GB2211865A - Treatment of carpets - Google Patents
Treatment of carpets Download PDFInfo
- Publication number
- GB2211865A GB2211865A GB8829618A GB8829618A GB2211865A GB 2211865 A GB2211865 A GB 2211865A GB 8829618 A GB8829618 A GB 8829618A GB 8829618 A GB8829618 A GB 8829618A GB 2211865 A GB2211865 A GB 2211865A
- Authority
- GB
- United Kingdom
- Prior art keywords
- stain
- carpet
- nylon
- blocker
- pile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011282 treatment Methods 0.000 title claims description 76
- 229920001778 nylon Polymers 0.000 claims description 113
- 238000000034 method Methods 0.000 claims description 83
- 239000004677 Nylon Substances 0.000 claims description 75
- 230000008569 process Effects 0.000 claims description 70
- 239000000835 fiber Substances 0.000 claims description 53
- 239000003795 chemical substances by application Substances 0.000 claims description 34
- 230000006872 improvement Effects 0.000 claims description 31
- 239000003599 detergent Substances 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 26
- 239000004599 antimicrobial Substances 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 229920000642 polymer Polymers 0.000 claims description 18
- 238000009736 wetting Methods 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 13
- 238000009826 distribution Methods 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 11
- 229920002302 Nylon 6,6 Polymers 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 9
- 239000000853 adhesive Substances 0.000 claims description 8
- 230000001070 adhesive effect Effects 0.000 claims description 8
- 230000001877 deodorizing effect Effects 0.000 claims description 8
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical group O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 claims description 8
- FLGPRDQFUUFZBL-UHFFFAOYSA-N formaldehyde;naphthalen-1-ol Chemical group O=C.C1=CC=C2C(O)=CC=CC2=C1 FLGPRDQFUUFZBL-UHFFFAOYSA-N 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 4
- 230000000249 desinfective effect Effects 0.000 claims description 4
- 238000013020 steam cleaning Methods 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 238000007664 blowing Methods 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 41
- 239000000243 solution Substances 0.000 description 31
- 238000010186 staining Methods 0.000 description 28
- 238000004140 cleaning Methods 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000004043 dyeing Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 239000000645 desinfectant Substances 0.000 description 10
- 230000000845 anti-microbial effect Effects 0.000 description 9
- 239000000975 dye Substances 0.000 description 9
- 229920002292 Nylon 6 Polymers 0.000 description 8
- 125000002091 cationic group Chemical group 0.000 description 8
- 230000001976 improved effect Effects 0.000 description 8
- 239000002453 shampoo Substances 0.000 description 8
- 125000000129 anionic group Chemical group 0.000 description 7
- BPRYUXCVCCNUFE-UHFFFAOYSA-N 2,4,6-trimethylphenol Chemical compound CC1=CC(C)=C(O)C(C)=C1 BPRYUXCVCCNUFE-UHFFFAOYSA-N 0.000 description 6
- 239000004952 Polyamide Substances 0.000 description 6
- 239000007859 condensation product Substances 0.000 description 6
- 229920002647 polyamide Polymers 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 235000019645 odor Nutrition 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 239000004753 textile Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000004816 latex Substances 0.000 description 4
- 229920000126 latex Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- KYARBIJYVGJZLB-UHFFFAOYSA-N 7-amino-4-hydroxy-2-naphthalenesulfonic acid Chemical compound OC1=CC(S(O)(=O)=O)=CC2=CC(N)=CC=C21 KYARBIJYVGJZLB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000004784 Superba Substances 0.000 description 3
- 241000324401 Superba Species 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 102100026816 DNA-dependent metalloprotease SPRTN Human genes 0.000 description 2
- 101710175461 DNA-dependent metalloprotease SPRTN Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 239000000980 acid dye Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- WOLATMHLPFJRGC-UHFFFAOYSA-N furan-2,5-dione;styrene Chemical compound O=C1OC(=O)C=C1.C=CC1=CC=CC=C1 WOLATMHLPFJRGC-UHFFFAOYSA-N 0.000 description 2
- 230000002070 germicidal effect Effects 0.000 description 2
- 239000002917 insecticide Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229940061610 sulfonated phenol Drugs 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- LPGXETZQYQWXOF-UHFFFAOYSA-N 3-benzyl-2-chlorophenol Chemical compound OC1=CC=CC(CC=2C=CC=CC=2)=C1Cl LPGXETZQYQWXOF-UHFFFAOYSA-N 0.000 description 1
- 241000009355 Antron Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- VXSIXFKKSNGRRO-MXOVTSAMSA-N [(1s)-2-methyl-4-oxo-3-[(2z)-penta-2,4-dienyl]cyclopent-2-en-1-yl] (1r,3r)-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate;[(1s)-2-methyl-4-oxo-3-[(2z)-penta-2,4-dienyl]cyclopent-2-en-1-yl] (1r,3r)-3-[(e)-3-methoxy-2-methyl-3-oxoprop-1-enyl Chemical class CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)O[C@@H]1C(C)=C(C\C=C/C=C)C(=O)C1.CC1(C)[C@H](/C=C(\C)C(=O)OC)[C@H]1C(=O)O[C@@H]1C(C)=C(C\C=C/C=C)C(=O)C1 VXSIXFKKSNGRRO-MXOVTSAMSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 238000009978 beck dyeing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010961 commercial manufacture process Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000982 direct dye Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000019233 fast yellow AB Nutrition 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000000989 food dye Substances 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Substances O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229940060367 inert ingredients Drugs 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 235000010292 orthophenyl phenol Nutrition 0.000 description 1
- 238000000643 oven drying Methods 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 229960005235 piperonyl butoxide Drugs 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- HYJYGLGUBUDSLJ-UHFFFAOYSA-N pyrethrin Natural products CCC(=O)OC1CC(=C)C2CC3OC3(C)C2C2OC(=O)C(=C)C12 HYJYGLGUBUDSLJ-UHFFFAOYSA-N 0.000 description 1
- 229940070846 pyrethrins Drugs 0.000 description 1
- 239000002728 pyrethroid Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000010019 resist printing Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical group [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0031—Carpet, upholstery, fur or leather cleansers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0036—Soil deposition preventing compositions; Antiredeposition agents
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/39—Aldehyde resins; Ketone resins; Polyacetals
- D06M15/41—Phenol-aldehyde or phenol-ketone resins
- D06M15/412—Phenol-aldehyde or phenol-ketone resins sulfonated
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M16/00—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/34—Polyamides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Textile Engineering (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Carpets (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
221 1865 TITLE TREATMENT OF CARPETS
FIELD OF THE INVENTION
The present invention concerns improvements in and relating to the treatment of carpets, especially those carpets whose pile fibers comprise polyamide fibers, and is more particularly concerned with a new process that improves their stain-resistance by treatment of the carpets in place.
BACKGROUND OF THE INVENTION
Polyamide fibers (generally referred to as nylon) are preferred fibers for use as pile fibers in carpets, and are used for this purpose both in the form of continuous filament yarns, generally bulked continuous filament yarns, and in various forms as cut fiber, often called staple fiber For many years, both nylon 66 and nylon 6 have been used in large quantities in carpeting; each polymer has its advantages, for certain purposes; as will be noted herein, nylon 6 has a greater affinity for many dyestuffs than does nylon 66 Although there are many different types of nylon carpeting, a conventional type is manufactured by inserting, e g, plied nylon yarn into a conventional primary backing, e g, of jute or polypropylene fibers, and then, after dyeing, applying a conventional carpet backing adhesive composition, sometimes referred to as latex, which is adhered also to a secondary backing material, as described, e g, for a conventional tufted nylon carpet in Ucci, U S Patent No 4,579,762, issued April 1, 1986 Another type of secondary backing that is frequently used is a foam- backing, i e a layer of, e g, polyurethane foam that can be attached directly to the primary backing without any need for such adhesive Generally, especially when using carpeting on flooring, in addition to such primary backing, (any adhesive composition) and secondary backing (all underneath the nylon fiber pile), most householders install a conventional underlay or underpad of felted fibers or foam, e g of polyurethane, which conventional underlay is generally an entirely separate layer that is not integrally or overall attached to the carpet per se in the same way as the adhesive backing and secondary backing are integrally attached to the primary backing (carrying the nylon pile that is the top or outer surface of the carpet) During commercial manufacture, when such carpets are dyed, the dyeing process is carried out on the nylon pile when it is attached to the primary backing only, 1 i i e, before (any adhesive latex composition and) the secondary backing is secured to the primary backing, and the dyeing process is carried out in conventional manner, e.g, in a beck dyeing machine, generally by a continuous process in which this primary carpet (i e, the nylon pile and the primary backing only) is immersed in the dye liquor at the boil so as to effect contact and effective and rapid penetration of the dyestuff into the nylon pile, although there are other methods of coloring nylon, e g, by producer-dyeing, i e, including pigmentation into the nylon polymer before spinning.
Recently, there has been major commercial interest in imparting 'stain-resistance" to nylon fibers and carpets, as described, for instance, in Textile Month, October, 1987, pages 32-34, and several patents are being published on various aspects of imparting stain-resistance to nylon carpets and/or carpet fibers A major concern of the customer is the durability of the treatment during the various types of treatment that may be encountered during the life of a carpet.
Munk et al, U S Patent No 4,699,812, issued October 13, 1987, claims a process for imparting stain- resistance to polyamide, wool and silk fibers by contacting the fibers with a solution of an aliphatic sulfonic acid under specified conditions of acid p H and temperature The primary interest appears to be nylon carpets, but the procedure in, e g, Example 1 shows vigorous mechanical agitation of a woven nylon 6 fiber "sleeve", in an aqueous solution of a commercial aliphatic sulfonic acid, at a p H adjusted to 2, and at a temperature of 500 C, for 15 minutes, followed by drying with paper towels and in an oven Variants may be used, at a manufacturing stage prior to the finished product, such as is often done in carpet manufacture; immersing the fabrics, removing excess solution by passing through rollers, and air-drying of the moist fibers at ambient temperature is mentioned; spraying onto the carpet is also mentioned; in particular, the treatment may be during or immediately subsequent the dyeing stage (column 4).
Example VII shows that treatment at a p H of 3 8 shows far less improvement in stain resistance than treatment at a p H of 2 Accordingly, a p H between about 1 5 and about 3.0 is said to give more effective results (column 3, lines 56-7) Example III shows that the stain resistance (of Example:) remains after vigorous agitation for 15 minutes at 500 C in an aqueous detergent solution at a p H of 9 5, rinsing and oven-drying.
Blyth et al, U S Patent No 4,680,212, issued July 14, 1987, discloses a process of applying a spin finish to nylon fibers during the melt polymerization process by which the fibers are prepared, the finish containing one or more stain blocker(s) in specified amounts Stain blockers are described and distinguished from fluorochemicals that are used to reduce the tendency of soil to adhere to the fiber Fluorochemicals are used, however, in combination with a stain-blocker, to improve t.e durability of stain-resistance imparted by the stain- blocker, in the sense that the carpet retains more stain- resistance after being subjected to much traffic.
Blyth et al, U S Patent No 4,592,940, issued June 3, 1986, discloses a process of immersing a carpet in a boiling aqueous solution of a selected phenol- formaldehyde condensation product at an acid p H ( 4 5 or less) The durability of treated carpets is tested variously, including by subjecting carpet samples to two wash cycles in a heavy-duty washing machine using detergent before applying the stain.
Ucci, U S Patent No 4,579,762, issued April 1, 1986, is referred to above, and claims a carpet having a primary backing coated with an adhesive composition (containing a fluorochemical) and with a pile of nylon fibers (the nylon polymer being modified to contain aromatic sulfonate units) In other words, the stain- resistance is obtained by incorporating stain-resistance into the nylon polymer itself, by chemical modification.
The vulnerability of the typical carpet system to water, and the problems caused by the slow process of drying are emphasized in the lower portion of column 1, and at the top of column 2.
Ucci et al, U S Patent No 4,501,591, issued February 26, 1985, claims a process for imparting stain- resistance during a process for continuously dyeing a carpet, involving adding a silicate and a sulfonated phenol or napthol-formaldehyde condensation product to the aqueous dye liquor at specified liquor ratios, and then subjecting the carpet to an atmosphere of steam, washing with water and drying The p H of the liquor in the only Example is 4 5, but is said typically to be in the range of 4 5 to 8 (column 3, lines 22-3) Durability is tested by carrying out a Stain Resistance Test on 5 cm x 5 cm carpet samples alternating with heavy duty cleaning using Streamex (Steamex) commercial units Ucci, like others, disparages (column 1, lines 46-59) the prior usage of fluorochemicals to minimize staining.
Greschler et al, EP Al 0235989, published September 9, 1987, and corresponding to U S Patent No 4,780,099, discloses a process for applying sulfonated phenol or naphthol-formaldehyde condensation products to nylon carpets, after dyeing, in a bath at a p H of between 1 and 2 5, whereby yellowing of the treated articles due to exposure to NO 2 is reduced.
Mesitol NBS is mentioned by Greschler as a commercially available material (available from Mobay Chemical Corporation) This is stated in Product Bulletin T.D S #1246/1 (Revised) August, 1981, to be an anionic after treating agent and a reserving agent to minimize the staining by selected direct dyes of the polyamide portion in polyamide cellulosic fiber blends, and the "Application Procedures" indicate that the fabric should be treated in a bath It is understood that stain-blockers are dye- resists or dye-reserving agents such as have long been known and widely used in textile applications, such as resist-printing of nylon fibers In other words, the mechanism of stain-blocking (in the sense of dye- reserving) has been used for many years.
As indicated in the above patent specifications, and in the analysis in the October 19, 1987, issue of Textile Month, referred to above, hitherto, the emphasis on process techniques, as regards imparting stainresistance, has been reported to achieve this during the dyeing of the primary carpet, or earlier in the manufacturing process, e g, by incorporation of modifiers into the nylon polymer, or by engineering or treatment of the fiber itself So far as is known, prior to the present invention, it had not been disclosed that a significant improvement in stain-resistance could be effective when applied to "in place" carpet that had already been installed with any appropriate secondary rlac Klng, and normally also an underpad, as opposed to conventional immersion of the primary carpet in a dye liquor or equivalent application, usually under acid conditions, followed by conventional processing, such as washing, fixing, squeezing, and appropriate drying treatments at elevated temperatures during a manufacturing process.
SUMMARY OF THE INVENTION
I have now found, according to the present invention, that a significant improvement in stain- resistance may be effected by applying stain-blockers to installed carpets, in contrast with the immersion or other manufacturing treatments that have been referred to, and that the results of this in-place treatment have been acceptable to a surprising extent.
Accordingly, there is provided, according to the invention, a process of imparting stain-resistance to an installed nylon carpet by a process that includes the steps of treating the installed nylon carpet, especially a carpet of nylon 66 fiber, by applying thereto a stain- blocker in sufficient amount and in such manner as to obtain a significant improvement in stain-resistance, and of allowing the treated carpet to dry in the atmosphere.
The process of the invention is described in more detail and with preferred embodiments hereinafter, and is expected to have considerable commercial significance, as will be described For instance, a preferred commercial application is expected to be by overall treatment by appropriately-trained personnel to obtain the type of professional appearance that a customer normally expects This is expected to be especially useful when applied as a supplement to stain-resist and/or soil-resist treatments that have already been applied during the manufacturing process, as described in the prior art referred to already However, overall treatment of carpets that have not been treated with stain-blocker cth;rina manufacture or otherwise) is also feasible, and may prove useful, also These types of overall treatment, to give an appearance that is commercially acceptable, are generally to be preferred in contrast with spot or localized treatments such as may result from application topically to an installed carpet by use of a spray can.
However, as will be seen, spot cleaning with detergents may affect the durability of stain-resist performance, so that certain topical applications to installed carpets may be advantageous, depending on circumstances.
I was surprised to discover that a significant improvement and a satisfactory commercially-satisfying appearance could be obtained by the process of the invention, i e, application to an installed carpet, (especially to deep pile carpets with a pile height of about 1/4-inch or more, more particularly 1/2-inch, or 3/4-inch or more) since there has been a prejudice in the trade against this technique and in favor of application during the manufacturing process, as indicated hereinbefore, e g, by Ucci.
I have also discovered that stain-resistance may be imparted to an in-place nylon carpet whose stain- resistance has been reduced due to treatment with anti- microbial agents, including commonly-used household disinfectants, and/or with deodorizers Such treatments, when applied to a stain-resistant carpet, tend to destroy or substantially diminish the stain-resistance By applying a stain-blocker after treatment with such products, the stain-resistance of the disinfected and/or deodorized carpet can be restored and even improved This embodiment may also serve, of course, to impart stain- resistance to an in-place carpet which was not previously stain-resistant.
BRIEF DESCRIPTION OF THE DRAWING
The file of this patent contains at least one drawing executed in color Copies of this patent with color drawing(s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.
The Figure is a color photograph to show the Stain Rating Scale that was used herein.
DETAILED DESCRIPTION OF THE INVENTION
The treating step must be carried out in such manner and with stain-blocker in sufficient amount that a significant improvement in stain-resistance is obtained.
I believe that a significant increase in stain-resistance will be readily apparent to a skilled person with the aid of a suitable test As will be recognized by those experienced in the treatment of nylon carpets, however, the precise treatment conditions that may be necessary will depend on the nature of the carpet, e g, its construction (various features being mentioned herein), the type of nylon fiber used, and the stain-resistance of the nylon fibers in the pile before commencing the treatment Experience in determining suitable conditions can be obtained empirically in conjunction with the information contained herein, especially in the Examples.
Stain-resistance may be determined, if desired, by any of a number of published tests, but herein, stain-resistance levels are measured according to Stain Test 1, unless stated otherwise Generally, the starting carpet (i e, the carpet before treatment) will be treated because it is considered to have insufficient stain-resistance As will be shown hereinafter, however, detergent-cleaning and wear can reduce the stain-resistance of a carpet, at least so far as the durability of the stain-resistance is concerned Accordingly, even if a starting carpet already passes a recognized test for stain-resistance, an improvement in stain-resistance, at least in the sense of the durability of the stain-resistance, may be obtained by in-place treatment with stain-blocker as described herein (it being understood, however, that it may be undesirable to build up too much coating of stain-blocker, e g for aesthetic reasons) However, for most purposes, according to the present invention, since a starting carpet will generally have inadequate stain-resistance, as can be shown by a stain-rating of 4 or less (as described hereinafter with regard to Stain Test 1, with staining for minutes) a significant improvement in stain-resistance can be demonstrated for the purposes of the present invention by improvement from such a stain-rating of 4, to a stain-rating of 5 As will be shown in some Examples, however, it is possible to improve carpets by using the process of the invention from even lower starting stain- ratings, and such more effective treatments are generally preferred For instance, a much improved stain-resistance can be shown using a longer staining time of 24 hours for Stain Test 1, and improving from a stain-rating of 4 to 5, and treatments to obtain this are preferred Once appropriate treatment conditions have been established for any particular type of carpet, using as starting carpet a sample having a low stain-rating, and improving to the desired high stain-rating, preferably of 5, and thus determining that a significant improvement in (or much improved) stain-resistance is obtainable using such conditions, including the amounts of stain-blocker and conditions for that particular type of carpet, equivalent treatment conditions may be applied, according to the invention, including to starting carpets having a higher stain-rating, and even a stain-rating or 5, so as to improve the durability of the stain-resistance by treatment according to the invention Thus, as indicated, although other staining tests may be perfectly satisfactory, and even preferred by some operators or for certain purposes, for ease of understanding and consistency throughout the remainder of this specification, it will be understood that references to stain-ratings herein will be to this Stain Test 1.
STATX TEST 1 In this standardized Stain Test 1, each carpet specimen is first stained and then spot cleaned by hand in an attempt to remove the stain, and the various samples are then compared As will be apparent, essentially the same procedure is used, but the duration of the staining period may be increased so as to increase the severity of the staining test The staining agent is cherry-flavored, sugar-sweetened Kool-Aidt (sold commercially), mixed in amount 45 gms ( 1) of Kool-Aide in 500 ccs water, and allowed to reach room temperature, i e, 750 F ( 5) or 240 C ( 3), before using.
The specimen is placed on a flat non-absorbent surface, 20 ml of Kool-Aidg are poured onto the carpet specimen from a height of 12 inches ( 30 cm) above the carpet surface, and the specimen is then left undisturbed for a staining period that may be, e g, 5 min, 30 min.
or 24 hours, according to the desired severity of the test (Although the 5 min staining period is not referred to in the Examples herein, earlier tests have used a staining period as short as this) Excess stain is blotted with a clean white cloth or clean white paper towel or scooped up as much as possible, without scrubbing Blotting is always performed from the outer edge of spill in towards the middle to keep the spill from spreading Cold water is applied with a clean white cloth or a sponge over the stained area, gently rubbing against the pile from left to right and then reversing the direction from right to left The excess is blotted.
A detergent cleaning solution ( 15 gms ( 1) of TIDE detergent mixed in 1000 cc of water, and also allowed to reach room temperature before using), is applied with a clean white cloth or a sponge directly to the spot, gently rubbing the pile from left to right and then reversing the direction from right to left The entire stain is treated, all the way to the bottom of the pile, and then the blotting is repeated.
The cold water treatment is repeated, and the carpet is blotted thoroughly, to remove the stain and also the cleaning solution, so the carpet does not feel sticky or soapy.
The cold water and detergent cleaning steps are repeated until the stain is no longer visible, or no further progress can be achieved The carpet is blotted completely to absorb all the moisture.
The stain-resistance of the carpet is visually determined by the amount of color left in the stained area of the carpet after this cleaning treatment This is referred to as the stain-rating, and is herein determined according to the Stain Rating Scale (that is illustrated in the Figure, being a photograph of a Stain Rating Scale) that is currently used by and available from the Carpet Fibers Division of E I du Pont de Nemours and Company, Wilmington, Delaware 19898 These colors can be categorized according to the following standards:
no staining 4 slight staining 3 noticeable staining 2 considerable staining 1 heavy staining In other words, a stain-rating of 5 is excellent, showing excellent stain-resistance, whereas 1 is a bad rating, showing persistence of heavy staining.
As will be understood, and shown hereinafter in the Examples, even an improvement in stain-rating from 1 to 3 (after a 30 min staining period) shows a significant increase in stain-resistance As can be seen from the Stain Rating Scale, a dramatic difference in color is shown by changes in stain-rating at these low levels, while it is recognized that it is generally more difficult to improve stain-ratings above 4.
Suitable stain-blockers that may be used according to the invention include those described in Blyth et al, U S Patent No 4,680,212, and the sulfonated condensation products described (as stain- resist agents) in Greschler et al, EP Al 0235 989, and the improved materials, being acetylated or etherified sulfonated phenol-formaldehyde condensation products referred to in EP Al 0235 980, published September 9, 1987, and corresponding to copending Application S N 943,335, filed December 31, 1986, in the name of Liss (directed to synthetic polyamide textile substrates, such as carpeting, treated with such improved condensation products, so as to impart stain-resistance to the substrate without suffering from a yellowing problem associated with prior art materials) and also the compositions listed in U S Applications (Serial No 07/136,033 and Serial No 07/136,038), filed simultaneously with the priority U S application (Serial No 07/136,035), all of which are hereby included by reference herein To avoid any misunderstanding, a staining agent itself is not regarded as a "stain-blocker" (as the term is used herein) as the objective is to achieve stain-resistance and to avoid or minimize color changes in the carpet, as a result of treatments according to the invention Copies of USSN's 07/136,033 and 07/136,038 are contained in the file of this Application.
As indicated in the Background above, and in the prior art referred to, the term stain-resist agent has sometimes been used broadly to include fluorochemicals that should be and are herein more correctly described as soil-resist agents, whereas the term stain-blocker has been and is herein used more narrowly to exclude soil- resist agents that do not have the capability of resisting staining by red food dyes such as found in Kool-Aid T, e g.
Red Dye No 40.
In addition to treatment of the installed nylon carpet with a stain-blocker, in accordance with the present invention, the durability of the stain-resistance may be improved by treatment of the installed carpet with a compound to improve the anti-soiling characteristic, especially a fluorochemical (sometimes referred to as a stain-resist agent) as described in Blyth et al, U S.
Patent No 4,680,212 and herein, and in the other references that are mentioned herein, and that are incorporated herein.
As described herein, and more particularly in the Examples, different materials may be applied in combination, being applied from a common aqueous or other carrier, or separately.
As described more particularly hereinafter, in the Examples, the efficacy of the stain-resistance that is imparted is generally improved by improving the overall distribution and opportunity for contact between the nylon fibers and the materials applied, especially by achieving thorough and essentially uniform overall wetting of the nylon fibers, especially reaching down to impart stain- resistance to the base of the pile fiber, as far as will be visible, during normal wear, and when the pile fibers are parted for any reason This is generally and most conveniently achieved by applying an aqueous detergent solution to achieve the desired objective of overall and thorough wetting of the nylon pile fibers, and preferably by mechanical working to improve contact, distribution and penetration, e g, by a pile brush operated by hand or automatically, for instance using a cleaning device such as may be available commercially Application of a detergent solution may conveniently be achieved by first cleaning the carpet, e g, using a cleaning machine that is commercially available with a detergent that is sold for such purpose, especially if the carpet is initially in soiled condition, and then, while the carpet fibers are still in moist condition, the stain-blocker (and fluorochemical soil-resist agent, if desired) may be arpkp' d a preferably worked into the carpet However, as indicated hereinafter, good results have also been achieved by applying the stain-blocker together with a detergent.
S As indicated, it will generally be desirable to apply materials in such way as to avoid or minimize shade changes and spotty results, such as would result from inappropriate and/or uneven application However, as indicated elsewhere, spot cleaning or other topical-type cleaning can reduce the stain-resistance that has already been imparted to nylon fibers, and so can remove some of the effectiveness of any existing stain-blocker on the fibers, and this may make it desirable to apply spot or other topical applications to achieve as uniform and overall result as possible on the installed carpet It will be understood that the term overall is used herein in contrast to spot or localized applications.
An essential feature of the present invention, as it will be applied in commercial practice, is treatment of the installed carpet in place, i e, without removal of the carpeting from the floor or whatever location is normal (although it will be understood that, for testing purposes, e g, in the laboratory, carpets and samples of carpeting can and will be treated in other locations), as opposed to treatment of a carpet (or precursor nylon fiber or even polymer) by a stain-blocker by immersion or otherwise during a manufacturing process Accordingly, depending on the location of the installed carpet, and the surrounding environment, it will generally be desirable to use appropriate conditions and precautions, e g, limiting the amount of water, since drying of the treated carpet will generally not be so easily achievable as during a manufacturing process However, an advantage of treatment of an installed carpet is that (depending on the convenience of the owner of the carpet) the stain-blocker may be left in contact with the nylon fibers for a longer period, overnight, or even over a weekend, than would be practical in most manufacturing processes This feature means that some limitations that may have been applicable in practice to limit the use of potential known dye-resist agents (as potential stain-blockers) may not apply for use according to the present invention, and broadens the scope of applicability of the present invention to other stain- blockers that have not been used hitherto in the manufacturing process It is of the essence of the present invention that the treated carpet cannot be dried in an oven, as have been the case after application of stain-blockers in a manufacturing process Accordingly, the treated carpet is allowed to dry in the air, but it will generally be preferable to assist the drying of the treated carpet by blowing hot air through the pile of the installed carpet As indicated, it will generally be desirable to allow the stain-blocker to remain in contact with the nylon fibers in moist condition for several hours, e g, at least six hours, and preferably overnight, before completing the drying of the treated carpet, e g, by blowing hot air.
As can be seen from the Examples herein, significant improvements in stain-resistance have been obtained according to the invention by treatment with stain-blocker at normal to alkaline p H values, e g, from p H values of about 7 up to about 11 This is contrary to what has been indicated in the art, where emphasis has been on the advantages of applying stain-blockers under acidic conditions, and usually at p H values of less than 5, and sometimes at acidic p H values much less than 5.
Although it may be possible to treat the carpets at such acidic p H values, depending on the environment of the installed carpets, the treatment step according to the present invention will generally be preferably carried out at p H values that are not too far from normal, e g, from about 4 to about 11, even though a value of about 6 or mu Lte is generally to be preferred over more acid p H values.
Additional processes of this invention relate to the application of anti-microbial agents and/or deodorizers to in-place nylon carpets followed by the application of a stain-blocker, optionally in combinationwith a soil-resist agent such as a fluorochemical Many anti-microbial agents, including common household disinfectants, and deodorizers, when applied to nylon carpets, destroy or significantly neutralize any stain-resistance the carpet may have had The subsequent application of a stain-blocker renews the stain-resistance of the carpet or imparts such properties to carpets never previously having been stain-resistant.
The term "anti-microbial", as used herein, refers to broad spectrum agents which are active against most bacteria, against insects, fungi and odors caused by bacteria and germs The term also encompasses common mildewcides, disinfectants, bactericides, fungicides and insecticides Such compounds may be classified either as "non-residual", most commonly quaternary ammonium compounds which kill on contact and have no residual effect, or as "residual" agents which do remain active for a finite period of time after application Both classes of compounds generally rely upon cationic active ingredients; thus when they are applied to a nylon carpet whose fibers have previously been treated with stain- blockers which are anionic in nature, the stain-resistance is largely neutralized Anti-microbial agents are typically applied to nylon carpets either topically or by injection through the carpet-backing (In the latter case, the carpet is first lifted from the underpad in the area where the agent is to be injected) Anti-microbials are commonly used on carpets as disinfectants to kill bacteria or other targets introduced into the carpet by a wide variety of sources, including, for example, water damage, sewer back-up, uncleaned spills, pet excretions, etc.
The term "deodorizer" or "deodorizing agent", as used herein, refers either to compounds containing merely a perfume or a similar substance used to mask odors or to an active material which usually is comprised of both an odor masker and a small amount of one or more anti- microbial agents, typically a disinfectant Deodorizers too particularly cationic and some nonionic types have a neutralizing effect on stain-resistance.
I have now found that in-place nylon carpets may be disinfected and imparted with stain-resistance by first wetting the carpet, applying an anti-microbial agent to the carpet, and then, while the carpet is still moist, applying a stain-blocker to the pile fibers in sufficient amount and in such manner as to obtain significant improvement in stain-resistance, following which application the carpet is allowed to dry in the atmosphere.
Similarly, in-place nylon carpets, the fibers of which have previously been treated with a stain-blocker, may be disinfected and imparted once again with stain- resistance by first wetting the carpet, applying an anti- microbial agent, then, while the carpet is still moist, applying a stain-blocker, which is mechanically worked into the nylon fibers of the pile of the carpet so as to improve the distribution and contact between the stain- blocker and the nylon fibers of the pile of the carpet, the stain-blocker being applied in sufficient amount and in such manner as to obtain a significant improvement in stain-resistance The carpet, thus treated, is-then allowed to air-dry.
The process may optionally be modified by applying an aqueous mixture of a soil-resist agent (such as a fluorochemical) and a stain-blocker in place of the stain-blocker alone, or by applying the soil-resist agent and the stain-blocker to the carpet separately.
In all these processes a quantity of anti- microbial agent sufficient to disinfect the area of the carpet being treated should be used, and the agent should be applied in accordance with the manufacturer's recommendations.
The wetting step described above serves to promote effective distribution of both the anti-microbial agent and the stain-blocker Wetting is preferably achieved by steam-cleaning, though other means such as wet-vacuuming, shampooing or simply applying water may also be used In the event the carpet to be treated is already wet or moist as, for example, from water damage, the wetting step may be omitted.
Alternative processes involving the application of the anti-microbial agent prior to or simultaneously with the wetting or steam-cleaning of the carpet are also effective.
To both deodorize and impart stain-resistance to an in-place nylon carpet, an aqueous solution of a stain- blocker and a deodorizing agent is applied to the carpet, the pile fibers are mechanically worked so as to improve the distribution and contact between the stain-blocker and the nylon fibers of the pile, the stain-blocker being applied in sufficient amount and in such manner as to obtain a significant improvement in stain-resistance.
Finally, the carpet is allowed to air-dry.
It should be noted that in this process the deodorizer serves only to mask odors To be effective as a disinfectant, any cationic active ingredient found in the deodorizing agent would have to be applied prior to the stain-blocker.
Just as with anti-microbials, deodorizers should be applied in accordance with manufacturer's rc:smmendations and in sufficient quantities to deodorize the area of the carpet being treated.
Just as many anti-microbial and deodorizing agents serve to reduce stain-resistance, other treatments may have a similar deleterious effect Examples of such treatments include re-dyeing of an in-place carpet, application of high p H ( 10 or more) pre-sprays used to quickly neutralize highly soiled areas, use of some silicone-containing soil-resist agents, and use of certain insecticides In each of these cases, I have been able to attain a significant improvement in the stain-resistance of such carpets after any such treatment With respect to dyeing, the improvement can be attained whether the carpet is first redyed and then treated with the stain-blocker or alternatively if the stain-blocker is mixed with the dye and applied simultaneously.
In all these cases, as with the processes for disinfecting or deodorizing the carpet prior to imparting stain-resistance, the preferred classes of stain-blockers are sulfonated phenol-formaldehyde condensate polymers, sulfonated naphthol-formaldehyde condensate polymers or hydrolyzed vinyl aromatic-maleic anhydride polymers.
Combinations of any two or more of these stain-blockers may also be used.
The invention is further illustrated in the following Examples, in which all parts and percentages are by weight, o w f is estimated weight of indicated active ingredient on weight of (nylon face) fiber, and the nylon is 66 nylon, unless otherwise indicated, and approximate metric equivalents are given.
EXAMPLE I
A bcf (bulked continuous filament) nylon 1110-68 yarn, i e 1110 denier ( 1235 dtex) and 68 filaments (of trilobal cross-section), was produced by a conventional process Two of these yarns were plied and twisted to produce a yarn having a balanced twist of 4 5 tpi (turns r-r irn'-h 1 8 turns per cm) The resulting yarn was then heat-set at 2700 F ( 1320 C) in a Superba heat-setting machine A cut pile tufted carpet was constructed from the heat-set yarn and a conventional polypropylene primary backing to the following specifications: 42 oz/sq yd;
1/2 inch pile height; 1/10 gauge; 31 stitch rate per 3 inches ( 1 4 Kg/sq m; 13 mm; 1/4 cm; 41/100 cm) This carpet was dyed (to a light beige shade) and finished, using a conventional batch dye process, dye auxilliaries and the following dye formula, based on weight of carpet, 0.011 % C I Acid Yellow 219, 0 0094 % C I Acid Red 361, 0.008 % C I Acid Blue 277 at a p H of 6 5 After dyeing, this carpet was rinsed A commercial fluorochemical (equivalent to cationic version of Teflon' Toughcoat, available from E I du Pont de Nemours and Company, Wilmington, Delaware 19898, was applied ( 0 9 % o w f) in a conventional spray application, and the carpet was dried in an oven A commercially available latex composition (Textile Rubber Co, Calhoun, GA) was applied as a carpet backing adhesive, with a secondary polypropylene backing under the Tradename Actionbac (Amoco, Atlanta, GA).
This "finished carpet" with latex and secondary backing was then used as a specimen for "in place" treatment with a stain-blocker A 20 g/l solution of an acetylated Mesitol NBS solution as referred to in copending EP-A-0 235 980 mentioned above, was used for the stain-blocker solution (adjusted to p H 5 0 with citric acid) and was uniformily applied at approximately 0 5 % of active stain resist o w f by spraying at room temperature (using a Sears brand, 2 gallon (about 7 5 liter) capacity open top sprayer).
The sprayed mixture was worked into the pile fiber using a pile brush The treated carpet was allowed to dry at room temperature.
Samples of the dried carpet were then tested by staining for 30 min, using Kool-Aids, according to Stain Test 1 Untreated (control) samples of the same carpet, (i.e, without the stain-blocker treatment) were also tested, for comparative purposes The treated carpet samples showed only a noticeable pink stain on the fiber, after cleaning, i e a stain-rating of 3, in contrast to dark red staining (i e a stain-rating of 1) on the untreated carpet samples Although even this stain-rating ( 3) would not be acceptable for this half inch pile carpet, there was significant improvement in stain- resistance, in comparison with the rating ( 1) for the untreated carpet, and it will be understood that by changing the treatment conditions for the same carpet, or by applying the same treatment to a different carpet (e.g, with a less dense, shorter pile, Suessen set, staple carpet, providing greater accessibility for the stain-blocker), more effective stain-blocking can be expected, and obtained, as will be seen hereinafter.
A similar result has been obtained by using Mesitol NBS solution itself, i e the non-acetylated material, in similar amounts and under similar conditions.
EXAMPLE II
This carpet was similar to that in Example I, except that the yarn was 3 Os ( 5 1 m/g) cotton count, 3 8 tpi ( 1 5 turns per cm) and Suessen set at 2001 C, and the carpet was 45 oz/sq yd ( 1 5 Kg/sq m) and 24 stitches per 3 inches ( 31/10 cm), and Scotchgard Fluorochemical FC 393 was applied instead of the fluorochemical used in Example I When this carpet was treated with the same stain-blocker and tested under similar conditions as in Example I, it gave only a slight pink stain (rating 4), in contrast to the dark red staining for the untreated carpet.
EXAMPLE III
A sample of the finished carpet, as prepared in Example II, was placed on a padding material (metrix 100, prime urethane carpet cushion of 1/4 inch ( 6 mm) thickness, sold by General Felt Industries & Co) to simulate the conditions of a typical carpet "in place", for in-home use, and then cleaned with 4 passes of a Chemco brand soil extractor model 60 DM, (available from Accommodation Sanitary Supply Co, Philadelphia, PA) using Spartan X-Traction II detergent solution (a standard detergent composition also available from Accommodation Sanitary Supply Co) diluted 1:53 in room temperature water The damp carpet (estimated 10-20 % moisture level) was then sprayed with a mixture containing Teflonc MF (Du Pont brand fluorochemical): acetylated Mesitol NBS, as in Example I: water in 1:1:15 proportions at a p H of 5.0 using a pressurized sprayer, 2 gallon ( 7 5 liters) capacity (brand name Aconoline, sold by B & G Equipment Co) in approximate amount of active stain resist estimated to be 1 % o w f The sprayed mixture was then worked into the pile fiber using a pile brush as in Example I The treated carpet was allowed to dry in air and then stain tested as described in Example I, except that the staining solution remained for 24 hours before cleaning The treated carpet showed no visible stain (stain-rating of 5) compared to untreated carpet (a dark red stain with a stain-rating of 1).
This Example shows the improved effect achieved by uniform distribution of stain resist throughout the pile fiber by spraying the carpet while still moist after detergent-cleaning.
EXAMPLE IV
This is similar to Example III, except that 8 cleaning passes were performed with the Chemco soil extractor, the cleaning detergent solution consisted of 1 part of the Spartan X-Traction II detergent mixed with 0 2 parts of the same stain-blocker as in Example I, with a resultant p H of 7 5, and the approximate amount of active stain resist was estimated to be 0 8 % o w f This treated carpet showed no visible stain (stain rating of 5) cd to untreated carpet (a dark stain with a stain rating of 1).
This Example shows effective distribution of a stain-blocker throughout the pile fiber by cleaning a carpet with a detergent solution containing the stain- blocker.
EXAMPLE V
A commercial or contract type carpet was used instead of the residential carpet constructions in the earlier Examples Du Pont Antron XL, 1280 denier ( 1420 dtex) fiber with a hollow cross-section was used for this carpet The construction specifications were oz/sq yd ( 1 4 Kg/sq m), 5/16 inch ( 8 mm) pile height, dyed to earth-tone beige color, using leveling acid dyes followed by the same fluorochemical as in Example I The carpet was then latexed and glued down on a linoleum padding The carpet was placed in a corridor and subjected to wear for 178,000 foot traffic cycles The carpet was then cleaned with Clarke's heavy duty steam extraction unit model Ext-20 (available from Advance Paper Co., Wilmington, DE) and dried at room temperature The dried carpet was then sprayed with the same stain-resist solution at room temperature in the same way as explained in Example I, except the active stain resist was approximately 1 7 % o w f, the sprayed mixture being worked in using a pile brush Samples of the dried carpet were then stained for 30 min by Stain Test 1 The treated carpet showed no stain (stain-rating of 5) compared to untreated carpet (a dark stain with a stain- rating of 1).
EXAMPLE VI
The starting carpet was a finished carpet (nylon staple cut pile, 40 oz/sq yd, ( 1 4 Kg/sq m) 1/2 inch ( 13 mm) pile height, beck dyed to light beige shade, latexed and secondary backed) that had already been ll I 1-processed with an effective amount of the stain- blocker used in Example I during manufacturing, and had been stain tested using Stain Test 1 ( 24 hours) to show a visual stain-rating of 5 This carpet was then subjected to 344,000 foot traffic cycles.
The trafficked carpet was cleaned using a detergent and a Stanley Steemer (Dublin, Ohio) truck mount unit and some of this was dried The dried carpet was stained for 24 hours and cleaned using Stain Test 1, and now showed noticeable staining (visual stain-rating of 3).
Part of the carpet that was cleaned, but which was still partially damp (estimated to be about 10 % moisture level) was oversprayed with the same stain- blocker as in Example I, in a detergent solution (Stanley Steemer #S 576, a standard anionic detergent) at a p H of 7.8 (to a concentration of about 0 4 % o w f active stain-resist), followed by Teflong MF fluorocarbon spray application The sprayer used in this case was a 2 gallon capacity can with Spray System Tip TEEJET 8004 (Spraying System of Almoca Corp, Wynnewood, PA), 40-60 psi and an application height of 12-19 inches above the carpet, 2 passes, one in each direction This treated carpet was air-dried at room temperature and then stain-tested for 24 hours using Stain Test 1 The carpet showed no visible stain with a stain-rating of 5.
This Example shows that a stain-blocked carpet with a stain performance that has been reduced (stain- rating of 3) because of detergent-cleaning and trafficking, can be restored to its original stain- performance (stain-rating 5) with an in-place treatment as described above.
EXAMPLE VII
A 15 dpf, trilobal cross-section, staple nylon 66 was produced by a conventional process The yarn was prepared as 3 S cotton count, 2 ply balanced twist of 4 turns per inch and Suessen heat set ( 2000 C) The carpet was constructed with the following specifications:
1/10 inch gauge, 46 oz/sq yd, 1/2 inch pile height, beck dyed to a light beige shade with the standard dyeing auxilliaries and level acid dyes After dyeing, the carpet was treated in a bath containing 2 5 % o w f of the same stain-blocker as in Example I at 170 IF for 20 min at approximately 20:1 liquor ratio The carpet was then rinsed, topically treated with a cationic dispersion of the fluorochemical described in Example 6 of EP A 2 172,717, and dried, latexed, cured and tip sheared.
The carpet was stain-tested for 24 hours using Stain Test 1 and visually rated a stain-rating of 5 Half this cleaned carpet was re-tested by restaining on part of the same spot for 30 minutes using Stain Test 1 The stain- rating was now slight staining (i e, a rating of 4) The remaining half of the carpet was sprayed with the same stain-blocker as in Example I at 0 16 % o w f, and allowed to dry at room temperature This treated carpet was then stain-tested similarly for 30 minutes using Stain Test 1, to give a stain-rating now of 5 again.
This Example shows that a sample with a reduced stain-performance, because of detergent-cleaning, can be restored to its earlier stain-performance by an in-place treatment.
EXAMPLE VIII
A stain-resist-treated, cut pile saxony carpet was produced from a 13 dpf, bcf, trilobal cross-section ( 1107 total denier) Superba heat set yarn The latexed and finished carpet with a secondary polypropylene backing was tested per Stain Test 2 (described below) and was found to have an inadequate stain rating of only 2-3, indicating that the stain-resist-treatment was not satisfactory The carpet was cleaned with a Chemco brand soil extractor model 60 DM ( 1 pass) with a 1:100 diluted shampoo blend (as disclosed in Example 2 of U S.
application (Serial No 07/136,033), and referred to above, at a p H of 7 7 followed Dy an overspray of a mixture of the 80:20 hydrolyzed styrene/maleic anhydride polymer: acetylated Mesitol NBS, as described in Example 1 of the same U S.
application (Serial No 07/136,033): Teflont MF: water in 1:1:46 proportions ( 2 passes) The carpet was treated in this manner "in place" at room temperature and was allowed to dry at room temperature This dried treated carpet showed no visible stain (stain-rating of 5) when tested by Stain Test 2 ( 24 hours).
The carpet can be treated in this manner by multiple passes, with such a diluted shampoo, followed by an overspray, as described, to improve the stain-rating of a wide range of inadequately stain-resist-treated, or untreated carpets.
STAIN TEST 2 A 6 inch x 6 inch ( 15 cm x 15 cm) specimen of carpet is placed on a flat non-absorbent surface 20 ml of the Kool-Aids solution prepared as for Stain Test 1 described herein is applied to the specimen of carpet by placing a 1-1/2 inch 2 inch ( 3 8 cm 5 1 cm) cylinder tightly over the specimen and pouring the Kool-Aid O solution into the cylinder to contact the carpet specimen thereby forming a circular stain The cylinder is then removed and excess Kool-Aidt solution is worked into the carpet tufts to achieve uniform staining The stained carpet specimen is left undisturbed for 24 + 4 hours, after which it is rinsed thoroughly with cool water, squeezed dry, and excess solution removed The specimens are inspected and evaluated according to the same rating standards as described hereinabove for Stain Test 1.
EXAMPLE IX
This Example illustrates a preferred procedure for treating soiled carpets 'in place", regardless whether they may or may not have been first cleaned with an anionic shampoo, which may or may not have contained a stain-resist agent, such carpet having been soiled or trafficked as may happen in normal residential use.
A beige-colored, mill-processes, latexed and secondary backed carpet was made from bcf 2-ply Superba heat set and 38 oz/sq yd ( 1 3 Kg/sq m) with a finished pile height of about 7/16 inches ( 11 mm) The carpet was stained using Stain Test 2 and was found to have a stain- rating of 1-2 The carpet was cleaned with a Stanley Steemer truck mount unit ( 4 passes) using Stanley Steemer #S 576 brand shampoo (p H 8 8) The cleaned carpet was then further cleaned using the same shampoo blend as in Example VIII, but with a final dilution of 1:150 in water and 4 passes, followed by an overspray ( 2 passes) of the same blend as in Example VIII: Teflonv MF: Water in the same 1:1:46 proportions The carpet was allowed to dry at room temperature This dried treated carpet showed no visible stain (stain-rating of 5) when tested by Stain Test 2 ( 24 hours).
EXAMPLE X
A carpet as described in Example IX has also first been cleaned with a commercial shampoo (predominantly anionic, without cationic materials) and then followed by either ( 1) cleaning with the same shampoo blend and an overspray as described in Example IX or ( 2) just the overspray as described in Example IX (but with multiple passes, instead of only 2 passes), or ( 3) cleaning with anionic shampoo materials containing the stain-blocker, to give satisfactory high stain-ratings.
As indicated, nylon 6 has a greater affinity for many dyestuffs than nylon 66 This means that, for a nylon 6 carpet, a greater amount of stain-blocker may generally have to be used to obtain equivalent improvement in stain-resistance (equivalent to that obtained as shown herein for nylon 66 carpets), or more passes (repeats of the application treatment) may have to be used This means that more coating may build up on the nylon fiber, and may affect (adversely) the aesthetics of the carpet and face fiber Accordingly, the treatment of the invention is preferably applied to carpets whose fiber has already received treatment with stain-blocker during manufacture of the carpet and/or fiber, especially, as indicated, for nylon 6.
EXAMPLE XI
Four commercially available, stain-resistant nylon carpet samples were used for this experiment These were:
Carpet #1 nylon 66 staple, 36 oz/sq yd, light beige shade, sulfonated phenol formaldehyde condensate applied by carpet mill as a stain-blocker.
Carpet #2 nylon 66 staple, 35 oz/sq yd, beige shade, stain-blocker (type not known) applied by fiber producer.
Carpet #3 nylon 6 bulked continuous filament, oz/sg yd, light beige shade, stain-blocker (type not known) applied by carpet mill.
Carpet #4 nylon 6 staple, 35 oz/sq yd, light beige shade, stain-blocker (type not known) applied by carpet mill.
Treatment A Samples of each of the above carpets were steam cleaned, dried, and stained with Kool-Aidt using Stain Test 2 as described above After 24 hours each was stain- rated.
Treatment B A second sample of each of the above carpets was steam cleaned, and, while the fibers were still in moist condition, was topically oversprayed with an antimicrobial known as Microban X-5800 manufactured by Microban Germicide Co, P O box 777, Braddock, PA 15104.
Microban X-5800 is described as a broad spectrum disinfectant useful against most bacteria, insects, fungus and odors caused by bacteria and germs (The composition of Microban X-580 À is said to be isopropyl alcohol 25 0 %, para-di-iso-butyl-phenoxyethoxyethyl-dimethylbenzylammonium-o-phenylphenate bromine complex 0 852 %, n-octylbi-cycloheptane-di-carboxyimide 0 4 %, piperonyl butoxide 0 2 %, pyrethrins 0 1 %, and inert ingredients 73 448 %) The same model two gallon ( 7 5 liter) capacity pressurized sprayer used in Example III was used for this overspray application The anti-microbial agent was applied in accordance with the manufacturer's recommended procedures, and the sprayed mixture was then worked into the pile fiber using a pile brush The treated samples were allowed to air dry and then stain-tested as per Stain Test 2.
Treatment C i 5 A third sample of each of the above carpets was steam cleaned and sprayed with the antimicrobial Microban X-580 c as per Treatment B Fifteen minutes following this treatment, while the carpets were still in a moist condition, the samples were oversprayed with a mixture containing Intratex 306, Teflon MFóand water in 2 24:1:30 (by volume) proportion: Intratex 30 À is a commercial sulfonated phenol formaldehyde condensate sold by Crompton & Knowles Corporation Teflon MF is an anionic fluorochemical manufactured by E I du Pont de Nemours and Company The estimated amount of active stain-resist was 0 4 % owf The oversprayed mixture was then worked into the pile fiber and air-dried samples were stain- tested, as per Stain Test 2.
The stain results for the above treatments were as follows:
STAIN-RATING Treatment A Treatment B Treatment C Carpet #1 4-5 3-2 5 Carpet #2 4 3 5 Carpet #3 3 1-2 3-4 Carpet #4 4 1 4 EXAMPLE XII
Treatment A A commercially-available, bulked continuous filament 36 oz /sq yd nylon carpet, (light beige shade) was tested using Stain Test 2 and found to have a stain rating of 5.
Treatment B A second sample of the same carpet was cleaned with Sear's detergent (Cleanmoret Carpet Cleaner #1) in accordance with the manufacturer's recommended procedures, and, while still in a moist condition, the carpet was oversprayed with Microban X-5806 using a Prevalt spray unit (Precision Valve Corp, Yonkers, NY 10702) The antimicrobial agent was worked-in using a hand-held pile brush, and the sample was allowed to air dry The dried sample was then stain-tested as per Stain Test 2 and found to have a stain-rating of 3-4, showing a deterioration in stain performance following treatment with an antimicrobial.
Treatment C A third sample of the same carpet was steam- cleaned and oversprayed with Microban X-580 e antimicrobial as per Treatment B of this Example, except that the sprayed sample was allowed to air-dry for 3 hours and was then washed with cold tap water and again air-dried The sample was then stained per Stain Test 2 and found to have a stain rating of 3-4 indicating that no difference in stain performance is obtained merely by washing the sample with tap water.
Treatment D A fourth sample of the same carpet was steam- cleaned and oversprayed with Microban X-5800 antimicrobial as per Treatment B of this Example Fifteen minutes following this treatment, while the fibers were still in a moist condition, the sample was oversprayed with the same mixture as described in Treatment C of Example XI The dried sample was then tested as per Stain Test 2 and found to have a stain-rating of 5.
EXAMPLE XIII
Two commercially-available, bulked continuous filament nylon carpet samples were used for this experiment: a 42 oz/sq yd carpet and a 37 oz/sq yd carpet, both in light beige shade These carpets were stain tested using Stain Test 2 and found to have a stain rating of 5 Two deodorizing agents were selected to demonstrate the effect on stain performance of these carpets: Agent #1, a scented disinfectant containing the active ingredients o-phenylphenol 2 8 % and benzyl-o- chlorophenol 2 7 % and Agent #2, a lemon scented deodorizer containing the cationic disinfectant alkyl dimethyl benzyl ammonium chloride with a dye and fragrance.
Treatment A Diluted aqueous solutions ( 2 fluid oz/gallon) of each of the above deodorizers were prepared, and 20 ccs of each of these diluted solutions were poured on different samples of each of the carpets using the same technique as described in Stain Test 2 After 15 minutes, the solution was thoroughly blotted and wet-vacuumed so the four carpet samples were almost dry The samples were then stained on the same spot with Kool-Aide as per Stain Test 2 Both carpets (all four samples) showed heavy staining with a stain rating of 2.
Treatment B Solution A a 10 % aqueous solution was prepared from an 80/20 mixture of hydrolyzed styrene/maleic anhydride polymer and acetylated Mesitol NBS, as described in Example 1 of copending application Serial No 07/136,033.
Solution B 1 part of an anionic fluorochemical was diluted with 15 parts of water.
Solution C 50/50 volumetric mixture of solution A and B. Solution D 15 ccs of diluted Agent i 1 ( 2 fluid oz/gallon of water) and 5 ccs of solution C.
Solution E 15 ccs of diluted Agent #2 ( 2 fluid oz/gallon of water) and 5ccs of solution C.
Solutions D and E were separately applied to samples of both carpets using the same technique as described in Treatment A of this Example and stain-tested using Stain Test 2 Both carpets (all four samples) had the fragrance of the deodorizer and showed no visible staining with a stain-rating of 5 Thus this Example demonstrates that an improvement in stain-resistance can be effectively achieved by combining a cationic deodorizers containing germicidal disinfectants with a stain (and soil-) resist agent, although as previously described a soil-resist chemical is not necessary to obtain stain improvement.
Claims (42)
1 A process of imparting stain-resistance to an installed nylon carpet by a process that includes the steps of treating the installed nylon carpet by applying thereto a stain-blocker in sufficient amount and in such manner as to obtain a significant improvement in stain- resistance, and of allowing the treated carpet to dry in the atmosphere.
2 A process according to Claim 1, wherein the nylon carpet consists essentially of nylon fiber tufted through a primary backing, and wherein the backing also comprises a secondary backing, and the backings are secured by an adhesive composition.
3 A process according to Claim 1, wherein the nylon carpet consists essentially of nylon fiber tufted through a primary backing, and wherein the backing also comprises a secondary backing, and wherein the secondary backing is a layer of foam attached to the primary backing.
4 A process according to Claim-l, 2 or 3, wherein the nylon carpet is installed with an underpad.
A process according to Claim 1, 2, 3 or 4, wherein the nylon carpet has a pile height of about 1/4-inch or more.
6 A process according to Claim 1, 2, 3 or 4, wherein the nylon carpet has a pile height of about 1/2-inch or more.
7 A process according to any one of Claims 1 to 6 wherein the nylon carpet is of a loop-pile construction.
8 A process according to any one of Claims 1 to 7 wherein nylon 66 polymer is used for the nylon fiber in the nylon carpet of Claims 1 to 8
9 A process according to any one / wherein the stain-blocker is applied overall to the nylon carpet.
10 A process according to any one of Claim 1 to 9 wherein the installed nylon carpet is treated by applying tnerero an aqueous solution of a detergent to achieve thorough wetting of the nylon fiber in the pile of the carpet, and is treated with the stain-blocker while the nylon fiber is wetted.
11 A process according to Claim 10, wherein the aqueous solution of detergent is applied to the installed nylon carpet simultaneously with the stain-blocker.
12 A process according to Claim 10, wherein the aqueous solution of detergent is applied to the installed nylon carpet before applying the stain-blocker.
13 A process according toany one of Clas 1 to 12 wherein the installed nylon carpet is first cleaned, and is then treated with the stain-blocker while in moist condition.
14 A process according to Claim 13, wherein the nylon fiber, whether in the form of polymer, fiber or carpet, has already been treated with a stain-blocker, prior to the process of treating the installed nylon carpet with the stain-blocker according to the process of any one of Claim 1 to 13.
A process according toany one of Claims 1 to 14 wherein the step of treating the installed nylon carpet with the stain-blocker is performed by overall spraying the installed nylon carpet with the stain-blocker when the nylon fiber of the pile of the nylon carpet is in moist condition.
16 A process according to any one of Claims 1 to 15 wherein the step of treating the installed nylon carpet with the stain-blocker includes mechanical working of the nylon fiber of the pile of the installed nylon carpet, so as to improve the distribution and contact between the stain-blocker and the nylon fiber of the pile of the nylon carpet.
17 A process according to any one of Claims I to 16 wherein the drying of the treated carpet is assisted by blnwina hot air onto the pile of the installed nylon carpet.
18 A process according to Claim 17, wherein at least about six hours delay is observed between the step of applying the stain-blocker to the installed nylon carpet and a step of blowing hot air to complete the drying of the nylon fiber in the pile of the installed nylon carpet.
19 A process according to any one of Claims 1 to 18 wherein the installed nylon carpet is treated by applying thereto a fluorochemical soil-resist agent, in addition to the treatment with the stain-blocker.
A process according to Claim 19, wherein the installed nylon carpet is treated simultaneously with the fluorochemical and the stain-blocker.
21 A process according to Claim 19, wherein the stain-blocker is applied to the installed nylon carpet before applying the fluorochemical.
22 A process according to Claim 19, wherein the fluorochemical is applied to the installed nylon carpet before applying the stain-blocker.
23 A process according to any one of Claims 1 to 22 wherein the installed nylon carpet is treated with the stain-blocker under normal or alkaline p H conditions.
24 A process of imparting stain-resistance to an installed nylon pile carpet, comprising the steps of thoroughly wetting the pile fibers of the installed carpet with an aqueous solution of a detergent, and then applying a stain-blocker to the pile fibers, while wetted with detergent, in sufficient amount and in such manner as to obtain a significant improvement in stain-resistance, and allowing the treated carpet to dry in the atmosphere.
A process of imparting stain-resistance to an installed nylon pile carpet, the fibers of said nylon pile having been treated already with stain-blocker, wherein the carpet is cleaned with an aqueous solution of a detergent, and a stain-blocker is applied to the carpet, while wetted with the detergent and water, and is mechanically worked into the nylon fibers of the pile of the installed nylon carpet so as to improve the distribution and contact between the stain-blocker and the nylon fibers of the pile of the nylon carpet, the stain- blocker being applied in sufficient amount and in such manner as to obtain a significant improvement in stain- resistance, and allowing the treated carpet to dry in the atmosphere.
26 A process of imparting stain-resistance to an installed nylon pile carpet, wherein there is applied to the carpet an aqueous solution of a detergent with a stain-blocker, in sufficient amount and in such manner as to obtain a significant improvement in stain-resistance, and the pile fibers are mechanically worked so as to improve the distribution and contact between the stain- blocker and the nylon fibers of the pile of the nylon carpet, the stain-blocker being applied in sufficient amount and in such manner as to obtain a significant improvement in stain-resistance, and allowing the treated carpet to dry in the atmosphere.
27 A process according to Claim 24, 25 or 26, wherein the stain-blocker is a sulfonated phenol- formaldehyde condensate polymer.
28 A process according to Claim 24, 25 or 26, wherein the stain-blocker is a sulfonated naphthol- formaldehyde condensate polymer.
29 A process according to Claim 24, 25 or 26, wherein the stain-blocker is a hydrolyzed vinyl aromatic- maleic anhydride polymer.
A process for disinfecting and imparting stain-resistance to an installed nylon pile carpet, comprising the steps of wetting the carpet, applying an anti-microbial agent to the carpet, and then applying a stain-blocker to the pile fibers while the carpet is still mcist, the stain-blocker being applied in sufficient amount and in such manner as to obtain a significant improvement in stain-resistance, and allowing the treated carpet to dry in the atmosphere.
31 A process of disinfecting and imparting stain-resistance to an installed nylon pile carpet, the fibers of said carpet having been previously treated with stain-blocker, comprising the steps of wetting the carpet, applying an anti-microbial agent to the carpet, applying a stain-blocker to the carpet while the carpet is still moist, said stain-blocker being mechanically worked into the nylon fibers of the pile of the installed nylon carpet so as to improve the distribution and contact between the stain-blocker and the nylon fibers of the pile, the stain- blocker being applied in sufficient amount and in such manner as to obtain a significant improvement in stain- resistance, and allowing the treated carpet to dry in the atmosphere.
32 A process of disinfecting and imparting stain-resistance to an installed nylon pile carpet, comprising the steps of wetting the carpet, applying an anti-microbial agent to the carpet, applying an aqueous solution of a soil-resist agent with a stain-blocker to the carpet, the pile fibers being mechanically worked so as to improve the distribution and contact between the stain-blocker and the nylon fibers of the pile, the stain- blocker being applied in sufficient amount and in such manner as to obtain a significant improvement in stain- resistance, and allowing the treated carpet to dry in the atmosphere.
33 A process according to Claim 30, 31 or 32 wherein the wetting of the carpet is effected by steam- cleaning.
34 A process according to Claim 30, 31, 32 or 33 wherein the anti-microbial agent is applied prior to the step of wetting the carpet.
A process according to Claim 34 wherein the wetting of the carpet is effected by steam-cleaning.
36 A process according to Claim 30, 31 or 32 wherein the step of wetting the carpet is omitted.
37 A process of deodorizing and imparting stain-resistance to an installed nylon pile carpet, comprising the steps of applying an aqueous solution of a stain-blocker and a deodorizing agent to the carpet, mechanically working the pile fibers so as to improve the distribution and contact between the stain-blocker and the nylon fibers of the pile, the stain-blocker being applied in sufficient amount and in such manner as to obtain a significant improvement in stain-resistance, and allowing the treated carpet to dry in the atmosphere.
38 A process according to any one of Claims 30 to 37 wherein the stain-blocker is a sulfonated phenol- formaldehyde condensate polymer.
39 A process according to any one of Claims 30 to 37 wherein the stain-blocker is a sulfonated naphthol- formaldehyde condensate polymer.
A process according to any one of Claims 30 to 37 wherein the stain-blocker is a hydrolyzed vinyl aromatic-maleic anhydride polymer.
41 A process according to any one of Claims 30 to 37 wherein the stain-blocker is any combination of a sulfonated phenol-formaldehyde condensate polymer, a sulfonated naphthol-formaldehyde condensate polymer, and a hydrolyzed vinyl aromatic-maleic anhydride polymer.
42 A process of imparting stain-resistance to an installed nylon carpet substantially as hereinbefore described with reference to the Examples.
Published 1989 at The Patent Office, State House, 6671 High Holborn London W Cl R 4 TP Further copies maybe obtained from The Patent Office.
Sales Branch, St Mary Cray Orpington, Kent BR 5 3RD Printed by Multiplex techniques Itd, St Mary Cray, Kent Con 1/87
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/136,035 US4925707A (en) | 1987-12-21 | 1987-12-21 | Treatment of carpets |
US26926588A | 1988-11-09 | 1988-11-09 |
Publications (3)
Publication Number | Publication Date |
---|---|
GB8829618D0 GB8829618D0 (en) | 1989-02-15 |
GB2211865A true GB2211865A (en) | 1989-07-12 |
GB2211865B GB2211865B (en) | 1991-10-30 |
Family
ID=26833928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB8829618A Expired - Lifetime GB2211865B (en) | 1987-12-21 | 1988-12-20 | Treatment of carpets |
Country Status (8)
Country | Link |
---|---|
JP (1) | JP2717216B2 (en) |
AU (1) | AU619784B2 (en) |
BE (1) | BE1004111A3 (en) |
CA (1) | CA1339888C (en) |
DE (1) | DE3842989B4 (en) |
FR (1) | FR2624895B1 (en) |
GB (1) | GB2211865B (en) |
IT (1) | IT1228102B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0345946A2 (en) * | 1988-06-10 | 1989-12-13 | Milliken Research Corporation | Cleaning composition for textiles containing sulfonated colorless dye site blocker |
WO2015091175A1 (en) * | 2013-12-17 | 2015-06-25 | Henkel Ag & Co. Kgaa | Anti-redeposition detergents |
WO2015091176A1 (en) * | 2013-12-17 | 2015-06-25 | Henkel Ag & Co. Kgaa | Color-safe detergents |
WO2015091174A1 (en) * | 2013-12-17 | 2015-06-25 | Henkel Ag & Co. Kgaa | Anti-redeposition detergents |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19619177A1 (en) * | 1996-05-11 | 1997-11-13 | Vorwerk Co Interholding | Process for applying stain repellent finish to polyamide carpets |
US7785374B2 (en) * | 2005-01-24 | 2010-08-31 | Columbia Insurance Co. | Methods and compositions for imparting stain resistance to nylon materials |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1504963A (en) * | 1974-02-26 | 1978-03-22 | Minnesota Mining & Mfg | Textile treatment |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3716488A (en) * | 1970-09-04 | 1973-02-13 | Stevens & Co Inc J P | Textile fabric cleaning compositions |
US3748268A (en) * | 1972-03-27 | 1973-07-24 | Minnesota Mining & Mfg | Spot and stain removing composition |
CH1755473A4 (en) * | 1973-12-15 | 1975-09-30 | ||
JPS6022929B2 (en) * | 1976-03-17 | 1985-06-05 | ダスキンフランチヤイズ株式会社 | Dust removal mat and its manufacturing method |
JPS56169849A (en) * | 1980-05-30 | 1981-12-26 | Matsushita Electric Works Ltd | Carpet |
JPS5714115A (en) * | 1980-06-27 | 1982-01-25 | Niigata Netsugaku:Kk | Combustion of waste tyre or the like in automatic water heater |
JPS58109655A (en) * | 1981-12-22 | 1983-06-30 | ユニチカ株式会社 | Production of anti-staining nylon fiber product |
US4592940A (en) * | 1983-12-16 | 1986-06-03 | Monsanto Company | Stain-resistant nylon carpets impregnated with condensation product of formaldehyde with mixture of diphenolsulfone and phenolsulfonic acid |
US4501591A (en) * | 1983-12-27 | 1985-02-26 | Monsanto Company | Process for conveniently providing stain-resistant polyamide carpets |
EP0242496B1 (en) * | 1986-03-06 | 1991-12-27 | Monsanto Company | Stain-resistant nylon fibers |
-
1988
- 1988-12-15 CA CA000586054A patent/CA1339888C/en not_active Expired - Fee Related
- 1988-12-20 IT IT8823027A patent/IT1228102B/en active
- 1988-12-20 GB GB8829618A patent/GB2211865B/en not_active Expired - Lifetime
- 1988-12-20 AU AU27090/88A patent/AU619784B2/en not_active Ceased
- 1988-12-21 DE DE3842989A patent/DE3842989B4/en not_active Expired - Fee Related
- 1988-12-21 JP JP63323215A patent/JP2717216B2/en not_active Expired - Fee Related
- 1988-12-21 BE BE8801422A patent/BE1004111A3/en not_active IP Right Cessation
- 1988-12-21 FR FR8816903A patent/FR2624895B1/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1504963A (en) * | 1974-02-26 | 1978-03-22 | Minnesota Mining & Mfg | Textile treatment |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0345946A2 (en) * | 1988-06-10 | 1989-12-13 | Milliken Research Corporation | Cleaning composition for textiles containing sulfonated colorless dye site blocker |
EP0345946A3 (en) * | 1988-06-10 | 1991-03-20 | Milliken Research Corporation | Cleaning composition for textiles containing sulfonated colorless dye site blocker |
WO2015091175A1 (en) * | 2013-12-17 | 2015-06-25 | Henkel Ag & Co. Kgaa | Anti-redeposition detergents |
WO2015091176A1 (en) * | 2013-12-17 | 2015-06-25 | Henkel Ag & Co. Kgaa | Color-safe detergents |
WO2015091174A1 (en) * | 2013-12-17 | 2015-06-25 | Henkel Ag & Co. Kgaa | Anti-redeposition detergents |
Also Published As
Publication number | Publication date |
---|---|
DE3842989B4 (en) | 2004-08-19 |
IT1228102B (en) | 1991-05-28 |
DE3842989A1 (en) | 1989-06-29 |
GB8829618D0 (en) | 1989-02-15 |
IT8823027A0 (en) | 1988-12-20 |
AU2709088A (en) | 1989-06-22 |
JPH024305A (en) | 1990-01-09 |
GB2211865B (en) | 1991-10-30 |
FR2624895B1 (en) | 1993-12-17 |
AU619784B2 (en) | 1992-02-06 |
FR2624895A1 (en) | 1989-06-23 |
BE1004111A3 (en) | 1992-09-29 |
JP2717216B2 (en) | 1998-02-18 |
CA1339888C (en) | 1998-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4925707A (en) | Treatment of carpets | |
US4619853A (en) | Easy-clean carpets which are stain resistant and water impervious | |
US4643930A (en) | Novel carpets with yarns coated with fluorocarbon and adhesive containing fluorocarbon | |
US4579762A (en) | Stain resistant carpet with impervious backing | |
US5096747A (en) | Antimicrobial stain-resist carpet treatment | |
US20070000106A1 (en) | Carpet with improved liquid barrier properties and methods of manufacture thereof | |
US5137759A (en) | Imparting stain resistance to installed nylon carpets treated with antimicrobial or deodorizing agents | |
JP2014531524A (en) | BCF yarn dyeing and processing method | |
EP0056961B1 (en) | Method for improved dyeing | |
US5059420A (en) | Antimicrobial stain-resist carpet treatment | |
US20040224587A1 (en) | Fluorochemical-containing textile finishes that exhibit wash-durable soil release and moisture wicking properties | |
US6071869A (en) | Fabric cleaning formulations | |
CA1339888C (en) | Treatment of carpets | |
EP0353080A1 (en) | A stain blocking system | |
DE69101241T2 (en) | Stain-resistant fabrics. | |
US20060123560A1 (en) | Textile treatment agent | |
US20130101782A1 (en) | Nonfluorinated soil and stain resist compositions | |
US6051034A (en) | Methods for reducing pilling of towels | |
JP2007146321A (en) | Polyamide spun-dyed yarn and carpet | |
US20040116015A1 (en) | Fluorochemical-containing textile finishes that exhibit wash-durable soil release and moisture wicking properties | |
US20130102214A1 (en) | Nonfluorinated soil resist compositions | |
US20090258557A1 (en) | Textile substrates exhibiting enhanced antifungal attributes | |
US20070050912A1 (en) | Reduction of turmeric and iodine staining | |
JP2023097371A (en) | Mat antimicrobial finishing method | |
EP0883710A1 (en) | A method for insect-resist treatment of carpet and textiles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
732E | Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977) | ||
732E | Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977) | ||
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 20061220 |