GB2196752A - Ferroelectric liquid crystal cells - Google Patents

Ferroelectric liquid crystal cells Download PDF

Info

Publication number
GB2196752A
GB2196752A GB08725021A GB8725021A GB2196752A GB 2196752 A GB2196752 A GB 2196752A GB 08725021 A GB08725021 A GB 08725021A GB 8725021 A GB8725021 A GB 8725021A GB 2196752 A GB2196752 A GB 2196752A
Authority
GB
United Kingdom
Prior art keywords
liquid crystal
alignment
polymer
layer
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08725021A
Other versions
GB8725021D0 (en
GB2196752B (en
Inventor
David Coates
Matthew Francis Bone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STC PLC
Original Assignee
STC PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB868625771A external-priority patent/GB8625771D0/en
Application filed by STC PLC filed Critical STC PLC
Priority to GB8725021A priority Critical patent/GB2196752B/en
Publication of GB8725021D0 publication Critical patent/GB8725021D0/en
Publication of GB2196752A publication Critical patent/GB2196752A/en
Application granted granted Critical
Publication of GB2196752B publication Critical patent/GB2196752B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Description

SPECIFICATION Ferroelectric liquid crystal cells This invention relates to ferroelectric liquid crystal cells, and in particular to a method of obtaining a preferred alignment of the liquid crystal molecules within such cells.
The conventional molecular alignment required for operation of a ferroelectric liquid crystal cell is one in which the smectic layers are formed in planes orthogonal to the major surfaces of the cell, such arrangements sometimes being termed "bookshelf geometry'.
In suitable circumstances bookshelf geometry can be obtained for a material exhibing the phase sequence l-N4-SASc4 by slow cooling of a cell that has rubbed major surfaces that promote planar alignment of the molecules in the nematic phase. (At least some of the individual molecules of the liquid crystal medium have to have a chiral centre for the medium to be ferroelectric in the tilted phase. The presence of a chiral component in a nematic phase normally induces a regular helical structure and the phase is termed cholesteric.A helical structure would interfere with the requisite alignment in the smectic phases and so is effectively eliminated by the use of suitable compensating chiral constituents of opposite handedness to produce a phase, commonly designated N*, in which any residual cholesteric pitch is large compared with cell thickness. As the material cools. into the N* phase the molecules assume planar alignment, with the molecular director lying in the rubbing direction, and this alignment is preserved as the material enters the SA phase.The smectic layers that are then produced lie in planes extending orthogonally with respect to the planes of the major surfaces of the cell, and on further cooling into the Sc* phase it is intended that the alignment of these smectic layers shall be substantially preserved while the directors of the molecules are rotated through a small angle to produce a tilted smectic phase.
In practice uniform alignment of the smectic A phase layers can be achieved quite easily when the major surfaces of the liquid crystal layer are confined by rubbed polymer film, but excellent alignment in the SA phase is found no guarantee of achieving satisfactory alignment in the Sc* phase. Particularly in the case of thin cells (having a liquid crystal layer thickness of about 2 microns), such as are typically employed for high speed switching, the density of alignment defects can be extremely high in the 5c4 phase. Such defects adversely affect both the persistence of switching and the contrast ratio.
The wide occurrence of these defects is believed to be attributable in large part to the fact that the mechanism used to align the molecular director in the N" phase is liable to continue to exert an influence on molecular alignment when the liquid crystal layer is in the 8c4 phase. In the Sc* phase, however, the rubbing direction is still normal to the planes of the smectic layers, and hence is not a direction appropriate for the director in a tilted smectic phase. Strain is therefore associated with this form of alignment. If both major surfaces of the cell are similarly aligned the strain concentration is seen to be increased as the liquid crystal layer thickness is reduced.It is possible for a situation to arise when it is enegetically more favourable for the smectic layers to reorient than for the director to accommodate all the strain within the layers. It is believed that this may be a major factor contributing to the break-up of the layers in thin cells. Another contributing factor may be small misalignments of rubbing direction between the two major surfaces confining the liquid crystal layer.
Investigations have been made to see if the problem of the break-up of the layers is alleviated by constructing cells where only one of the confining surfaces is provided by a rubbed polymer layer instead of both surfaces. We have found that this can be the case with cells in which one confining surface is provided by a rubbed polymer covered transparent electroded glass substrate, while the other confining surface is provided by a similar substrate without the rubbed polymer layer. However, it has been found that the quality of the result is critically dependent upon the absence of blemishes in the surface of the second substrate. Preparation of satisfactory cells was found to be difficult, time consuming, and unpredictable. Much better results have been obtained by adopting the teachings of the present invention.
According to one aspect of the present invention there is provided a ferroelectric liquid crystal cell having a liquid crystal layer contained within an envelope, in which cell, for the promotion of parallel alignment of the molecules of the liquid crystal layer at least one of its two major surfaces, said at least one major surface is in contact with an associated polymer layer having a molecular structure with flexible side chains.
It is surmised that the flexible side chains of the polymer assist in the promotion of uniform planar alignment without providing any preferential azimuthal direction for that alignment.
If, instead of having rubbed polymer surfaces in contact with both major surfaces of the liquid crystal layer, only onemajor surface is in contact with a rubbed polymer surface, while the other major surface with a polymer with flexible side chains, the bookshelf alignment can still be produced by the method described above involving the slow cooling of the liquid crystal layer through N and SA phases. But now the strain on entering an inclined smectic phase is less than before because the flexible side chain polymer layer can relatively freely accommodate the reorientation of the molecular director of nearby liquid crystal molecules upon their entering this phase. Some strain still remains as a result of the constraints imposed by the rubbed polymer contacting the other major surface of the liquid crystal layer.This source of strain can be removed by replacing not one but both of the rubbed polymer layers with the flexible side chain layers. Under these circumstances bookshelf alignment can not be induced in the same way as before. An alternative way of achieving bookshelf alignment would be by the known method involving the application of a small amount of mechanical shear to the liquid crystal layer by relative linear movement of its confining surfaces.
There follows a description of a liquid crystal cell embodying the invention in a preferred form.
The description refers to the accompanying drawing depicting a perspective schematic view of the cell.
A hermetically sealed envelope for a liquid crystal layer is formed by securing together two glass sheets 11 and 12 with a perimeter seal 13. The inward facing surfaces of the two sheets carry transparent electrode layers (not shown) of indium tin oxide, and these are in turn covered with polymer layers 14 and 15. The thickness of the liquid crystal layer contained within the resulting envelope is determined by the thickness of the perimeter seal 13, and the thickness of this is determined by a light scattering of plastics spheres of uniform diameter over the area enclosed by the perimeter seal. (Some of these spheres may also become incorporated into the material of the perimeter seal itself). Typically the thickness of such a cell may be about 2 ,um.
Conveniently the cell is filled by applying a vacuum to the interior of the envelope via an aperture (not shown) through one of the glass sheets in one corner of the are enclosed by the perimeter seal so as to cause the liquid crystal medium to enter the cell via another aperture (not shown) located in the diagonally opposite corner. The filling operation is carried out with the filling material heated ito its isotropic phase so as to reduce its viscosity to a suitably low value.
Subsequent to the filling operation the two apertures are sealed.
The polymer layers 14 and 15 are provided for liquid crystal molecular alignment purposes.
Polymer layer 14 is a rubbed polymer layer of conventional type for molecular alignment, and may for instance be a nylon layer. The other polymer layer, layer 15, is a liquid crystal polymer constituted by a polysiloxane backbone with cyano-biphenyl benzoate side chain groups and having the general formula:
This liquid crystal polymer was applied from solution in the N-methyl pyrolidone to the transparent electroded glass substrate 12 by spinning. This substrate 12, and the other transparent electroded glass substrate 11 provided with a rubbed nylon coating, were sealed together with a polymer edge seal 1 3 to form a cell for filling with a proprietory ferroelectric liquid crystal mixture designated M622 developed by BDH with the following characteristics: S,"-74"C-S,-105"C-N"-136"C-I In the foregoing it has been explained that the substitution of one rubbed polymer alignment layer of a ferroelectric liquid crystal layer by one of those unrubbed polymer layers with flexible side chains affords a reduction in the strain accommodated by the liquid crystal layer. A further reduction of such strain is clearly also achievable by replacement not only of the one rubbed surface, but of both rubbed surfaces, provides that the bookshelf alignment can still be induced and maintained by some other means.

Claims (4)

1. A ferroelectric liquid crystal cell having a liquid crystal layer contained within an envelope, in which cell, for the promotion of parallel alignment of the molecules of the liquid crystal layer at least one of its two major surfaces, said at least one major surface is in contact with an associated polymer layer having a molecular structure with flexible side chains.
2. A ferroelectric liquid crystal cell as claimed in claim 1 wherein the material of said polymer layer is a liquid crystal polymer.
3. A ferroelectric liquid crystal cell as claimed in claim 1 wherein one major surface of the liquid crystal layer is in contact with a polymer layer having said molecular structure with flexible side chains, while the other major surface is in contact with a polymer layer that has been rubbed in order to promote planar alignment of the molecules of the liquid crystal layer in the rubbing direction at least when those molecules are present in an untilted liquid crystal phase.
4. A ferroelectric liquid crystal cell substantially as hereinbefore described with reference to the accompanying drawing.
GB8725021A 1986-10-28 1987-10-26 Ferroelectric liquid crystall cells Expired - Fee Related GB2196752B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8725021A GB2196752B (en) 1986-10-28 1987-10-26 Ferroelectric liquid crystall cells

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB868625771A GB8625771D0 (en) 1986-10-28 1986-10-28 Ferroelectric liquid crystal cells
GB868629904A GB8629904D0 (en) 1986-10-28 1986-12-15 Ferroelectric liquid crystal cells
GB8725021A GB2196752B (en) 1986-10-28 1987-10-26 Ferroelectric liquid crystall cells

Publications (3)

Publication Number Publication Date
GB8725021D0 GB8725021D0 (en) 1987-12-02
GB2196752A true GB2196752A (en) 1988-05-05
GB2196752B GB2196752B (en) 1990-10-17

Family

ID=27263191

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8725021A Expired - Fee Related GB2196752B (en) 1986-10-28 1987-10-26 Ferroelectric liquid crystall cells

Country Status (1)

Country Link
GB (1) GB2196752B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2144232A (en) * 1983-07-29 1985-02-27 American Telephone & Telegraph Alignment of liquid crystals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2144232A (en) * 1983-07-29 1985-02-27 American Telephone & Telegraph Alignment of liquid crystals

Also Published As

Publication number Publication date
GB8725021D0 (en) 1987-12-02
GB2196752B (en) 1990-10-17

Similar Documents

Publication Publication Date Title
KR100223601B1 (en) Lcd device
EP1690918B1 (en) Liquid crystal optical element and method for its production
JPS6377019A (en) Ferroelectric liquid crystal element
US4882207A (en) Ferroelectric liquid crystal cells
KR940001825Y1 (en) Liquid crystal display devices
EP0496628B1 (en) Ferroelectric liquid crystal display device
Kobayashi et al. Surface liquid crystal molecular alignment in LCDs and their electro-optical performance
EP0357756B1 (en) Light valves with positive dielectric anisotropy liquid crystal and highly tilted off-perpendicular surface alignment, and associated operating method
US5764325A (en) Liquid crystal device alignment
US5748274A (en) LCD having a voltage being applied to the LC in the chiral nematic phase prior to the display driving
KR100262448B1 (en) Electro-optical device and method for forming the same
GB2122766A (en) Liquid crystal display
KR100261636B1 (en) Ferroelectric lcd and its fabrication method
KR930001237B1 (en) Liquid crystal display
JP2856466B2 (en) Liquid crystal display device
US7075613B2 (en) Electro-optical display with in-situ polymerized columns providing alignment and structural bond between substrate
Kubono et al. Effects of cell parameters on the properties of hybrid twisted nematic displays
GB2196752A (en) Ferroelectric liquid crystal cells
EP0095012B1 (en) Liquid crystal display device
JP2002031804A (en) Liquid crystal display device
US6245257B1 (en) Liquid crystal compositions
EP0352792B1 (en) Liquid crystal device
CA2099642A1 (en) Wide viewing-angle dye-doped tn lcd with retardation sheets
JPH0996790A (en) Liquid electro-optical element
JPH0139085B2 (en)

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19921026