded olignonucleotide Linker 3 to generate plasmid pDBP5 (Figure 7).
The 1.25 kbp NotI Protease B promoter/ADH1 terminator cassette from plasmid pAYE335 (Figure 6) was introduced into the unique NotI site of plasmid pDBP5, generating pDBP6 (Figure 8).
uPA-PAI-2 fused coding region
Two oligonucleotides were synthesised using an Applied
Biosystems Inc 380B oligonucleotide synthesiser and annealed to form a linker (linker 5) to encode the C-terminal portion of the uPA growth factor domain (amino acids 24-47) and the start of the PAI-2 sequence.
Linker 5
Y F S N I H W C N C P K K F G
TCGAGTAC TTC TCC AAC ATT CAC TGG TGC AAC TGC CCA AAG AAA TTC GGA
ScaI
G Q H C E I D K S M E
GGG CAG CAC TGT GAA ATA GAT AAG TCA ATG GAA
BglII
This linker was ligated with a BglII-HindIII fragment of pDBP3, representing the remainder of the PAI-2 sequence, into pUC18 at SalI-HindIII to form the plasmid pDJB117 (Figure 9).
A second linker representing the PRBl ATG environment, a methionine initiation codon and DNA encoding the N-terminal portion of the uPA growth domain (amino acids 1-23) was assembled by annealing the four oligonucleotides shown below:
Linker 6
oligo 3
oligo 6
oligo 4
P S N C D C L N G G T C V S N K
CCA TCG AAC TGT GAC TGT CTA AAT GGA GGA ACA TGT GTG TCC AAC AAG
oligo 5
The plasmid pDJB117 was partially digested with Scal and linearised DNA was isolated from an agarose gel and then digested with BamHI. This DNA was ligated with linker 6 to form pDJBl18 (Figure 9).
The HindIII fragment from pDJB118 (Figure 9) containing the uPA-PAI-2 coding sequence was then introduced into the expression plasmid pDBP6 to form pDBUP1 (Figure 10). Plasmid pDBUPl contains a PRBl promoter fragment to control transcription of the uPA-PAI-2 sequence and the ADHl transcription terminator. It also contains sequences of the bacterial plasmid pAT153 (Twigg and Sherratt, 1980), the leu2d gene for selection of transformants and part of the 2Mm plasmid to provide replication function in S. cerevisiae.The plasmid was introduced into a suitable S. cerevisiae strain wherein it effected production of the hybrid protein as a soluble intracellular protein which was recognised by anti-PAI-2 and anti-uPA antibodies in Western blotting experiments.
The protein was purified from cell lysates by copper chelate and anion exchange chromatography and was found to inhibit uPA with similar kinetics to PAI-2 itself and to bind to
U937 cells via the uPA receptor.
Example 2
A human a1-antitrypsin cDNA, identical in sequence to that described in the Genbank database, release 60, accession number
X01683 V00496, locus HUMAlATR was amplified by Polvmerase Chain
Reaction using a Perkin Elmer Cetus DNA thermal cycler according to the manufacturer's instructions.The DNA sequence of the two primary oligonucleotides were:
5' Oligonucleotide
5'-GAGGATCCCCAGGGAGATGCTGCCCAGAAG-3'
3' Oligonucleotide 5' -GGGGAAGCTTTTATTTTTGGGTGGGATTCACCACTTTTCC-3' Upon amplification both the 5' and 3' termini of the a1antitrypsin sequence became modified as follows: 5' Terminus original
G GTC-CCT GTC TCC CTG GCT GAG GAT CCC CAG GGA GAT GCT GCC CAG
BamHI
AAG
K modified
GAG GAT CCC CAG GGA GAT GCT GCC CAG AAG
BamHI 3' Terminus original GGA AAA GTG GTG AAT CCC ACC CAA AAA TAA CTGCCTCTCG
G K V V N P T Q K * modified GGA AAA GTG GTG AAT CCC ACC CAA AAA TAA AAGCTTCCCC
HindIII These modifications remove the 23 amino acid signal sequence and introduce a HindIII restriction site at the 3' end of the cDNA.
The 1.22kbp modified cDNA was purified, digested with HindIlI and BamHI inserted and cloned into the HindIII-BamHI sites of M13mpl9 (Yanisch-Perron et al. (1985) Gene 33, 103-119) generating pDBAl (Figure 11). The integrity of human a1antitrypsin was confirmed by dideoxynucleotide sequencing.
A sequence encoding a1-antitrypsin Pittsburgh (a1AT-P) (Owen et al, 1983) was created using oligonucleotide-directed mutagenesis of pDBAl using the oligonucleotide shown below 5' -GAGGCCATACCCAGGTCTATCCCC-3' This resulted in a change in the codon for methionine 358 such that it coded instead for an arginine ie ATG - > AGG. This plasmid is pDBA2 (Fig 11).
Two oligonucleotides were synthesised and then annealed to form a linker (Linker 7) to encode the C-terminal portion of the uPA growth factor domain (amino acids 24-47) and the start of the a1AT-P sequence.
Linker 7
Y F S N I H W C N C P K K F
AGTAC TTC TCC AAC ATT CAC TGG TGC AAC TGC CCA AAG AAA TTC
ScaI
G G Q H C E I D K S E
GGA GGG CAG CAC TGT GAA ATA GAT AAG TCA GAG
BainHI This linker was ligated with KpnI-BamHI digested pDBPA2 to
form pDBUAl (Fig 11).
A second linker representing the PPPl ATG environment, a methionine initiation codon and DNA encoding the N-terminal portion of the uPA growth domain (amino acids 1-23) was assembled by annealing the four oligonucleotides shown below:
Linker 8
oligo 7
AATTAAGCTTAACCTAATTCTAACAAGCAAAG ATG AGC AAT GAA CTT CAT CAG GTA
oligo 6
oligo 4 P 5 N C D C L N G G T C V S N K CCA TCG AAC TGT GAC TGT CTA AAT GGA GGA ACA TGT GTG TCC AAC AAG
oligo 5
This plasmid pDBUAl was digested with ScaI and EcoRI and then ligated with linker 8 to form pDBUA2 (Fig all). The HindIII fragment of pDBUA2 was then introduced into the expression plasmid pDBP6 to form pDBUA3 (Fig 11).This plasmid was then introduced into a suitable S. cerevisiae strain wherein it effected production of the hybrid protein which was recognised by anti-alAT and anti-uPA antibodies in Western blotting experiments.
REFERENCES
Appella, E. et al (1987). J. Biol. Chem. 262, 4437-4440
Beggs; J.D. (1978). Nature 275, 104-109
Beggs, J.D. (1981) Molecular Genetics in Yeast, Alfred Benzon
Symposium 16, 383-395
Dank, K. et al (1985). Adv. Cancer Res. 44, 139-266
Goodey, A.R. et al (1987) In Yeast Biotechnology, 401-42S, Edited by Berry, D.R., Russell, I. and Stewart, G.G. Published by Allen and Unwin
Jones et al (1986) UCLA Symp. Mol. Cell Biol. New Ser. 33. 505518
Kirchheimer, J.C. and Remold, HG. (1989a). Blood 74, 1396-1402
Kirchheimer, J.C. and Remold, H.G. (1989b). J. Immunol. 143, 2634-2639
Kruithof, E.K.O. et al (1986). J. Biol. Chem. 261, 11207-11213
Miles, L.A. and Plow, E.F. (1988). Fibrinolysis 2, 61-71
Miles, L.A. et al (1988) J. Biol. Chem. 263, 11928-11934
Moehle et al (1987a) Genetics 115, 255-263
Moehle et al (1987b) Mol. Cell. Biol. 7, 4390-4399
Neuberger, M.S. et al (1988) 8th International Biotechnology
Symposium Part 2, 792-799
Norrander, J. et al (1983) Gene 26, 101-106
Ossowski, L. (1988). Cell 52, 321-328
Ossowski, L. and Reich, E. (1983). Cell 35, 611-619
O'Sullivan et al (1979) Anal. Biochem. 100, 100-108
Owen et al (1983) N. Engl. J. Med. 309, 694-698 Pöllänen, J. et al (1990). Proc. Natl. Acad. Sci. USA 87, 22302234
Reich, E. et al (1987). Cancer Res. 48, 3307-3312
Saheki, T. & Holzer, H. (1975) Biochem. Biophys. Acta 384, 203214
Sambrook, J. et al (1989). Molecular cloning : a laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press, Cold
Spring Harbor, N.Y.
Tan, L.K. and Morrison, S.L. (1988) Adv. Drug Deliv. Rev. 2, 129-142
Twigg, A.J. and Sherratt, D. (1980). Nature 283, 216-218
Vassalli, J.D. et al (1985). J. Cell Biol. 100, 86-92
Williams, G. (1988) Tibtech 6, 36-42
Wolf, D. and Ehmann, C. (1979) Eur. J. Biochem. 98, 375-384
Wun, T.C. and Reich, E. (1987). J. Biol. Chem. 262, 2646-3653
Yanisch-Perron et al (1985) Gene 33, 103-119
Zola, H. (1988) "Monoclonal Antibodies: a Manual of
Techniques", C.R.C. Press
Zubenko, G. and Jones, E. (1981) Genetics 97, 45-64
Claims (19)
- CLAIMS 1. A molecule comprising a first region which binds to a tumour cell and a second region which inhibits a tumour associated protease.
- 2. A molecule according to Claim 1 wherein the first region binds to a receptor for the protease and the second region inhibits the action of the protease.
- 3. A molecule according to Claim 2 wherein the first region binds to the receptor in such a way as to block binding thereto by the protease.
- 4. A molecule according to Claim 3 wherein the first region comprises a receptor-binding portion of the protease or a receptor-binding variant thereof.
- 5. A molecule according to any one of the preceding claims wherein the protease is uPA and the receptor is the uPA receptor (uPAR).
- 6. A molecule according to Claim 5 wherein the first region comprises a peptide corresponding to amino acids 2030 of uPA.
- 7. A molecule according to Claim 6 wherein the first region comprises a peptide corresponding to amino acids 12 to 32 of uPA.
- 8. A molecule according to Claim 7 wherein the first region comprises a peptide corresponding to amino acids 1 to 47 of uPA.
- 9. A molecule according to Claim 7 or 8 wherein the first region comprises a non-plasminogen-activating mutant of uPA or pro-uPA.
- 10. A molecule according to any one of Claims 6 to 9 wherein the second region is PAI-2 or a uPA-inhibitiny variant or fragment thereof.
- 11. A molecule according to any one of Claims 6 to 9 wherein the second region is a1-antitrypsin (Pittsburgh) or a uPA inhibiting variant or fragment thereof.
- 12. A molecule according to any one of the preceding claims comprising a polypeptide consisting of the first and second regions and, optionally, an intervening amino acid sequence combined to form a single amino acid sequence.
- 13. A nucleotide sequence encoding a polypeptide as defined in Claim 12.
- 14. A process of producing a molecule according to any one of Claims 1 to 12 comprising (a) preparing the said first and second regions and joining them together or (b) preparing the first and second regions and, optionally, an intervening amino acid sequence, as a single polypeptide by expressing a nucleotide sequence encoding the polypeptide in a suitable host cell transformed with the nucleotide sequence.
- 15. A process according to Claim 14 (b) wherein the host cell is a Saccharomyces cerevisiae cell.
- 16. A method of combatting neoplasms comprising administering to a patient a molecule according to any one of Claims 1 to 12.
- 17. A compound which binds specifically to uPAR and to PAI-2.
- 18. A compound according to Claim 17 wherein the compound is a bispecific antibody.
- 19. A pharmaceutical composition comprising a molecule according to any one of Claims 1 to 12 or a compound according to Claim 17 or 18.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9017083A GB2246779B (en) | 1990-08-03 | 1990-08-03 | Tumour-associated protease inhibitors targeted to tumour cells |
AU83185/91A AU8318591A (en) | 1990-08-03 | 1991-08-02 | Tumor cell binding molecule with protease inhibiting region |
PCT/GB1991/001322 WO1992002553A1 (en) | 1990-08-03 | 1991-08-02 | Tumor cell binding molecule with protease inhibiting region |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9017083A GB2246779B (en) | 1990-08-03 | 1990-08-03 | Tumour-associated protease inhibitors targeted to tumour cells |
Publications (3)
Publication Number | Publication Date |
---|---|
GB9017083D0 GB9017083D0 (en) | 1990-09-19 |
GB2246779A true GB2246779A (en) | 1992-02-12 |
GB2246779B GB2246779B (en) | 1994-08-17 |
Family
ID=10680139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB9017083A Expired - Lifetime GB2246779B (en) | 1990-08-03 | 1990-08-03 | Tumour-associated protease inhibitors targeted to tumour cells |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU8318591A (en) |
GB (1) | GB2246779B (en) |
WO (1) | WO1992002553A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656726A (en) * | 1993-05-28 | 1997-08-12 | Chiron Corporation | Peptide inhibitors of urokinase receptor activity |
EP0890638A2 (en) * | 1996-01-08 | 1999-01-13 | Nissin Food Products Co., Ltd. | Cancerous metastasis inhibitor |
US6077508A (en) * | 1998-03-23 | 2000-06-20 | American Diagnostica Inc. | Urokinase plasminogen activator receptor as a target for diagnosis of metastases |
US7807621B2 (en) | 1997-07-25 | 2010-10-05 | Angstrom Pharmaceuticals, Inc. | Anti-invasive and anti-angiogenic compositions |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990012091A1 (en) * | 1989-04-07 | 1990-10-18 | Cancerforskningsfondet Af 1989 | Urokinase-type plasminogen activator receptor |
US6120765A (en) * | 1993-04-02 | 2000-09-19 | Shiseido Co. Ltd. | Urokinase plasminogen activator fragments |
US5965541A (en) * | 1995-11-28 | 1999-10-12 | Genvec, Inc. | Vectors and methods for gene transfer to cells |
US5846782A (en) | 1995-11-28 | 1998-12-08 | Genvec, Inc. | Targeting adenovirus with use of constrained peptide motifs |
US6465253B1 (en) | 1994-09-08 | 2002-10-15 | Genvec, Inc. | Vectors and methods for gene transfer to cells |
US5559099A (en) * | 1994-09-08 | 1996-09-24 | Genvec, Inc. | Penton base protein and methods of using same |
US5770442A (en) | 1995-02-21 | 1998-06-23 | Cornell Research Foundation, Inc. | Chimeric adenoviral fiber protein and methods of using same |
US6127525A (en) * | 1995-02-21 | 2000-10-03 | Cornell Research Foundation, Inc. | Chimeric adenoviral coat protein and methods of using same |
US6783980B2 (en) | 1995-06-15 | 2004-08-31 | Crucell Holland B.V. | Packaging systems for human recombinant adenovirus to be used in gene therapy |
AU7553698A (en) * | 1997-05-12 | 1998-12-08 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | Method and construct for inhibition of cell migration |
US20030017138A1 (en) | 1998-07-08 | 2003-01-23 | Menzo Havenga | Chimeric adenoviruses |
US6929946B1 (en) | 1998-11-20 | 2005-08-16 | Crucell Holland B.V. | Gene delivery vectors provided with a tissue tropism for smooth muscle cells, and/or endothelial cells |
US6913922B1 (en) | 1999-05-18 | 2005-07-05 | Crucell Holland B.V. | Serotype of adenovirus and uses thereof |
US6492169B1 (en) | 1999-05-18 | 2002-12-10 | Crucell Holland, B.V. | Complementing cell lines |
US7235233B2 (en) | 2000-09-26 | 2007-06-26 | Crucell Holland B.V. | Serotype 5 adenoviral vectors with chimeric fibers for gene delivery in skeletal muscle cells or myoblasts |
ES2335657T3 (en) | 2002-04-25 | 2010-03-31 | Crucell Holland B.V. | MEANS AND METHODS FOR THE PRODUCTION OF ADENOVIRUS VECTORS. |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0044167A2 (en) * | 1980-07-14 | 1982-01-20 | The Regents Of The University Of California | Antibody targeted cytotoxic agent |
EP0122132A2 (en) * | 1983-04-08 | 1984-10-17 | Kureha Kagaku Kogyo Kabushiki Kaisha | Anti-tumour substance |
EP0383599A2 (en) * | 1989-02-17 | 1990-08-22 | Merck & Co. Inc. | Protein anti-cancer agent |
WO1990012091A1 (en) * | 1989-04-07 | 1990-10-18 | Cancerforskningsfondet Af 1989 | Urokinase-type plasminogen activator receptor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623113B2 (en) * | 1986-01-31 | 1994-03-30 | 浩 前田 | Cancerous breast / ascites retention inhibitor |
WO1991000912A1 (en) * | 1989-07-07 | 1991-01-24 | Massachusetts Institute Of Technology | Production and use of hybrid protease inhibitors |
-
1990
- 1990-08-03 GB GB9017083A patent/GB2246779B/en not_active Expired - Lifetime
-
1991
- 1991-08-02 WO PCT/GB1991/001322 patent/WO1992002553A1/en active Application Filing
- 1991-08-02 AU AU83185/91A patent/AU8318591A/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0044167A2 (en) * | 1980-07-14 | 1982-01-20 | The Regents Of The University Of California | Antibody targeted cytotoxic agent |
EP0122132A2 (en) * | 1983-04-08 | 1984-10-17 | Kureha Kagaku Kogyo Kabushiki Kaisha | Anti-tumour substance |
EP0383599A2 (en) * | 1989-02-17 | 1990-08-22 | Merck & Co. Inc. | Protein anti-cancer agent |
WO1990012091A1 (en) * | 1989-04-07 | 1990-10-18 | Cancerforskningsfondet Af 1989 | Urokinase-type plasminogen activator receptor |
Non-Patent Citations (5)
Title |
---|
BLOOD, Vol.74, 1989, pages 1396-1402. * |
CELL, Vol.52, No.3, 1988, pages 321-328. * |
J.BIOL.CHEM., Vol.62, No.10, 1987, pages 4437-4440. * |
J.IMMUNOL., Vol.143, 1989, pages 2634-2639. * |
PROC. NATL. ACAD. SCI.USA, Vol.87, pages 2230-2234, 1990. * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656726A (en) * | 1993-05-28 | 1997-08-12 | Chiron Corporation | Peptide inhibitors of urokinase receptor activity |
EP0890638A2 (en) * | 1996-01-08 | 1999-01-13 | Nissin Food Products Co., Ltd. | Cancerous metastasis inhibitor |
EP0890638A4 (en) * | 1996-01-08 | 2001-08-22 | Nissin Food Products Ltd | Cancerous metastasis inhibitor |
US6509445B1 (en) | 1996-01-08 | 2003-01-21 | Nissin Food Products Co., Ltd. | Cancerous metastasis inhibitor |
US7807621B2 (en) | 1997-07-25 | 2010-10-05 | Angstrom Pharmaceuticals, Inc. | Anti-invasive and anti-angiogenic compositions |
US8110543B2 (en) | 1997-07-25 | 2012-02-07 | Angstrom Pharmaceuticals, Inc. | Anti-invasive and anti-angiogenic compositions |
US6077508A (en) * | 1998-03-23 | 2000-06-20 | American Diagnostica Inc. | Urokinase plasminogen activator receptor as a target for diagnosis of metastases |
Also Published As
Publication number | Publication date |
---|---|
GB9017083D0 (en) | 1990-09-19 |
AU8318591A (en) | 1992-03-02 |
GB2246779B (en) | 1994-08-17 |
WO1992002553A1 (en) | 1992-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2246779A (en) | Antitumour molecules. | |
US5550213A (en) | Inhibitors of urokinase plasminogen activator | |
JP2851423B2 (en) | Activable fibrinolytic and antithrombotic proteins | |
JP4177453B2 (en) | Chimeric proteins and variants of tissue factor activity inhibitors TFPI and TFPI-2 | |
EP1107989B1 (en) | Expression and export of angiostatin and endostatin as immunofusins | |
US5187153A (en) | Methods of treatment using Alzheimer's amyloid polypeptide derivatives | |
KR20090110936A (en) | Therapeutic application of Kazal-type serine protease inhibitors | |
US5780025A (en) | Compositions and methods for the synthesis and assay of enkephalinase | |
EP3013366B1 (en) | Combination therapy using a factor xii inhibitor and a c1-inhibitor | |
US6245739B1 (en) | polypeptides and polypeptide analogues | |
AU2006320858A1 (en) | Methods for production of receptor and ligand isoforms | |
JPH07188294A (en) | New polypeptide, its production, dna capable of coding the same polypeptide, vector composed of the same dna, host cell transformed by the same vector, antibody against the same polypeptide and pharmaceutical composition containing the same polypeptide or antibody | |
AU2843900A (en) | Proteins that bind angiogenesis-inhibiting proteins, compositions and methods of use thereof | |
JPS6291187A (en) | Dna sequence encoding human tissue plasminogen activating factor | |
JP2645237B2 (en) | Gene encoding hybrid plasminogen activator | |
EP0765168B1 (en) | Combination of a procoagulant and a cytokine or an inducer of cytokine production for the treatment of tumors | |
JPH10513062A (en) | Cytoplasmic antiproteinase-2 and cytoplasmic antiproteinase-3 and coding sequence | |
US20090286721A1 (en) | Targeted plasminogen activator fusion proteins as thromobolytic agents | |
JPS6339585A (en) | Production of factor xiiia by gene manipulation | |
JPS63146789A (en) | Modified human prourokinase | |
Cohen et al. | Effects of cellular transformation on expression of plasminogen activator inhibitors 1 and 2: Evidence for independent regulation | |
CN108473542B (en) | Genetically modified yeast cells and improved methods for producing clot-specific streptokinase | |
Hofmann et al. | Purification and characterisation of recombinant rabbit plasminogen activator inhibitor-1 expressed in Saccharomyces cerevisiae | |
HU217100B (en) | Process for producing new polypeptides | |
Glas-Greenwalt | Fibrinolysis in Disease-The Malignant Process, Interventions in Thrombogenic Mechanisms, and Novel Treatment Modalities, Volume 2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PE20 | Patent expired after termination of 20 years |
Expiry date: 20100802 |