GB2225319A - Regeneration of amine - Google Patents
Regeneration of amine Download PDFInfo
- Publication number
- GB2225319A GB2225319A GB8827659A GB8827659A GB2225319A GB 2225319 A GB2225319 A GB 2225319A GB 8827659 A GB8827659 A GB 8827659A GB 8827659 A GB8827659 A GB 8827659A GB 2225319 A GB2225319 A GB 2225319A
- Authority
- GB
- United Kingdom
- Prior art keywords
- amine
- temperature
- still
- heat exchanger
- rich
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C203/00—Esters of nitric or nitrous acid
- C07C203/02—Esters of nitric acid
- C07C203/10—Esters of nitric acid having nitrate groups bound to carbon atoms of six-membered aromatic rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1425—Regeneration of liquid absorbents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Amines e.g. alkanolamines are used to remove H2S and CO2 from natural gas by an absorption method. The chemical reaction between amino (called 'lean amine' at the start of the reaction) and H2S and CO2 generates heat. The purified natural gas flows out from the top of the absorption chamber and the reacted amine (also called 'rich amine') flows out the bottom and is generally higher in temperature than the inlets. 'Lean amine' is regenerated by reducing the pressure and adding heat to the 'rich amine' in a low pressure still fitted with a reboiler at the bottom. CO2 and H2S pass out the top of still with hot steam generated in the reboiler. This overhead mixture of steam, H2S and CO2 (called overheads) is higher in temperature than the feed in the still. In the present invention the heat associated with the 'overheads' is utilized to furnish heat to a sequence of heat exchangers through which the 'rich amine' is passed before reaching the low pressure still for regeneration.
Description
IMPROVED PROCESS SEQUENCING FOR AMINE REGENERATION
This invention relates to a process for an improved regeneration of amine in an absorption-type gas treatment process.
Many natural gases contain hydrogen sulphide (H2S) and carbon dioxide (CO2), commonly called acid gases, that must be removed prior to sale or processing. The removal of sulphur compounds from these acid gasses or "sour gasses" is oftentimes called "sweetening".
There are generally two types of gas treating processes: (a) absorption and (b) adsorption. In absorption processes, the gas stream contacts a liquid that selectively removes acid gases.
The most commmon absorption process is the amine process. The liquid absorbent is a mixture of water and a chemical amine, usually monoethanol-amine (MEA) or diethanolamine (DEA).
Sometimes triethanol-amine (TEA), diglycolamine (DGA), and methyl -diethanol amine (MDEA), diisoprophylamine, sulphanol and solutions of these, with special additives to improve efficiencies, are utilized.
Hydrogen sulphide is a toxic gas that must be removed to extreme low concentrations (less than 0.25 grains of H2S per 100 standard cubic feet) prior to pipeline delivery. When mixed with free water it forms a weak acid that can cause corrosion.
Carbon dioxide is a non-toxic inert gas. Carbon dioxide, as such, is harmless in dry natural gas but when mixed with free water will form a weak acid and also cause corrosion. Inlet gas to cryogenic plants that contain concentrations of CO2 in excess of 0.75 to 1.0 per cent CO2 may cause freezing problems. The C02 will freeze to a solid ice in a turbo expander plant demethanizer where it may plug lines and even plug the tower demethanizier where it may plug lines and even plug the tower itself. Often flooding of the demethanizer results from carbon dioxide freezing within the tower.
When the plant inlet gas contains concentrations of carbon dioxide too high to process, all of the gas may be treated or part of the gas may be separated into a side stream and treated by an amine plant. Principally all the carbon dioxide is removed in the amine plant. When the side stream is processed, and sufficient gas is treated, it is blended back with the untreated gas, thus yielding a carbon dioxide content of the blended stream which is low enough for processing.
Diethanolamine (DEA) is the most common amine used in plants operating at pressures above 300 psig. Monoethanolamine (MEA), a stronger base chemical, is commonly used for pressures below 300 psig. When pressures are sufficiently high, DEA is preferred and will require lower circulation rates, less heat input, and fewer corrosion problems than experienced with MEA.
Amines remove carbon dioxide and hydrogen sulphide by a chemical reaction that changes the chemical form of both the amine and the acid gases. The new chemical changes the acid gases to a liquid form which is separated from the acid-free gas or sweetened gas.
The chemical reaction between amine (called lean amine at the start of the process) and acid gases gives off heat when the reaction takes place. The sweet residue gas flows out the top of a contactor or absorber and the reacted amine (also called rich amine) flows out the bottom and is generally higher in temperature than the inlets. Lean amine is regenerated by reducing the pressure and adding heat to the rich amine.
The present invention focuses on the lean amine regeneration process. The solution regeneration generally takes place in a low pressure still with a reboiler at the botton to furnish heat to the solution. The still is generally a bubble tower containing the sour gasses (CO2 and H2S is injected into the still near the top and flows down the tower while steam generated in the reboiler flows up the tower countercurrent to the descending rich amine. The steam aids in "stripping" the sour gasses from the rich amine liquid and sends them back up the tower and out the top of the tower.
The heat added to the still reboiler increases the temperature of the amine somewhat, but most of the heat goes into generating steam which, in turn, flows into and up the still. This heat added or inputted into the reboiler must be furnished from an outside source such as steam from another process, hot oil or hot glycol circulated through the reboiler, or fuel directly fired into the reboiler.
When sour gasses pass out the top of the still, a large amount of steam also goes out with the gas. This overhead steam and gas stream (called overhead) is generally higher in temperature than the feed to the top of the still. It has not been recognized in operating industry heretofore that this overhead has enormous amounts of available and recoverable thermal energy. In the normal amine unit the gasses and steam out the top of the still flow to a condenser (called a reflux condenser) where the sour gasses are cooled to near ambient temperatures and most of the steam condenses into water. This condensing step requires considerable amounts of energy, and the heat removed is generally wasted to air.
U.S. Patent 3,362,891 discloses that the overhead may be used to heat relatively cool rich amine (90"F.), thereby giving up some heat and condensing as reflux. However, nothing in U.S. Patent 3,362,891 teaches the enormous energy savings available by proper temperature control of the overhead in relation to the temperature of the feed to the stripper still. Further, U.S.
Patent 3,362,891 does not disclose the heat exchange sequencing of the instant invention.
of the instant invention.
According to the present invention there is provided a conventional amine regeneration process having at least a contactor, a first heat exchanger immediately downstream of said contactor, a stripper still, an overhead gas condenser, a lean amine cooler and a still reboiler comprising the additional steps of: a first passing of rich amine liquid from the bottom of said contactor through said first heat exchanger said first exchanger not dispositioned on top of said stripper still; transferring at least a portion of hot overhead gasses exiting the top of said stripper still to a second exchanger said second heat exchanger not dispositioned on top of said stripper still; controlling by a temperature control means the temperature of a heated rich amine liquid into said second heat exchanger; a second passing of said temperature controlled heated rich amine liquid through said second exchanger wherein said hot overhead gasses transfer thermal energy to said temperature controlled heated rich amine liquid resulting in a higher temperature rich amine and reduced temperature overhead gasses; transferring said reduced temperature overhead gasses to said overhead gas condenser for separation into acid gasses and water; a first transferring hottest lean amine from the bottom of said stripper still to a third heat exchanger; a third passing of said higher temperature rich amine liquid through said third heat exchanger wherein said hottest lean amine from said bottom of said stripper still transfers thermal energy to said higher temperature rich amine liquid resulting in a highest temperature rich amine and hot temperature lean amine; transferring said highest temperature rich amine liquid into said top of said stripper still for contacting steam generated within said still; a second transferring said hot temperature lean amine to said first heat exchanger wherein said hot temperature amine transfers thermal energy to said rich amine liquid resulting in said heated rich amine liquid and a lower temperature lean amine; a third transferring said lower temperature lean amine to said lean amine cooler; said steps of first, second and third transferring occuring in successive sequential order; and said steps of first, second, and third passing occurring in the successive sequential order, whereby a reduction in the heat requirement is obtained at said still reboiler.
The present invention is a process for maximizing heat savings in the conventional amine regeneration process. By controlling outlet temperature of still feed from the conventionally utilized heat exchanger, immediately downstream of the contactor; exchanging heat from the still overhead gasses to the rich amine still feed; and, subsequent, further heat exchange of the feed with the hot lean amine discharged from the bottom of the still, enormous heat savings may be realized. The unique exchanger sequencing and temperature control features of the instant process distinguish this invention. The amount of heat saved in the instant processing reduces the amount of outside heat that must be added to the reboiler. This reduction of reboiler heat input is a direct savings in fuel costs. With some plants savings as much as thirty percent of the total reboiler duty should be experienced.
The present invention is a significant modification to the conventional or typical amine regeneration process. Additional steps to the amine regeneration process include: first, controlling the outlet temperature range of the rich amine still feed from the conventionally utilized heat exchanger immediately downstream of the contactor; secondly, the controlled temperature transferring of all or a portion of the hot overhead gasses exiting from a stripping still through a conduit to a heat exchange unit while flowing into the heat exchange unit temperature controlled rich amine liquid; and, thirdly, controlling a heat exchange subsequent to the still overhead heat exchange, whereby heat is transferred from the hot lean amine out of the bottom of the still to the higher temperature rich amine feed immeidately prior to the feed entering the still.There is a transfer of thermal energy (either directly or indirectly) in the instant process to the rich amine liquid resulting in a higher temperature rich amine liquid flowing into the stripper still.
Reduced temperature overhead gasses are then transferred to a condenser for final cooling of the acid gasses and water and reduced temperature lean amine is eventually returned to the contactor. This invention reduces the heat input necessary to the reboiler for developing steam in the stripper still. It has been found that when the rich amine liquid temperature immediately prior to entry into the still is raised from the normal operating range of 170 F. to a temperature range of 1900F.
to 2100F., reboiler duty is reduced by as much as 30 percent.
Not only is the reboiler duty reduced, but the still condensing duty is decreased as well as is the lean amine cooler duty.
Embodiments of the invention will now be described by way of example with reference to the accompanying drawings, in which: FIG.1 is a flow diagram of the typical amine process;
FIG. 2 is a flow diagram of a modified amine process with an indirect contact exchange;
FIG. 3 is a flow diagram of a modified amine process showing a temperature control bypass and hot lean amine to feed exchange; and
FIG. 4 is an amine still overhead condensing curve.
The basic amine flow diagram is shown in FIG. 1. Sour gas i.e., natural gas having high concentrations of hydrogen sulphide and carbon dioxide, flows through a conduit 10 and then through a scrubber 12 to remove particular matter with the discharge conduit 14 of the scrubber 12 entering the bottom 16 of the contactor or absorber 18 and contacts the lean amine solution, which enters at the top 20 of the absorber 18 via conduit 22.
The gasses rise through the vertical contactor 18 and then react with the lean amine in a countercurrent direction. The gas bubbles through the amine whereby the chemical reaction takes place, removing the acid gasses and allowing the sweet natural gas to leave the top of the absorber through conduit 24. These sweet gasses again pass through a scrubber 26 and out conduit 28 on to the main gas pipeline. The countercurrent flow is important as it allows the leanest (purest) amine to contact the leanest (sweetest) gas at the top and the richest (contaminated) amine to contact the richest (contaminated) sour gas at the bottom.
The rich amine leaves the bottom 16 of the tower 18 in the temperature range of 1200F. - 1600F. and flows through conduit 30 to a flash tank 32. Flash tank vapours are sent via pipeline 34 to the fuel system and are usually sour. From the flash tank 32, the amine stream goes through conduit 36 to a heat exchanger 38 where the stream temperature is raised to approximately 1700F. 1900F. The stream then flows through feed line 40 to the top section 42 of the regeneration stripper 44 (the still). The still bottoms pass through conduit 46 and are heated in the reboiler 48. The still reboiler 48 heats the amine and water solution in the bottom of the still 44 to about 240"F. at about 5 psig. pressure. The heat converts some of the water in the amine solution to steam.The steam rises through the still and heats the counterflowing rich amine solution. This heat releases the acid gasses, and the excess steam and acid gasses pass out of the top of the still 44 through conduit 50. The steam and acid gasses then enter the reflux condenser 52 where the steam is condensed, separated in accumultor 54 and pumped back to the still 44. The acid gasses leave the separator or accumulator 54 and go either to a flare stack or a sulphur recover plant (not shown) via conduit 56.
The hot lean amine leaves the bottom 45 of the still 44 via line 58, is filtered in filter 60, and flows back through pipeline 62 to heat exchanger 38 and then is pumped by pump 63 through conduit 64 to lean amine cooler 66. From cooler 66, the cooled lean amine solution is pumped through conduit 22 to the top of the contactor 18.
The primary purpose of the hot, lean amine passing through exchanger 38 is to reduce the lean amine temperature while raising the rich amine temperature. The lean amine heat exchanger at exchanger 38 is to ensure cool amine to the contactor 18 since the chemical reaction of removing the acid gasses proceeds best at inlet gas and leam amine temperatures between 85"F. and 1200F. However, this transfer of heat only raises the rich amine temperature to a range of approximately 1700 F. - 1900F. There is simply not enough energy in the hot amine stream at this particular point in its flow path to raise the rich amine temperature any higher.
The purpose of the still overhead condenser 52 is to cool the stripped acid gasses and condense steam from the still 44 to conserve water. The overhead gasses could be sent to the flare while hot; however, a considerable amount of water would be lost from the system, requiring a large make-up supply. By cooling the overhead to 1200F. or less, a large part of the steam condenses to water and is separated in the reflux accumulator 54.
Because of the enormous amount of thermal energy available in the steam, the condenser 52 has a significant work load. The separated water called reflux, is pumped via pump 68 back into the amine system either into the lean amine stream, into the still feed, or to the top 42 of the still 44 (as shown in FIG 1).
Stripping of the amine in the still 44 is of critical importance.
Lean amine improperly stripped will produce off specification gas from the contactor 18. If the lean amine is not stripped sufficiently in the still 44, acid gas left in the amine solution will be stripped out by the main gas stream at the top 20 of the contactor 18, thereby causing the gas leaving the contactor 18 to be off specifiation. The most common way to solve a condition of high residual acid gas in the lean amine is to increase the heat being supplied via conduit 70 to the still reboiler 48.
Unfortunately this results in an increased consumption of reboiler fuel, or in the cases where steam is used within the reboiler 48, additional steam must be supplied to generate higher temperature within the stripper still 44.
FIG 2 illustrates a modified amine proces of the present invention. Instead of the rich amine flow discharged from the exchanger 38 flowing directly from conduit 40 into the top 42 of the stripper still 44, the flow is diverted through heat exchanger 39. Heat exchanger 39 may be an indirect contact type exchanger or the direct contact type. FIG.2 illustrates heat exchanger 39 to be an indirect contact type wherein the rich amine flow would indirectly contact the hot overhead gasses as discussed below.
Thermal energy is transferred from hot overhead gasses exiting from the top 42 of the stripping still 44 through conduit 50 to heat exchanger 39. Within heat exchanger 39 thermal energy is transferred from hot overhead gasses to the rich amine liquid..
Therefore, while the temperature T2 of the output of a conventionally utilized exchanger 38 is generally in the approximate range of 170"F. to 19O0F., T5, the temperature of the input into the still 44 in the modified amine process of the present invention of FIG.2 is in the approximate temperature range of 190 F. to 2100F.
The overhead gasses from the still 44 via conduit 50 are in the approximate temperature range of 210 F. to 220"F. as shown on temperature indicator T3 but contain an enormous amount of thermal energy in the form of latent heat of condensation. When these hot overhead gasses are transferred to heat exchanger 39, this enormous amount of latent heat is transferred to the rich amine flow.
Steam condensing from the vapour phase to the liquid phase at constant temperature gives up considerably more heat than can be removed from either the vapour steam or liquid water. At atmospheric pressure, one pound of steam condensing from a vapour to a liquid will give up to 970.3 BTU's. One pound of liquid water requires one BTU to raise the temperature of the water 1 F.
Thus, the amount of heat transferred from one pound of condensing steam at a constant temperature is sufficient heat to raise the temperature of one pound of water 970.3"F.
FIG. 4 is a chart showing an amine still overhead condensing curve. T F.' represents temperature in degrees and % HR represents percent of heat removed. From FIG. 4 it can be seen that pure steam (curve A), gives up 100% of its latent heat in condensing to a liquid without a temperature change.The still overhead (curve B), made up of acid gas and steam, gives approximately 55% of its heat in going from 220"F. to 2000F. and gives approximately 77% of its heat in going from 220"F. to 180"F. Curve C shows that the cooling of acid gas only gives up 20% of its heat in going from 220"F. to 200 F. and less than half (40%) of its heat in going from 220"F. to 180 F. This tremendous difference in available heat has not been recognized in the industry.
In the industry the still overhead is recognized as mainly acid gas and is commonly called "acid gas"; and even though the overhead has been used to heat the still feed as shown in U.S.
Patent No: 3,362,891, it has not been readily evident in the industry that there is such a large amount of steam carrying overhead of the still with the acid gas and that this steam can be condensed at sufficiently high enough temperature for the heat to be added to the still feed.
The reduced temperature T4 overhead gas exiting exchanger 39 via conduit 51, having an approximate temperature range of 160 F. 200"F., is then transferred to the conventional condenser unit 52 and separator 54 for separation into reflux and acid gas.
Because the overhead gas has given up much of its energy in the heat exchange with the rich amine liquid, less energy is utilized in the condenser unit 52 of this inventive process than in the conventional amine process. Further, since the inlet temperature
T2 of the rich amine into the still 44 is higher than with the conventional methods, less outside heat has to be supplied to the reboiler 48 in order to generate the proper operating temperatures within the stripper still 44.
FIG. 3 illustrates an embodiment of the instant process which further increases the heat and energy savings over the conventional amine regeneration process. As with the processes of FIGS. 1 and 2, rich amine from contactor 18 flows through conduit 36 to exchanger 38. However, as shown in FIG. 3, a temperature controlled bypass line 80 branches off conduit 36 upstream of exchanger 38.
A temperature controller 82, as it is commonly known in the art, senses and compares with a predetermined temperature the temperature of rich amine in conduit 40 upstream of exchanger 39.
Controller 82 opens and closes bypass control valve 84 in response to the temperature of rich amine sensed in conduit 40.
In the process of FIG. 3, it is critical to control the rich amine temperature to exchanger 39, so that maximum heat savings are achieved throughout the entire process, as will be discussed below. The temperature of rich amine into exchanger 39 will effect the transfer of heat from the overhead gasses out of the top 42 of still 44 to the rich amine. Further, the temperature of the rich amine to exchanger 39 effects the outlet temperature of the overhead passing through conduit 51 to condenser 52.
The temperature of rich amine in conduit 41 out of exchanger 39 is sensed at temperature indicator T5. The rich amine out of exchanger 39 flows through conduit 41 to a final exchanger 90.
In exchanger 90 heat is transferred from the hot lean amine from the bottom 45 of the still 44 to the rich amine coming out of exchanger 39. Hot lean amine from still 44 flows through output conduit 58, pump 59, filter 60, and conduit 62 to exchanger 90.
The temerature of hot lean amine in conduit 62 is sensed by temperature indicator T7.
The hot lean amine in conduit 62 is generally in the temperature range of 2400F. As previously stated the temperature of the rich amine out of exchanger 39 is in the range of 210"F., always less than the 2400F. temperature of rich amine from still 44 in conduit 62. Therefore, by the heat exchange sequencing of the present invention, the best exchange from the hot lean amine to the rich amine feed at exchangers 90 and 38 is much more efficient than has been previously experienced in the conventional amine process utilizing an exchanger 38. Rich amine out of exchanger 90 passes through conduit 43, is temperature sensed by temperature indicator T6, and passes into still 44 at a temperature in the range of 200"F. to 220"F. or more.
The hot lean amine flows out of exchanger 90 through conduit 92 to exchanger 38. Temperature indicator T8 senses the lean amine temperature in conduit 92. While the inlet temperature of lean amine entering exchanger 38 is lower than is normally found in the conventional amine process (215 F. versus 240 F.), it is still sufficiently high to raise the temperature of rich amine from an inlet temperature of approxmately 130"F. to an outlet (from exchanger 38) to approximately 185"F. The amount of heat recovered from the lean amine in the two exchangers 90 and 38 will be equal to or greater than that recovered from exchanger 38 in the standard process of FIG. 1.As has been previously stated it is critical to the instant inventive process that the rich amine temperature out of exchanger 38 be controlled; thus, the purpose of the temperature bypass system including conduit 80, and valve 84.
Further, the temperature bypass system allows for controlling the lean amine temperature to cooler 66 thereby effecting its duty.
Temperature indicator T9 senses the lean amine temperature in conduit 64. Because lean amine to cooler 66 is lower in the instant inventive process than in the conventional process further heat and energy savings are achieved; also the efficiency of the chemical reaction in the absorber 18 is improved.
As temperature controlled rich amine flows through conduit 40 to exchanger 39, the instant process provides for controls in the heat exchanger between the rich amine and the overhead gasses unlike any known amine regeneration process. In addition, controlling the temperature rich amine out of exchanger 39 into exchanger 90, results in completing the control loop back to exchanger 38.
To illustrate the significance of the reduction in reboiler 48 duty and the savings on the amount of heat wasted in air achievable in the instant inventive process, various examples follow in Table 1 at the end of this description which compare the standard amine regeneration process (FIG. 1 process), the process of U.S. Patent No. 3,362,891, the modified process of
FIG. 2, and the temperature controlled process of FIG. 3. The process of FIG. 3 is calculated several times to show the savings which are achievable by varying the temperature controlled bypass system.
The following assumptions or conditions are made within all of the examples illustrated:
(1) Amine unit removing 100,000 std. cu. ft. per hour acid
gases
(2) Amine: 30 wt. percent di ethanol amine 70 wt. percent water
(3) Amine circulation rate: 20,000 gal per hour
(4) Amine net acid gas pick-up: (a) 0.54 mols acid gas per
mol amine
(b) 5.0 cu. ft. acid gas
per gal amine solution
(5) Amine still reflux rate = 2.5 mols reflux per mol acid
gas removed.
Numbers and amounts for the process of U.S. Patent No. 3,362,891 are based upon extracting the same 100,000 std. cu. ft. per hour acid gas with all other conditions the same as given in the '891 patent. Further, in the '891 example T1 is the temperature of rich amine out of the contactor; T2 is temperature of rich amine entering stripper still; T3 is temperature overhead gasses to condenser; T4 is temperature of overhead gasses out of condenser; and T7 is temperature of hot lean amine out of stripper.
While there are shown and described and pointed out fundamental novel features of the invention as applied to a prefered embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of the process illustrated may be made by those skilled in the art without departing from the spirit of the invention. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
1 Standard Process Modified Temperature controlled process Process of Process of Fig. 3 TABLE 1 of U.S.Pat.# of Case Case Case Case Case Case Fig. 1 3,362,891 Fig. 2 1 2 3 4 5 6 F.
T1 130 90 130 130 130 130 130 130 130 T2 185 199 185 155 165 175 185 195 200 T3 215 210 215 215 215 215 215 215 215 T4 - 140 190 160 170 180 190 200 205 T5 - - 210 210 210 210 210 210 210 T6 - - - 220+ 220+ 220+ 220+ 220+ 220+ T7 240 235 240 240 240 240 240 240 240 T8 - - - 215 215 215 215 215 215 T9 155 - 182 189 178 168 157 146 141 T10 120 unk 120 120 120 120 120 120 120 Reboiler duty MBTU/Hr 24.072 46.859 19.582 18.126 16.929 16.112 15.669 15.919 16.620 to air MBTU/Hr 18.265 41.106 13.659 12.131 11.035 10.297 9.797 10.076 10.775
Claims (5)
- CLAIMS 1. An amine regeneration process having at least a contactor, a first heat exchanger immediately downstream of said contactor, a stripper still, an overhead gas condenser, a lean amine cooler and a still reboiler comprising the additional steps of: a first passing of rich amine liquid from the bottom of said contactor through said first heat exchanger said first exchanger not dispositioned on top of said stripper still; transferring at least a portion of hot overhead gasses exiting the top of said stripper still to a second exchanger said second heat exchanger not dispositioned on top of said stripper still; controlling by a temperature control means the temperature of a heated rich amine liquid into said second heat exchanger; a second passing of said temperature controlled heated rich amine liquid through said.second exchanger wherein said hot overhead gasses transfer thermal energy to said temperature controlled heated rich amine liquid resulting in a higher temperature rich amine and reduced temperature overhead gasses; transferring said reduced temperature overhead gasses to said overhead gas condenser for separation into acid gasses and water; a first transferring hottest lean amine from the bottom of said stripper still to a third heat exchanger; a third passing of said higher temperature rich amine liquid through said third heat exchanger wherein said hottest lean amine from said bottom of said stripper still transfers thermal energy to said higher temperature rich amine liquid resulting in a highest temperature rich amine and hot temperature lean amine; transferring said highest temperature rich amine liquid into said top of said stripper still for contacting steam generated within said still; a second transferring said hot temperature lean amine to said first heat exchanger wherein said hot temperature lean amine transfers thermal energy to said rich amine liquid resulting in said heated rich amine liquid and a lower temperature lean amine; a third transferring said lower temperature lean amine to said lean amine cooler; said steps of first, second and third transferring occurring in successive sequential order; and said steps of first, second and third passing occurring in successive sequential order, whereby a reduction in the heat requirement is obtained at said still reboiler.
- 2. A process according claim 1 wherein said temperature control means comprises means for allowing at least a portion of said rich amine to bypass said first heat exchanger and flow directly to said second heat exchanger.
- 3. A process according to claim 1 or 2, wherein said temperature controller means controls said temperature of said heated rich amine liquid to said second heat exchanger at approximately 185"F., said higher temperature rich amine liquid to said third heat exchanger at approximately 210 F., said highest temperature rich amine liquid to said stripper still at above 220 F., said hottest temperature lean amine to said third heat exchanger at approximately 240"F., said hot temperature lean amine to said first heat exchanger at approximately 2150F., and said lower temperature lean amine to said lean amine cooler at approximately 1570F.
- 4. A process substantially as hereinbefore described with reference to any one or more of Figures 2 to 4 of the accompanying drawings.
- 5. Apparatus for amine regeneration substantially as hereinbefore described with reference to any one or more of Figures 2 to 4 of the accompanying drawings.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69625385A | 1985-01-29 | 1985-01-29 |
Publications (3)
Publication Number | Publication Date |
---|---|
GB8827659D0 GB8827659D0 (en) | 1988-12-29 |
GB2225319A true GB2225319A (en) | 1990-05-30 |
GB2225319B GB2225319B (en) | 1992-08-05 |
Family
ID=24796316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB8827659A Expired - Lifetime GB2225319B (en) | 1985-01-29 | 1988-11-26 | Improved process sequencing for amine regeneration |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2225319B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108048147A (en) * | 2018-01-26 | 2018-05-18 | 中海石油气电集团有限责任公司 | A kind of amine liquid regenerative system and technique applied to Floating Liquefied Natural Gas facility |
-
1988
- 1988-11-26 GB GB8827659A patent/GB2225319B/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108048147A (en) * | 2018-01-26 | 2018-05-18 | 中海石油气电集团有限责任公司 | A kind of amine liquid regenerative system and technique applied to Floating Liquefied Natural Gas facility |
CN108048147B (en) * | 2018-01-26 | 2023-11-21 | 中海石油气电集团有限责任公司 | Amine liquid regeneration system and process applied to floating liquefied natural gas facility |
Also Published As
Publication number | Publication date |
---|---|
GB8827659D0 (en) | 1988-12-29 |
GB2225319B (en) | 1992-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4798910A (en) | Process sequencing for amine regeneration | |
EP1874435B1 (en) | Configurations and methods for acid gas absorption and solvent regeneration | |
KR100490937B1 (en) | Carbon dioxide recovery with composite amine blends | |
KR101237667B1 (en) | Regeneration of acid gas-containing treatment fluids | |
JP5661681B2 (en) | Method for obtaining an acid gas stream under high pressure by removing acid gas from a fluid stream | |
AU772954B2 (en) | Method and apparatus for recovering amine and system for removing carbon dioxide comprising the apparatus | |
US7645433B2 (en) | Optimization of reflux accumulator start-up in amine regeneration system | |
US7695702B2 (en) | Optimization of amine regeneration system start-up using flash tank pressurization | |
EP0588175A2 (en) | Process for removing carbon dioxide from combustion gases | |
EP2004309A1 (en) | Heat recovery gas absorption process | |
JP2004535297A (en) | Method for removing acid gases from gas streams | |
US20070284240A1 (en) | System and method for diagnosing and troubleshooting amine regeneration system | |
US4773921A (en) | Process and device for selective extraction of H2 S from an H2 S-containing gas | |
US4889700A (en) | Process and device for selective extraction of H2 S from an H2 S-containing gas | |
GB1589231A (en) | Process for the removal of acidic gases | |
GB2225319A (en) | Regeneration of amine | |
US5133949A (en) | Process and device for the removal of H2 S | |
WO2007146610A2 (en) | Optimization of reflux accumulator start-up in amine regeneration system | |
CN210645772U (en) | Produce acid gas purifier of multiple purity hydrogen sulfide | |
EP2035115A2 (en) | Optimization of amine regeneration system start-up using flash tank pressurization | |
US4844876A (en) | Process and device for selective extraction of H2 S from an H2 S-containing gas | |
WO1998032519A1 (en) | Amine heat stable salt neutralization having reduced solids | |
US20240207777A1 (en) | Diglycolamine processing following acid gas removal from a gas stream | |
WO2007146612A2 (en) | System and method for diagnosing and troubleshooting amine regeneration system | |
Butwell et al. | Process for CO 2 removal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 19931126 |