GB2233934A - Packaging film - Google Patents

Packaging film Download PDF

Info

Publication number
GB2233934A
GB2233934A GB8912202A GB8912202A GB2233934A GB 2233934 A GB2233934 A GB 2233934A GB 8912202 A GB8912202 A GB 8912202A GB 8912202 A GB8912202 A GB 8912202A GB 2233934 A GB2233934 A GB 2233934A
Authority
GB
United Kingdom
Prior art keywords
film
layer
film according
core
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8912202A
Other versions
GB2233934B (en
GB8912202D0 (en
Inventor
Colin Douglas Parnell
Tito Antonio Fornasiero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co Conn
WR Grace and Co
Original Assignee
WR Grace and Co Conn
WR Grace and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WR Grace and Co Conn, WR Grace and Co filed Critical WR Grace and Co Conn
Priority to GB8912202A priority Critical patent/GB2233934B/en
Publication of GB8912202D0 publication Critical patent/GB8912202D0/en
Priority to CA002012538A priority patent/CA2012538C/en
Priority to NZ233716A priority patent/NZ233716A/en
Priority to ZA903807A priority patent/ZA903807B/en
Priority to AU55790/90A priority patent/AU634546B2/en
Priority to JP2135141A priority patent/JPH0334852A/en
Publication of GB2233934A publication Critical patent/GB2233934A/en
Application granted granted Critical
Publication of GB2233934B publication Critical patent/GB2233934B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • B32B2323/046LDPE, i.e. low density polyethylene

Landscapes

  • Laminated Bodies (AREA)
  • Packages (AREA)
  • Wrappers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A multi-layer film useful in food packaging comprising a first core layer comprising VLDPE or LLDPE; optionally a second core layer comprising VLDPE or LLDPE; two outer layers each comprising an ionomer; and further core layers between the first core layer and the outer layer and between the second core layer and the outer layer the further core layers comprising an olefin polymer or copolymer. The film may also include an oxygen barrier layer and may be oriented to provide a heat shrinkable film.

Description

PACKAGING FILM This invention relates to a packaging film and more particularly to a film useful in the packaging of food products, especially frozen meat.
Thermoplastic film, and especially films of polyolefin materials, have been used in the past to package various articles including perishable food products which require protection from the environment. The films should possess resistance to physical and environmental abuse during storage and distribution and should present an aesthetic and attractive appearance. Optical qualities such as high gloss, high clarity and low haze contribute to - esthetic consumer appeal of products wrapped in such packaging materials. Good optical properties also permit adequate inspection of the packaged product during the distribution cycle and by the end-user at the point of purchase.
Shrinkability may be imparted to a thermoplastic film by orientation of the film during its manufacture. This allows the film to shrink or, if restrained, to create shrink tension within the packaging film on exposure to heat, for example, in a hot water bath or by exposure to hot air. In a typical process manufactured film is stretched in either the machine direction or perpendicular to the machine direction, or both, i.e. in the longitudinal and transverse directions respectively, in varying degrees to impart a desired degree of shrinkability to the film upon subsequent heating. After this stretching operation the film is rapidly cooled to impart latent shrinkability to the resulting film. Shrinkable film provides a tight, smooth appearance to a product wrapped in such a film as well as some added toughness in order to provide abuse resistance.It is of course desirable that the film should have good optical properties after shrinking.
Bags made from heat shrinkable polymeric films have gained acceptance for packaging meat, particularly fresh meat and processed meat. Bags made from the heat shrinkable film are supplied to a meat packer being sealed at one end with the other end open and ready to receive a meat product. After the cut of meat is placed in the bag, the bag will normally be evacuated and the *open end of the bag closed by heat sealing or by applying a metal clip. This process is advantageously carried out within a vacuum chamber where the evacuation and application of a clip or heat seal is done automatically. After the bag is removed from the chamber it is heat shrunk by applying heat for example by immersing the filled bag in a hot water bath or by conveying it through a hot air tunnel.
In the usual distribution chain a whole primal or subprimal is packaged within such a shrink bag. The packaged meat will travel from a central slaughter house where it has been packaged to a retail supermarket where the bag will be opened and the meat will be cut into portions for retail sale. Thus, the bags of this type must satisfy a number of requirements which are imposed both by the slaughter house or packing house and by the bag user.
Furthermore, the bag may be placed on display for retail sale to a consumer. It is therefore desirable to have an attractive package in which there has been relatively complete shrinkage of the bag around the product so that the bag is not wrinkled and so that blood and juices are not trapped in any folds of the wrinkles. The films from which such bags are produced should therefore possess relatively high shrink as well as good optical properties particularly after shrinkage.
It is also important that the bag should be capable of physically surviving the process of being filled, evacuated, sealed, closed, heat shrunk, boxed, shipped, unloaded and then stored for retail sale. This type of abuse rules out many polymeric films. A polymeric film having good toughness is required.
The bags must also be strong enough to survive the handling involved in moving packaged meat which may weigh 45 kg or more.
In particular, when the meat is pushed into the bag its bottom seal must withstand the force of the impact.
The present invention provides a multi-layer film which has good toughness and relatively high shrink as well as good optical properties, such as clarity, after shrinkage. The multi-layer film may be produced in known manner, for example coextruded, and then oriented to provide a shrinkable film.
The present invention accordingly provides a multi-layer film comprising: (a) a core layer comprising an LLDPE or, preferably, a VLDPE; an optional second core layer comprising a VLDPE or, preferably an LLDPE; (b) two outer layers each comprising an ionomer; and (c) further core layers between the first core layer and the outer layer and between the second core layer and the outer layer, the further core layers comprising an olefin polymer or copolymer.
The multi-layer film advantageously further comprises, preferably between the first and second core layers, an additional core layer, comprising an olefin polymer or copolymer.
In the olefin polymer or copolymer the olefin is preferably ethylene; an ethylene vinyl acetate copolymer is preferred. A modified polymer may be used to improve inter-ply adhesion.
An oxygen barrier layer, for example a polyvinylidene chloride (PVDC) or an ethylene vinyl alcohol (EVOH) polymer or copolymer layer may also be included in the multi-layer film, for example between the first and second core layers.
The invention also provides a method of making a multi-layer film which comprises coextruding (a) a first core layer comprising an LLDPE or, preferably, a VLDPE; optionally a second core layer comprising a VLDPE or, preferably an LLDPE; (b) two outer layers each comprising an ionomer; and (c) further core layers between the first core layer and the outer layer and between the second core layer and the outer layer, the further core layers comprising an olefin polymer or copolymer; cooling the coextruded film; and collapsing the cooled film.
The first and second core layers in the films according to the invention are generally each 5 to 15 Xm thick. The outer layers are generally each B to 35 Wm thick. The further core layers are generally 2 to 10 Xm thick.
The coextruded film may be irradiated, for example with ionising radiation such as high energy electrons, at a dosage of, for example 3 to 15 MRad. Such irradiation causes cross-linking and is generally carried out before orientation of the film.
When the film comprises a barrier layer which is a polyvinylidene chloride/polyvinyl chloride copolymer cross-linking by irradiation should take place prior to incorporation of the barrier layer in the film structure; it is known that such barrier materials are adversely affected, for example by discoloration, by irradiation.
When the film comprises a barrier layer which is an EVOM or a polyvinylidene chloride/methyl acrylate copolymer the whole multi-layer film may be irradiated.
In order to produce an oriented film the method of the invention further comprises heating the collapsed film to its orientation temperature range, optionally after irradiating the film, and stretching and orienting the heated film.
Orientation is done by racking or stretching the film at a racking rate of from about 2 to 5 times the original dimensions of the film in the longitudinal (machine) and transverse directions. To orient the film,e.g. in a blown bubble process the cooled tube is heated to its orientation temperature range. These ranges are well known for many polymeric materials and are generally below the melting point of the film.
Preferably films according to the invention are heated to from 850C to 95 0C and more preferably from 87 0C to 920C.
Although the description above concerning preparation of multi-layer films relates principally to tubular coextrusion and stretching by the trapped bubble technique other methods of manufacture are available such as coextruding the multi-layer film through a slot die and then stretching the film by the use of tenter frames.
Oriented multi-layer films in accordance with the invention have good abuse resistance, good optical properties, especially after shrinking, and good sealability making them especially suitable for packaging food, especially frozen meat products. Carcasses may be imported frozen, as in the case of New Zealand lamb, or frozen after slaughter locally. The meat is then cut while frozen and packaged in shrink bags for retail sale. Orientation of the multi-layer films provides toughness and improved (i.e.
reduced) oxygen permeability. The films also generally have a relatively low modulus of elasticity making them easier to process, for example in bag making, and have good processability at racking.
The term "core layer" as used herein defines a layer in a multi-layer film adhered on both sides to other layers.
The term "oriented is used to define a polymeric material which has been heated and stretched to realign the molecular configuration, the stretching being accomplished by a racking or a blown bubble process. A thermoplastic material stretched in one direction only is uniaxially oriented and a material stretched in a longitudinal as well as the transverse direction is biaxially oriented.
The term "racking" is used herein to define a well-known process for stretching coextruded and reheated multi-layer film by means of tenter framing or a blown bubble process.
The terms "LLDPE" and "linear low density polyethylene" are used herein to describe copolymers of ethylene with one or more comonomers preferably selected from C4-C10 olefins such as but-i-ene and octene in which the molecules of the copolymers comprise long chains with few sidechain branches or cross-link structures. This molecular structure is tb be contrasted with conventional low density polyethylenes which are more highly branched than their counterparts. LLDPE may also be characterised by the low pressure, low temperature processes used to produce it. LLDPE as defined herein has a density which is usually in the are of about 0.916 g/cc to about 0.925 g/cc.
The term "VLDPE" or "very low density polyethylene" as used herein refers to linear polyethylene copolymers having a density usually in the range of less than about 0.91? g/cc to about 0.860 g/cc. The terms "EVA" and "ethylene vinyl acetate copolymer1 as used herein refer to a copolymer formed from ethylene and vinyl acetate monomers in which the ethylenederived units in the copolymer are present in major Amounts, preferably from about 60 to 98 percent by weight, and the vinyl acetate-derived units in the copolymer are present in minor amounts, preferably from about 2 to 40 percent by weight of the total.
The term "ionomer" as used herein is, for example, a copolymer of ethylene and a vinyl monomer with an acid group usually an ethylenically unsaturated carboxylic acid, which is generally mono-basic, for example acrylic or methacrylic acid. It is to be understood that the term zionomert as used in this specification includes both the free acid and ionised form. The ionised form is preferable to the free acid form. The neutralising cation may be any suitable metal ion, for example an alkali metal ion, such as sodium, a zinc ion or other multivalent metal ion. Suitable ionomers include those sold under the trademark Surlyn marketed by Du Pont. Preferably the ionomer has a relatively low melt index.
When the ionomers are used in their free acid form the poly (ethylene-co-methacrylic acid:EMA) and poly (ethylene-co-acrylic acid:ExA) are preferred.
The term "ethylene vinyl alcohol copolymer" or "EVOH" as used herein includes saponified or hydrolysed ethylene vinyl acetate copolymers, and refers to a vinyl alcohol copolymer having an ethylene comonomer. Such copolymers are prepared by, for example, hydrolysing vinyl acetate copolymers or by chemical reaction with polyvinyl alcohol. The degree of hydrolysis is preferably at least 50 percent and more preferably at least 85 percent. The ethylene comonomer is generally present in a range of about 15 to about 65 percent.
The term "polyvinylidene chloride" as used herein includes vinylidene chloride copolymers such as those sold under the brand name "Saran" by Dow Chemical Company of the United States and which usually comprise at least 50 percent vinylidene chloride monomer with, as the comonomer, vinyl chloride or methyl acrylate, or another suitable comonomer.
The total thickness of the multi-layer films according to the invention will generally be in the range of 50 to 150 thick. Although thicker films may be used they are more expensive. The films will usually be in the range of 70 to 110 jam thick, thicknesses of 70 to 90 ,um being particularly preferred.
It will be understood that the films should not be so thin as to render them insufficiently resistant to damage during packaging of, for example bone-in meat cuts, nor so thick as to render them unnecessarily difficult to orient and to process.
It is to be understood that percentages in this specification, including the accompanying claims, are calculated on a "by weight" basis unless otherwise specified.
The following Examples illustrate the invention.
EXAMPLES Examples of multi-layer films according to the invention are given in the following Table in which: (i) The thickness of each layer in yam is given in parenthesis.
(ii) Ionomer I is Surlyn 1605, available from Du Pont; it is an ethylene/methacrylic acid copolymer comprising 15 percent of methacrylic acid, the cation being sodium. It has a melt index of 2.8.
(iii) Ionomer 2 is Surlyn 1601, available from Du Pont; it is an ethylene/methacrylic acid copolymer comprising 10 percent of methacrylic acid, the cation being sodium. It has a melt index of 1.3.
fi ) LLDPE1 is a linear low density polyethylene having a density of 9.20 g/cc and a melt index of 1.
(v) LLDPE2 is a linear low density polyethylene having a density of 9.17 and a melt index of 2.3.
(vi) EVA is a standard EVA comprising 18 vinyl acetate and having a melt index of 2.0.
The films were produced by a conventional tubular coextrusion technique in which, after extrusion the tube formed was cooled and flattened. The resulting tape was fed through a hot water bath, at a temperature of 87-89 C; on leaving the bath the tube was inflated and blown to give a wall thickness in the blown tube of about 70 jam. This "trapped bubble" technique is known in the art.The film was then rapidly cooled to set the orientation and rolled up to give the desired oriented multi-layer film. FILM LAYER Example 1 2 3 4 5 6 7 1 Ionomer1 (19) EVA (6) VLDPE (8) LLDPE1 (8) EVA (6) Ionomer2 (23) 2 Ionomer1 (19) EVA (6) VLDPE (8) LLDPE1 (8) EVA (6) Ionomer2 (23) 3 Ionomer1 (19) EVA (8) LLDPE1 (8) VLDPE (8) EVA (5) Ionomer2 (22) 4 Ionomer1 (19) EVA (8) LLDPE2 (8) VLDPE (8) EVA (5) Ionomer2 (22) 5 Ionomer2 (20) EVA (8) LLDPE2 (8) EVA (4) VLDPE (8) EVA (4) Ionomer2 (18) 6 Ionomer1 (21) EVA (8) LLDPE2 (9) EVA (4) VLDPE (13) EVA (4) Ionomer2 (11) 7 Ionomer1 (16) EVA (8) LLDPE2 (9) EVA (4) VLDPE (13) EVA (4) Ionomer2 (16) COMPARISON IONOMER1 IONOMER2 MODIFIED EVA NYLON COPOLYMER Total 70 u : (20) (33) (6) (11) Total 90 u : (26) (42) (7) (15) In relation to the comparison film the films according to the invention all had good optical properties (those of the comparison were adjudged fair); their abuse resistance was as good as, or slightly better than, the comparison film; their processability was good, that of the comparison film being poor.
The actual thickness in m of each film (the nominal thickness being 70 pm) and the percentage free shrink in the longitudinal (L) and transverse (T) directions are given in the following Table.
Film Thickness Shrink (actual) L T CoTnparison 61 33 45 1 65 32 43 2 64 33 44 Comparison 77 34 47 3 72 28 40 4 69 28 42 Comparison 90 34 47 5 70 30 42 Comparison 72 33 45 6 71 29 42 7 73 31 42

Claims (23)

  1. CLAIMS 1. A multi-layer film comprising: (a) a first core layer comprising an LLDPE or a VLDPE; (b) two outer layers each comprising an ionomer; and (c) further core layers between the first core layer and the outer layer and between the second core layer and the outer layer, the further core layers comprising an olefin polymer or copolymer.
  2. 2. A film according to claim 1 in which the first core layer comprises a VLDPE.
  3. 3. A film according to claim 1 or 2 which further comprises a second core layer comprising a VLDPE or LLDPE.
  4. 4. A film according to claim 1, 2 or 3 in which the second core layer comprises an LLDPE.
  5. 5. A film according to any one of the preceding claims which further comprises an additional core. layer comprising an olefin polymer or copolymer between the first and second core layers.
  6. 6. A film according to claim 5 in which the olefin in the olefin polymer or copolymer is ethylene.
  7. 7. A film according to claim 5 or 6 in which the olefin polymer or copolymer is an ethylene vinyl acetate copolymer.
  8. 8. A film according to any one of the preceding claims which further comprises an oxygen barrier layer.
  9. 9. A film according to claim 8 in which the oxygen barrier layer is a polyvinylidene chloride or ethylene vinyl alcohol polymer or copolymer.
  10. 10. A film according to any one of the preceding claims in which the first and second core layers are from 5 to 15 pm thick.
  11. 11. A film according to any one of the preceding claims in which the outer layers are from 8 to 35 pm thick.
  12. 12. A film according to any one of the preceaing claims in which the further core layers are from 2 to 10 thick.
  13. 13. A film according to any one of the preceding claims whose total thickness is from 50 to 150 pm.
  14. 14-. A film according to any one of the preceding claims whose total thickness is from 70 to 90 pm.
  15. 15. A film according to any one of the preceding claims in which the ionomer is an ethylene/methacrylic acid copolymer which comprises, as the neutralising cation, sodium.
  16. 16. A film according to claim 15 in which the ionomer has a low melt index.
  17. 17. A film according to any one of the preceding claims which has been irradiated by ionising radiation.
  18. 18. A film according to any one of the preceding claims which has been oriented.
  19. 19. A film according to claim 1 substantially as bereinbefore described.
  20. 20. A method of making a multi-layer film which comprises coextruding (a) a first core layer comprising an LLDPE or a VLDPE; optionally a second core layer comprising a VLDPE or IsLDPE; (b) two outer layers each comprising an monomer; and (c) further core layers between the first core layer and the outer layer and between the second core layer and the outer layer the further core layers comprising an olefin polymer or copolymer; cooling the coextruded film; and collapsing the cooled film.
  21. 21. A method according to claim 20 which further comprises heating the collapsed film to its orientation temperature range, and stretching and orienting the heated film.
  22. 22. A method according to claim 20 or 21 in which the film is cross-linked by irradiation prior to orientation.
  23. 23. A method according to claim 20 substantially as hereinbefore described in any one of Examples 1 to 7.
GB8912202A 1989-05-26 1989-05-26 Packaging film Expired - Lifetime GB2233934B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
GB8912202A GB2233934B (en) 1989-05-26 1989-05-26 Packaging film
CA002012538A CA2012538C (en) 1989-05-26 1990-03-19 Packaging film
NZ233716A NZ233716A (en) 1989-05-26 1990-05-17 Multi-layer film comprising a layer(s) of linear or very low density polyethylene, two outer layers of ionomer and layers of olefin polymers in between
ZA903807A ZA903807B (en) 1989-05-26 1990-05-17 Packaging film
AU55790/90A AU634546B2 (en) 1989-05-26 1990-05-23 Packaging film
JP2135141A JPH0334852A (en) 1989-05-26 1990-05-24 Multi-layer film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8912202A GB2233934B (en) 1989-05-26 1989-05-26 Packaging film

Publications (3)

Publication Number Publication Date
GB8912202D0 GB8912202D0 (en) 1989-07-12
GB2233934A true GB2233934A (en) 1991-01-23
GB2233934B GB2233934B (en) 1992-12-23

Family

ID=10657441

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8912202A Expired - Lifetime GB2233934B (en) 1989-05-26 1989-05-26 Packaging film

Country Status (6)

Country Link
JP (1) JPH0334852A (en)
AU (1) AU634546B2 (en)
CA (1) CA2012538C (en)
GB (1) GB2233934B (en)
NZ (1) NZ233716A (en)
ZA (1) ZA903807B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887801A1 (en) * 2005-07-01 2007-01-05 Bollore Sa FILM WITH SEVERAL LAYERS
US8916647B2 (en) 2008-07-15 2014-12-23 Dow Global Technologies Llc Crosslinked films and articles prepared from the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2061198A1 (en) * 1991-02-14 1992-08-15 Michael A. Jar High abuse ionomer bag

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2015629C (en) * 1989-05-08 1996-07-09 Seizo Kobayashi Laminate
ATE116203T1 (en) * 1989-06-24 1995-01-15 Dow Chemical Co MULTI-LAYER FILM.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887801A1 (en) * 2005-07-01 2007-01-05 Bollore Sa FILM WITH SEVERAL LAYERS
WO2007003487A1 (en) * 2005-07-01 2007-01-11 Bollore Multilayer film
US8475896B2 (en) 2005-07-01 2013-07-02 Bollore Multilayer film
US8916647B2 (en) 2008-07-15 2014-12-23 Dow Global Technologies Llc Crosslinked films and articles prepared from the same

Also Published As

Publication number Publication date
ZA903807B (en) 1991-03-27
AU5579090A (en) 1990-11-29
NZ233716A (en) 1994-03-25
CA2012538A1 (en) 1990-11-26
GB2233934B (en) 1992-12-23
AU634546B2 (en) 1993-02-25
GB8912202D0 (en) 1989-07-12
CA2012538C (en) 1999-10-19
JPH0334852A (en) 1991-02-14

Similar Documents

Publication Publication Date Title
US5387470A (en) Packaging film
US4178401A (en) Packaging film comprising a blended self-welding layer
JP2601474B2 (en) Multi-layer film with good adhesion
US4352844A (en) Thermoplastic film having improved handling and sealing characteristics and receptacle formed therefrom
US5079051A (en) High shrink energy/high modulus thermoplastic multi-layer packaging film and bags made therefrom
AU722527B2 (en) Cheese packaging film
US4695491A (en) Heat-shrinkable composite packaging film
JPS63224945A (en) Thermoplastic multilayer barriering packaging film and bags manufactured from said film
JPH02238945A (en) Container or case made of thermoplastic film
JPH04248855A (en) Blend of polypropylene with ethylene copolymer, and film made from this blend
JPH03108537A (en) Shrinkable film
EP1137534B1 (en) Multilayer heat shrinkable film
US5234731A (en) Thermoplastic multi-layer packaging film and bags made therefrom having two layers of very low density polyethylene
EP1410902B1 (en) Multi-layer, heat-shrinking film that acts as an oxygen and water vapour barrier and exhibits low curling
AU638810B2 (en) Multilayer thermosealing film for packaging
JPH06321264A (en) Multilayer shrink film for inside cooking of which sterilization is possible
JPH0387253A (en) Thickness adhesion quick in shrinkage film
US4828891A (en) Four-layer puncture resistant film
EP4056362A1 (en) Multilayer monoaxially oriented film
US4183882A (en) Self-welding packaging film
EP1636029A1 (en) Multilayer shrink film
AU634546B2 (en) Packaging film
EP0764519A1 (en) Multi-layer film
US4925687A (en) Turkey package
US20030124369A1 (en) Packaging film and a method manufacturing a packaging film

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19930526

728C Application made for restoration (sect. 28/1977)
728A Order made restoring the patent (sect. 28/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19970526