GB2235089A - Preparing thin-film electroluminescent devices - Google Patents

Preparing thin-film electroluminescent devices Download PDF

Info

Publication number
GB2235089A
GB2235089A GB9015883A GB9015883A GB2235089A GB 2235089 A GB2235089 A GB 2235089A GB 9015883 A GB9015883 A GB 9015883A GB 9015883 A GB9015883 A GB 9015883A GB 2235089 A GB2235089 A GB 2235089A
Authority
GB
United Kingdom
Prior art keywords
phosphor layer
layer
mol
thin
srs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9015883A
Other versions
GB2235089B (en
GB9015883D0 (en
Inventor
Shoichiro Tonomura
Masahiro Matsui
Takashi Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9004983A external-priority patent/GB2230382B/en
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Publication of GB9015883D0 publication Critical patent/GB9015883D0/en
Publication of GB2235089A publication Critical patent/GB2235089A/en
Application granted granted Critical
Publication of GB2235089B publication Critical patent/GB2235089B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/18Light sources with substantially two-dimensional radiating surfaces characterised by the nature or concentration of the activator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A high luminance thin-film electroluminescent device is prepared layer by layer to comprise a phosphor layer with SrS as the host material and a metal selected from Mn, Tb, Tm, Sm, Ce, Eu, Pr, Nd, Dy, Ho, Er and Cu as the luminous center sandwiched between two insulating layers, with two thin-film electrodes provided on each side of the insulating layers, at least one of the electrodes being transparent. The phosphor layer comprising SrS as the host material is annealed at a temperature of at least 650 DEG C for at least one hour in an atmosphere of a sulfur-containing gas, such as hydrogen sulphide, carbon dissulphide, sulfur vapour, a dialkyl sulphide, thiophene, or a mercaptan. <IMAGE>

Description

PREPARING THIN-FILM ELECTROLUMINESCENT DEVICES FIELD OF THE INVENTION The present invention relates to a method of preparing an electroluminescent device (hereinafter referred to as "EL device") which gives emission according to the voltage applied.
More specifically, it relates to preparation of a high luminance thin-film EL device of a double insulating structure whose phosphor layer comprises SrS as the host material.
BACKGROUND OF THE INVENTION There is a phenomenon whereby electroluminescent emission is obtained by applying a high voltage to a compound semiconductor such as ZnS and ZnSe doped with a luminous center such as Mn. Recently, by the development of thin-film EL devices of a double insulating structure, luminance and life have been rapidly improved as described in SID 74 Digest of Technical Papers p. 84, 1974 and Journal of Electrochemical Society, 114, 1066 (1967), and such thin-film EL devices are employed for flat panel displays which are now commercially available.
The emission color of the EL devices is determined by the combination of a semiconductor host material constituting a phosphor layer and a luminous center. For example, the ZnS : Mn phosphor layer in which ZnS is a host material and Mn is a luminous center exhibits a yellow-orange electroluminescent emission (hereinafter referred to as 'EL emission ) ana the ZnS : Tb phosphor layer exhibits a green EL emission. For the preparation of full color thin-film displays with EL devices, there are EL devices which emit the three primary colors, i.e., red, blue and green. High luminance red, blue or green emitting EL devices have been investigated.With regard to the blue color, it is known that blue EL emission can be obtained from a ZnS : Tm phosphor layer and a SrS: Ce phosphor layer as in Japanese Patent Publication (Kokoku) No. 46117/1988 and Hiroshi Kobayashi, THE JOURNAL OF THE INSTITUTE OF TELEVISION ENGINEERS OF JAPAN, 40, 991 (1986).
However, the luminance of these EL devices is not sufficient, and of these EL devices the luminance of the blue EL devices is particularly low. According to Japanese Patent Publication (Kokoku) No. 46117/1988, a luminance of about 100 fL (350 cd/m2) with 2.5 kHz drive frequency is obtained with an EL device having a SrS : Ce phosphor which has been prepared by electron beam evaporation and has been annealed at 600 0C for 30 minutes in a hydrogen sulfide atmosphere. According to SID 86 Digest of Technical Papers, p. 29, 1986, a maximum luminance of 1600 cd/m2 with 5 kHz drive frequency is attained with the EL device having a SrS: Ce phosphor layer which has been prepared by the electron beam evaporation in a sulfur atmosphere, and this luminance value is the highest so far obtained.For practical purposes, however, this value is still very low and the conditions for preparing high luminance ES devices have been investigated. For example, phosphor layers having high crystallinity can be prepared by molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOCVD), and by these methods a considerably high luminance is obtained with the yellow-orange emitting EL device having a ZnS : Mn phosphor layer. But as for the blue emitting Et device having a SrS : Ce phosphor layer, a high luminance has not been obtained.
In the present invention, it has been found that when the phosphor layer of high luminance EL devices having a phosphor layer comprising SrS as the host material is annealed at a temperature of at least 650 C for at least one hour in an atmosphere of a sulfur-containing gas, the phosphor layer exhibits a characteristic peak in the neighborhood of a wavelength 360 nm in the excitation spectrum and the EL device having such an annealed phosphor layer shows a high luminance.
SUMMARY OF THE INVENTION The present invention provides a method for orecaring a thin-film EL device which comprises the steDs of: (a) forming a thin-film electrode for aDDlvlng a voltage on a substrate; (b) forming an insulating layer on the electrode: (c) forming a phosphor layer comprising SrS as the host mateial and a luminous center on the insulating aver; (d) annealing the phosphor layer at a temnerature of at least 65Q C for at least one hour in an atmosphere of a sulfur-containing gas: (e) forming an insulating layer on the annealed phosphor layer; (f) forming a thin-film electrode for applying a voltage; and at least one of the electrodes in steps (a) and (f) being transparent.
This method may be used to prepare a thin film FL device which is the subject of our co-pending application no.
9004982.4, from which the oresent applicat-on is divided. Such a thin-film EL device comprises a phosphor layer comprising SrS as the host material and a luminous center, said phosphor layer being sandwiched between two insulating layers and two thin-film electrodes for insulating layers and two thin-film electrodes for applying voltage being provided on each side of the insulating layers, wherein one of the said electrodes is transparent, and wherein the excitation spectrum of the phosphor layer exhibits a peak having a maximum value at a wavelength of about from 350 nm to 370 nm.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows excitation spectra of a thin-film EL device haivng a SrS : Ce phosphor layer obtained by the present invention as a solid line and a conventional thin-film EL device having a SrS : Ce phosphor layer as a dashed line.
FIG. 2 shows luminance-annealing time characteristics of one embodiment of the SrS : Ce phosphor layer obtained using the present invention.
FIG. 3 shows an X-ray diffraction pattern of one embodiment of the SrS : Ce phosphor layers obtained by the present invention.
FIG. 4 shows luminance-applied voltage characteristics of one embodiment of the EL devices having a SrS : Ce phosphor layer obtained by the present invention (curve a) and of one conventional EL device having a SrS : Ce phosphor layer (curve b).
FIG. 5 shows an X-ray diffraction pattern of another embodiment of the SrS: Ce phosphor layers of the present invention.
DETAILED DFSCRIPTION OF PREFERRED EMBODIMENTS The host material of the phosphor layer of the present invention is SrS. The SrS is doped with a luminours center and the luminous center is not particularly limited. Exemplary luminous centers which can be employed in the present invention include but are not limited to Mn, Tb, Tm, Sm, Ce, Eu, Pr, Nd, Dy, o, Er, Cu and any mixtures thereof. Of these luminous centers, Ce is preferred.The luminous center may be in the form of the metal as described above or in the form of a compound such as a halide and a sulfide including CeF3, CeC13, CeI3, CeBr3 and Ce2S3; EuF3, EuC13, EuI3, EuBr3 and Eu2S3; PrF3, PrCl3, PrI3, PrBr3 and Pr2S3; TmF3, TmC13, TmI3, TmBr3 and Tm2S3; SmF3, SmCl3, SmI3, SmBr3 and Sm2S3; NdF3, NdC13, NdI3, NdBr3 and Nd2S3; DyF3, DyC13, DyI3, DyBr3 and Dy2S3; HoF3, HoCl3, Howl3, HoBr3 and Ho2S3; ErF3, ErC13, ErI3, ErBr3 and Er2S3; TbF3, TbC13, TbI3, TbBr3 and Tb2S3; MnF2, MnCl2, MnI2, MnBr2 and MnS; CuF, CuF2, CuCl, CuC12, Cul, Curl2, CuBr, CuBr2, Cu2tq and CuS.
The concentration of the luminous center is not particularly lirnited, but when it is too low, increases in luminance are limited. On the other hand, when the concentration of the luminous center is too high, luminance does not increase due to decrease in the crystallinity of the phosphor layer and due to concentration quenching. Thus, the concentration of the luminous center which can be employed in the present invention is preferably about from 0.01 mol % to 5 mol % and more preferably about from 0.05 mol % to 2 mol % per mol of SrS as the host material.
Furthermore, when the phosphor layer is used together with a charge compensator, the EL device gives a higher luminance than an EL devices in which the phosphor layer does not contain the charge compensator.
The charge compensator compensates divalent SrS for its electric charge when a trivalent luminous center such as Ce is added to the SrS host material. Examples of such charge compensators include KC1, NaCl and NaF. The concentration of the charge compensator which can be employed in the present invention is preferably about from 0.01 mol % to 5 mol % and more preferably about from 0.05 mol % to 2 mol % per mol of SrS as the host material.
The thickness of the phosphor layer is not particularly limited but when it is too thin, the luminance is low and when it is too thick, the threshold voltage becomes high. Thus, the thickness of the phosphor layer which is employed in the present invention is preferably about from 500 A to 30,000 A and more preferably about from 1,000 A to 15,000 A.
The phosphor layer comprising SrS as the host material and a luminous center of the present invention can be formed by methods such as sputtering, electron beam evaporation (web), electron beam evaporation with sulfur coevaporation, MBE and MOCVD. Of these methods, sputtering in an atmosphere of hydrogen sulfide and electron beam evaporation in an atmosphere of sulfur are preferred for forming a phosphor layer which gives an EL device which can emit high luminance, and the sputtering is particularly preferred for easily forming a trap level in the phosphor layer.
To obtain the EL device of the present invention, it is necessary to anneal the phosphor layer for at least one hour in an atmosphere of a sulfur-containing gas. FIG. 2 shows luminance-annealing time characteristics at an annealing temperature of 700 C in an argon gas containing 10 mol % of 2S with 5 kHz sine wave drive. The luminance rapidly increases with periods of annealing time of one hour or more.
The period of annealing time varies depending on the annealing temperature employed, but the period of annealing time is preferably 2 hours or more, and more preferably 3 hours or more. Even when the annealing is conducted more than 24 hours, the increase in luminance is saturated.
The sulfur-containing gas which is employed in the annealing of the phosphor layer of the EL device of this invention is not particularly limited. Exemplary sulfur-containing gases include but are not limited to hydrogen sulfide, carbon disulfide, sulfur vapor, dialkyl sulfides such as dimethyl sulfide, diethyl sulfide and methyl ethyl sulfide, thiophene and mercaptans such as ethyl methyl mercaptan and dimethyl mercaptan. Of these sulfur-containing gases, hydrogen sulfide is preferred for improving the luminance of the EL device of this invention. It may be assumed that removal of a minute amount of oxygen is greatly effected by hydrogen generated by partial decomposition of hydrogen sulfide with heat.
It is necessary that the annealing temperature is at least 650 OC and preferably the annealing temperature is from 650 0C to 850 OC, and more preferably it is from 700 0C to 850 0C for obtaining a remarkable effect with the sulfur-containing gas. Widen the annealing temperature is below 650 OC, the effect of the sulfur-containing gas is small and the luminance of the EL device is only slightly higher than that of the EL device prepared by annealing the phosphor layer in a vacuum or in an inert gas such as argon gas and helium gas.On the other hand, when the annealing temperature is above 850 C, deterioration of the transparent electrode or electrodes and lowering in breakdown voltage of the EL device are disadvantageously brought about.
The concentration of the sulfur-containing gas in the atmosphere of a sulfur-containing gas is not particularly limited and is preferably about from 0.01 mol % to 100 mol % of the entire gas, more preferably about from 0.1 mol % to 30 mol %. An inert gas such as argon and helium is employed as the diluting gas. When the concentration of the sulfur-containing gas is less than 0.01 mol %, its effect is small and concentrations of the sulfur-containing gas of more than 30 mol % tend to saturate its effect.
The excitation spectrum in the present invention means an excitation spectrum of photoluminescence and is a spectrum recording the luminance intensity of the monitoring light when an excitation wavelength is varied by using a peak wavelength of photoluminescence as the monitoring light. FIG. 1 shows the excitation spectra of the phosphor layers comprising SrS as the host material and Ce as the luminous center of the EL device of the present invention as a solid line and the conventional EL device as a dashed line. The phosphor layer of the conventional EL device has a peak at a wavelength of 270 nm corresponding to the energy gap and a peak at a wavelength of 440 nm corresponding to the excitation energy of Ce in the excitation spectrum.On the other hand, the phosphor layer of the EL device of the present invention has, in addition to the above described two peaks, a peak in the neighborhood of a wavelength of 360 nm in the excitation spectrum. This peak wavelength may vary to a small extent depending on the conditions for preparing the phosphor layer, and is preferably about from 350 nm to 370 nm, and more preferably about from 355 nm to 365 nm.
Since the excitation spectrum of the phosphor layer having been annealed at a temperature of at least 650 C for at least one hour in an atmosphere of a sulfur-containing gas has a peak in the neighborhood of a wavelength of 360 nm, the phosphor layer has an electron trap level (hereinafter referred to as "trap level") at the position of 3.4 eV above the valence band or at the position of 3.4 eV above a level existing within 1 eV from the valence band. The reason why the presence of this trap level increases luminance is not fully understood. Not wishing to be bound by theory, it may be that the trap level exists at a position near the excitation level of Ce3+ from the viewpoint of energy levels to interact with each other. This results in a decrease in deactivation of the excitation based on nonradiative energy transfer and increase in luminous efficiency. The peak in the neighborhood of a wavelength of 360 nm does not appear when the phosphor layer isO annealed in argon gas or at a temperature below 650 C for less than one hour, and the conventional EL device having a phosphor layer annealed under such conditions does not emit high luminance.
The annealing of the phosphor layer in a sulfur-containing gas can produce a film of SrS as the host material having high crystallinity with a small amount of S defects and the half widths of the (220) and (200) lines of the X-ray diffraction pattern of the phospor layer are less than or equal to 0.5 degrees and less than or equal to 0.4 degrees, respectively.
The phosphor layer prepared by the sputtering in an atmosphere of hydrogen sulfide and the subsequent annealing in an atmosphere of a sulfur-containing gas has a (220) line as the highest line in the X-ray diffraction patterns and that prepared by the sputtering in an atmosphere of argon, that is, in an atmosphere which does not contain hydrogen sulfide, and the subsequent annealing in an atmosphere of a sulfur-containing gas has a (200) line as the highest line in the X-ray diffraction patterns. The phosphor layer of the present invention preferably has at least one of the (220) line and the (200) line.
In one embodiment of the present invention, the EL device comprising SrS as the host material and Ce as the luminous center exhibits a luminance of 10,000 cd/m which is 6 times as high as the luminance having been conventionally attained, and the threshold voltage of the EL device shifts to a lower voltage by 100 V compared to that of the conventional EL device whose phosphor layer is annealed in a vacuum or in an inert gas such as argon.
The emission color of the EL device of one embodiment of the present invention whose phosphor layer comprises SrS as the host material and Ce as the luminous center is rather greenish compared to the conventional EL device whose phosphor layer is annealed in an inert gas such as argon. It has been found from the measurement of the emission spectrum that the peak wavelength of the EL of this embodiment of the present invention shifts to a longer wavelength by about from 10 nm to 20 nm compared to that of the conventional EL. However, the emission color relates to the concentrations of the luminous center, the charge compensator and the sulfur-containing gas in the annealing of the phosphor layer, and by varying these conditions there can be obtained the conventional blue emission color.
Furthermore, because an EL device emitting high luminance can be obtained by annealing the phosphor layer in a sulfur-containing gas, it is believed that the sulfur-containing gas effects removal of a minute amount of oxygen present in the phosphor layer and the annealing atmosphere since the presence of a minute amount of oxygen in the phosphor layer comprising SrS as the host material and Ce as the luminous center causes lowering in luminance as reported in JAPANESE JOURNAL OF APPLIED PHYSICS, 27, L 1923 (1988). Thus, removal of the minute amount of oxygen is desired.
The insulating layer of the EL of the present invention is not particularly limited and is preferably a layer of at least one member selected from the group consisting of SiO2, Y2031 TiO2, A1203, HfO2, Ta205, BaTa2O5, SrTiO3, PbTiO3, Si3N4 and ZrO2 and the insulating layer may preferably be a plurality of layers of such a metal oxide and a metal nitride.
The thickness of the insulating layer is not particularly limited and is preferably about from 500 A to 30,000 A and more preferably about from 1,000 A to 15,000 A.
In order to prevent the reaction between the insulating layer and the phosphor layer in forming the layers and in the annealing of the phosphor layer, it is preferred that a metal sulfide layer is provided as the buffer layer between the insulating layer and the phosphor layer. The metal sulfide layer is not particularly limited and exemplary metal sulfides include but are not limited to ZnS, CdS, SrS, CaS, BaS and CuS.
The thickness of the metal sulfide layer is not particularly limited, and is preferably about from 100 A to 10,000 A and more preferably about from 500 A to 3,000 A.
In the present invention at least one of the two thin-film electrodes for applying a voltage is transparent and the transparent electrode which can beemployed in the present invention is preferably indium tin oxide (ITO), zinc oxide or tin oxide, and the thickness of the transparent electrode is preferably about from 500 A to 10,000 A.
The other thin-film electrode for applying a voltage which can be employed in the present invention is preferably Al, Au, Pt, Mo, W or Cr, and the thickness of the electrode is preferably around 2,000 A.
The transparent thin-film electrode for applying a voltage, the other thin-film electrode for applying a voltage, the insulating layer and the metal sulfide layer of the present invention can also be formed by methods such as reactive sputtering evaporation, sputtering evaporation and vacuum evaporation.
The thin-film EL device of the present invention is prepared by succesively forming a transparent thin-film electrode on a substrate such as a glass or quartz sheet or plate having a thickness of around 1 mm, an insulating layer on the transparent electrode and a phosphor layer on the insulating layer, annealing the phosphor layer thus formed at a temperture of at least 650 C for at least one hour in an atmosphere of a sulfur-containing gas, and successively forming another insulating layer on the annealed phosphor layer, and another thin-film electrode which may or may not be transparent on the insulating layer. It is preferred that a metal sulfide layer be provided between the insulating layer and the phosphor layer.
When part of the transparent thin-film electrode, e.g., an ITO transparent electrode is not covered with the insulating layer and the phosphor layer, or with the insulating layer, the metal sulfide layer and the phosphor layer, the exposed part of the transparent thin-film electrode becomes electrically insulative due to the contact with the sulfur-containing gas in annealing the phosphor layer in the atmosphere of the sulfurcontaining gas.According to the present invention, this problem has been solved by covering the surface of the transparent thin-film electrode at the side of the insulating layer with the insulating layer and the phosphor layer or with the insulating layer, the metal sulfide layer and the phosphor layer, removing parts of the insulating layer and the phsophor layer or the insulating layer, the metal sulfide layer and the phosphor layer after annealing the phosphor layer at a temperature of at least 650 C for at least one hour in the atmosphere of the sulfur-containing gas to expose part of the transparent thin-film electrode and connecting the exposed part of the transparent thin-film electrode with a lead for the application of a voltage.
Also, the uncovered part of the transparent thin-film electrode can be covered with a conductive layer such as Au which prevents permeation of the sulfur-containing gas. It is also possible to form the insulating layer and the phosphor layer or the insulating layer, the metal sulfide layer and the phosphor layer on a thin-film electrode such as Pt, Au, MoSi2, Mo2Si3, WSi2 and W2Si3 which have resistance to the sulfur-containing gas before the annealing at a temperature of at least 650 0C for at least one hour in the atmosphere of the sulfur-containing gas, and then the insulating layer or the metal sulfide layer and the insulating layer, and lastly the transparent thin-film electrode on the insulating layer.
The following examples illustrate the present invention in more detail. However, they are given by way of guidance and do not imply any limitations.
The excitation spectrum of the phosphor layer of the thin-film EL devices was recorded by measuring the luminance intensity of the monitoring light by a fluorescence spectrophotometer ("Fluorescence Spectrophotometer F-3000", manufactured by Hitachi, Ltd.), when the excitation wavelength was varied by using the peak wavelength of the photoluminescence of the phosphor layer as the monitoring light.
The maximum luminance of the thin-film electroluminescent device was observed with 5 kslz sine wave drive.
Example 1 and Comparative Example 1 An ITO (indium tin oxide) transparent electrode having a thickness of 1,000 A was formed by reactive sputtering on a glass substrate ("NA-40", product by Hoya Co., Ltd.). Then a layer of Ta205 having a thickness of 4,000 A and a layer of SiO2 having a thickness of 1,000 A were successively formed on the electrode as the insulating layer, respectively, by reactive sputtering evaporation in a mixed gas of 30 mol % of oxygen and 70 mol % of argon. Subsequently, on the insulating layer thus formed was formed a buffer layer of ZnS having a thickness of 1,000 A by sputtering evaporation in argon gas with a ZnS target.Then a phosphor layer having a thickness of 6,000 A was prepared on the buffer layer by sputtering evaporation with a pressed target of mixed powder of SrS, 0.3 mol % of CeF3, and 0.3 mol % of KC1 per mol of SrS at a substrate temperature of 250 0C while introducing an argon gas containing 2 mol % of hydrogen sulfide at a pressure of 30 mTorr.
The phosphor layer thus obtained was annealed at 720 0C for 4 hours in an argon gas containing 10 mol % of hydrogen sulfide. The X-ray diffraction pattern of the annealed phosphor layer which is shown in FIG. 3, exhibited a (220) orientation. The intensity of the peak was remarkably strong compared to that of the phosphor layer annealed in only argon gas. Furthermore, the half width of the peak at the (220) line was 0.4 degree and the excitation spectrum of the annealed phosphor layer which is shown by a solid line in FIG. 1 exhibited a characteristic peak at a wavelength of 360 nm.
Then on the annealed phosphor layer were successively formed a buffer layer of ZnS having a thickness of 1,000 A, a layer of SiO2 having a thickness of 1,000 A and a layer of Tea 205 having a thickness of 4,000 A as the insulating layers by sputtering evaporation in the same manner as described above. Subsequently, an aluminum electrode having a thickness of 2,000 A was prepared on the insulating layer formed. The ITO transparent electrode was exposed by peeling off parts of the phosphor layer and the insulating layer to give a thin-film EL device.
The luminance-applied voltage characteristics of the thin-film EL device thus obtained are shown as a in FIG. 4. The maximum luminance reached 10,000 cd/m2 which was six times as high as that so far obtained.
The above described procedure for preparing a thin-film EL device was repeated except that the annealing of the phosphor layer was carried out in only argon gas.
The luminance-applied volage characteristics of the thin-film EL device thus obtained is shown as b in FIG. 4 and the maximum luminance was 500 cd/m2 and the threshold voltage shifted to a higher voltage by 100 V.
Furthermore, the excitation spectrum of the phosphor layer which is shown by a dashed line in FIG. 1 did not exhibit the peak in the neighborhood of a wavelength of 360 nm.
Comparative Example 2 The procedure of Example 1 for preparing a thin-film EL device was repeated except that the annealing of the phosphor layer was carried out in a nitrogen gas atmosphere containing 5 mol % of hydrogen sulfide at 600 0C for 30 minutes.
The excitation spectrum of the phosphor layer of the thin-film EL device thus prepared did not exhibit the presence of a peak in the neighborhood of a wave length of 360 nm. The maximum luminance of the thin-film EL device was 200 cd/m2.
Example 2 The procedure of Example 1 for preparing a thin-film EL device was repeated except that the buffer layers of ZnS on both sides of the phosphor layer were not provided.
In the excitation spectrum of the phosphor layer of the thin-film EL device thus prepared there was observed a peak at a wavelength of 360 nm.
The maximum luminance of the thin-film EL device observed was 9,000 cd/m.
Example 3 The procedure of Example 1 for preparing a thin-film EL device was repeated except that the buffer layers of ZnS on both sides of the phosphor layer of the thin-film EL device thus prepared was replaced by the buffer layers of SrS.
In the excitation spectrum of the phosphor layer of the thin-film EL device thus prepared there was observed a peak at a wavelength of 361 nm.
The maximum luminance of the thin-film EL device observed was 12,000 cd/m.
Example 4 The procedure of Example 1 for preparing a thin-film EL device was repeated except that the phosphor layer was formed by sputtering in Ar gas instead of an Ar gas containing 2 mol % of hydrogen sulfide.
The X-ray diffraction pattern of the annealed phosphor layer which is shown in FIG. 5, exhibited a (200) orientation. The half width of the peak at the (200) line was 0.3 degrees and that of the peak at (220) line was 0.4 degrees. The excitation spectrum of the annealed phosphor layer exhibited a characteristic peak at a wavelength of 358 nm. The maximum luminance of the thin-film EL device was 12,000 cd/rn2.
Examples 5 to 14 and Comparative Examples 3 to 5 The procedure of Example 1 for preparing a thin-film EL device was repeated except that the annealing temperature, the annealing time and the concentration of hydrogen sulfide in the annealing atmosphere as set forth in Table 1 below were employed.
The maximum luminances of the thin-film EL devices thus obtained are shown in Table 1 below.
Table 1 Concentration Annealing Annealing of Hydrogen Maximum Example Temperature Time sulfide Luminaice No. ( C) (hour) (mol%) (cd/m 5 650 8 10 2000 6 650 24 10 2500 7 670 12 10 8500 8 670 12 20 8500 9 720 1 10 3000 10 720 2 10 5000 11 720 3 10 8000 12 720 4 1 9500 13 720 12 20 9800 14 760 4 20 9000 Comperative Example No.
3 600 24 0 300 4 600 24 10 1600 5 720 0.5 10 500 Example 15 The procedure of Example 1 for preparing a thin-film EL device was prepared except that a phosphor layer was formed by sputtering in Ar gas from a pressed target of mixed powder of SrS, 0.3 mol % of CeF3, 0.3 mol % of PrF3 and 0.3 mol % of KC1 per mol of SrS.
The excitation spectrum of the phosphortlayer of the thin-film El, device thus obtained exhibited a peak at a wavelength of 355 nm. The maximum luminance of the thin-film EL device was 12,000 cd/m2 Example 16 The procedure of Example 1 for preparing a thin-film EL device was repeated except that a phosphor layer was prepared by sputtering from a pressed target of mixed powder of SrS, 0.3 mol % of CeF3, 0.3 mol % of KC1 and 0.02 mol % of EuF3 per mol of SrS.
The excitation spectrum of the phosphor layer of the thin-film EL device thus obtained exhibited a peak at a wavelength of 365 nm. The maximum luminance of the thin-film EL device was 7,000 cd/m.
Example 17 The same procedure of Example 1 for preparing a thin-film EL device was repeated except that the phosphor layer was annealed at 680 0C in Ar gas atmosphere containing 1 mol % of carbon disulfide.
The maximum luminance of the thin-film EL device thus obtained was 3,500 cd/m.
Example 18 The procedure of Example 1 for preparing a thin-film EL device was repeated except that a phosphor layer was prepared by sputtering from a pressed target of mixed powder of SrS, 0.3 mol % of SmF3 and 0.3 mol % of RC1 per mol of SrS.
The excitation spectrum of the phosphor layer of the thin-film EL device thus obtained exhibited a peak at a wavelength of 359 nm. The maximum luminance of the thin-film device was 400 cd/m.
Examples 19 to 25 The procedure of Example 1 for preparing a thin-film EL device was repeated except that the luminous center as shown in Table 2 below was employed.
The maximum luminances of the thin-film EL devices thus obtained are shown in Table 2 below.
Table 2 Maximum Example Luminous Lumin#nce No. Center (cd/m 19 Tb 200 20 Tm 25 21 Nd 290 22 Dy 300 23 Ho 150 24 Er 310 25 Cu 220 Example 26 The procedure of Example 1 for preparing a thin-film EL device was repeated except that the buffer layer of ZnS, at the side of the aluminum electrode, on the phosphor layer was not provided.
In the excitation spectrum of the phosphor layer of the thin-film EL device thus prepared there was observed a peak at a wavelength of 360 nm.
The maximum luminance of the thin-film EL device observed was 9,600 cd/m2.
Example 27 The procedure of Example 1 for preparing a thin-film EL device was repeated except that the buffer layer of ZnS, at the side of the transparent ITO electrode, on the insulating layer was not provided.
In the excitation spectrum of the phosphor layer of the thin-film EL device thus prepared there was observed a peak at a wavelength of 360 nm.
The maximum luminance of the thin-film EL device observed was 9,400 cd/m2.

Claims (15)

CLAIMS:
1. A method for preparing a thin-film electroluminescent device which comprises the steps of: (a) forming a thin-film electrode for applying a voltage on a glass or quartz substrate; (b) forming an insulating layer on the electrode; (c) forming a phosphor layer comprising SrS as the host material and at least one metal selected from Mn, Tb, Tm, Sm, Ce, Eu, Pr, Nd, Dy, Ho, Er and Cu as the luminous center on the insulating layer; (d) annealing the phosphor layer at a temperature of at least 650'C for at least one hour in an atomosphere of a sulfur-containing gas selected from hydrogen sulfide, carbon dissulfide, sulfur vapor, a dialkyl sulfide, thiophene and a mercaptan; (e) forming an insulating layer on the annealed phophor layer; (f) forming a thin-film electrode for applying a voltage; and at least one of the electrodes in steps (a) and (f) being transparent.
2. A method according to Claim 1, wherein the temperature for annealing the phosphor layer is from 650'C to 850 C.
3. A method according to Claim 1 or 2 further comprising the step of (g) depositing a metal sulfide layer selected from ZnS, CdS, SrS, CaS, BaS and CuS as the buffer layer on the insulating layer after step (b).
4. A method according to Claim 3 additionally comprising the step of (h) depositing a metal sulfide layer selected from ZnS, CdS, SrS, CaS, BaS and CuS as the buffer layer on the annealed phophor layer after step (d).
5. A method according to Claim 3 or 4, wherein the thickness of the metal sulfide layers is about from 100 A to 10,000 A.
6. A method according to any one of Claims 1 to 5, wherein the insulating layers in steps (b) and (e) is independently at least one member selected from S102, Y2O2, TiOK, Algol, HfO2, Ta2Q, BaTa2O5, SrTiQ, PbT#Q1 Si N4 and ZrO2.
7. A method according to any one of Claims 1 to 6, wherein the thickness of the insulating layers is about from 500 A to 30,000 A.
8. A method according to any one of Claims 1 to 7, wherein the phosphor layer in step (c) comprises at least one charge compensator selected from KC1, NaCi and NaF at a concentration of about from 0.01 mol % to 5 mol % per mol of SrS as the host material.
9. A method according to any one of Claim 1 to 8, wherein the concentration of the luminous center is about from 0.01 mol % to 5 mol % per mol of SrS as the host material.
10. A method according to any one of Claims 1 to 9, wherein the thickness of the phosphor layer is about from 500 A to 30,000 A.
11. A method according to any one of Claim 1 to 10, wherein the atmosphere of a sulfur-containing gas contains about from 0.01 mol % to 100 mol % of the sulfur-containing gas and less than or equal to 99.99 mol % of an inert gas.
12. A method according to Claim 11, wherein the inert gas is Ar.
13. A method according to any one of Claims 1 to 12, wherein the phosphor layer in step (c) is formed by sputtering in an atmosphere of hydrogen sulfide.
14. A method according to Claim 11, substantially as described herein with reference to the accompanying drawings or in any one of the Examples.
15. A device according to claim 1, substantially as described herein with reference to the accompanying drawings or in any one of the Examples.
GB9015883A 1989-03-15 1990-07-19 Preparing thin-film electroluminescent devices Expired - Fee Related GB2235089B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6069989 1989-03-15
JP33474389 1989-12-26
GB9004983A GB2230382B (en) 1989-03-15 1990-03-06 High luminance thin-film electroluminescent device

Publications (3)

Publication Number Publication Date
GB9015883D0 GB9015883D0 (en) 1990-09-05
GB2235089A true GB2235089A (en) 1991-02-20
GB2235089B GB2235089B (en) 1993-05-05

Family

ID=27264969

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9015883A Expired - Fee Related GB2235089B (en) 1989-03-15 1990-07-19 Preparing thin-film electroluminescent devices

Country Status (1)

Country Link
GB (1) GB2235089B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2267388A (en) * 1992-05-07 1993-12-01 Fuji Electric Co Ltd Method of producing electroluminescence emitting film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2267388A (en) * 1992-05-07 1993-12-01 Fuji Electric Co Ltd Method of producing electroluminescence emitting film
US5482603A (en) * 1992-05-07 1996-01-09 Fuji Electric Co., Ltd. Method of producing electroluminescence emitting film
GB2267388B (en) * 1992-05-07 1996-04-10 Fuji Electric Co Ltd Method of producing electroluminescence emitting film
US5716501A (en) * 1992-05-07 1998-02-10 Fuji Electric Co., Ltd. Method of producing electroluminescence emitting film

Also Published As

Publication number Publication date
GB2235089B (en) 1993-05-05
GB9015883D0 (en) 1990-09-05

Similar Documents

Publication Publication Date Title
CA2012276C (en) High luminance thin-film electroluminescent device
Kitai Oxide phosphor and dielectric thin films for electroluminescent devices
US5656888A (en) Oxygen-doped thiogallate phosphor
JP2005520924A (en) Yttrium-substituted barium thioaluminate phosphor material
US6043602A (en) Alternating current thin film electroluminescent device having blue light emitting alkaline earth phosphor
US6072198A (en) Electroluminescent alkaline-earth sulfide phosphor thin films with multiple coactivator dopants
US4916360A (en) Thin film electroluminescent device with ZnS as host material
US5086252A (en) Thin film electroluminescence device
GB2235089A (en) Preparing thin-film electroluminescent devices
US5029320A (en) Thin film electroluminescence device with Zn concentration gradient
US5612591A (en) Electroluminescent device
CA2282193A1 (en) Electroluminescent phosphor thin films
US4707419A (en) Thin film EL devices and process for producing the same
US6451460B1 (en) Thin film electroluminescent device
US5667607A (en) Process for fabricating electroluminescent device
JPH08245956A (en) Luminous material and luminous element using the same
JP3005027B2 (en) Method for manufacturing electroluminescent element
US6707249B2 (en) Electroluminescent device and oxide phosphor for use therein
JP3027387B2 (en) High-brightness thin-film electroluminescence device and method of manufacturing the same
WO2001069981A1 (en) Light emitting phosphor materials
Cho et al. Device with ZnS: TbOF/ZnS: PrOF Phosphor Layers
Abe et al. Multi-Color Electroluminescent Devices Utilizing SrS: Pr, Ce Phosphor Layers and Color Filters
JPH03225793A (en) High-brightness thin film electroluminescence element and manufacture thereof
JPH07282978A (en) Thin film electroluminescence(el) element
JPH0562778A (en) Thin film electroluminescence element

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20030306