GB2153437A - Improvements in or relating to gas turbine power plant - Google Patents

Improvements in or relating to gas turbine power plant Download PDF

Info

Publication number
GB2153437A
GB2153437A GB08430676A GB8430676A GB2153437A GB 2153437 A GB2153437 A GB 2153437A GB 08430676 A GB08430676 A GB 08430676A GB 8430676 A GB8430676 A GB 8430676A GB 2153437 A GB2153437 A GB 2153437A
Authority
GB
United Kingdom
Prior art keywords
turbine
engine
compressor
casing
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB08430676A
Other versions
GB8430676D0 (en
Inventor
Graham Alfred Reynolds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Publication of GB8430676D0 publication Critical patent/GB8430676D0/en
Publication of GB2153437A publication Critical patent/GB2153437A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/56Control of fuel supply conjointly with another control of the plant with power transmission control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/10Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
    • F02C3/103Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor the compressor being of the centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Description

1
GB 2 153 437 A 1
SPECIFICATION
Improvements in or relating to gas turbine power plant
This invention relates to a gas turbine power plant 5 and is particularly though not exclusively concerned with a relatively small power plant driven by a gas turbine engine, producing electrical energy and energy for heating, refrigeration and air conditioning. Such a power plant would be useful 10 for domestic purposes, small businesses and factories.
In order for the power plant to be competitive with existing systems of domestic energy supply the gas turbine engine as well as the other components of 15 the power plant have to be relatively low in cost. The engine should thus be simple in design and have a small a number of parts as possible which are all capable of being produced by mass production methods.
20 It is an object of the present invention to provide a gas turbine engine having a small number of components which can be mass produced, the engine being reliable and capable of operation over long periods without the need of maintenance. 25 It is a further object of the invention to provide a power plant suitable for domestic or small business purposes incorporating a gas turbine engine, the power from which can be used to generate electricity, and the exhaust used for water heating, 30 room heating, air conditioning and/or refrigeration.
Accordingly the present invention provides a gas turbine engine comprising a centrifugal compressor driven by a centripetal turbine, a single counterflow combustion chamber arranged to receive a flow of 35 compressed air from the centrifugal compressor and a flow of fuel, and to discharge the products of combustion to the centripetal turbine, a relatively high inertial mass power turbine arranged to drive a load such as an a.c. generator, the power turbine 40 comprising a row of stator vanes mounted in a casing, a wall of the casing partially defining a diffusion duct into which the exhaust from the centripetal turbine is discharged, the other wall of the diffusion duct being defined by a central body of 45 the power turbine, the central body carrying a row of rotor blades located axially downstream of the stator vanes. The compressor and turbine can be mounted in a casing comprising upstream and downstream end plates between which is 50 sandwiched a central core.
The compressor casing can be at least partially defined by a surface of the upstream end plate, and the compressor exhaust volute can be defined between the upstream end plate and the central 55 core. In a preferred arrangement the compressor exhaust volute can be formed by surfaces on both the upstream plate and the central core. The turbine inlet volute can be formed by surfaces on the central core and the downstream end plate. The centripetal 60 turbine housing can be formed by a surface on the downstream end plate.
The central core preferably contains ducting from the compressor and to the turbine which terminates in a central duct and a co-axial, annular duct.
The casing component can be secured together by any suitable means, e.g. bolts or by a flanged, split ring.
An attachment spigot for the combustion chamber can be attached to the casing aligned with the termination of the ducting. The casing preferably has'a detachable intake flare, and the compressor and turbine can be attached to a common shaft journalled in a gas bearing. A gas thrust bearing can also be provided.
The stator vane casing can be attached to the turbo-compressor casing by a housing which also acts as a containment ring. The stator vanes can be attached to a ring separate from the stator vane casing, which ring can be located in a recess in the stator vane casing.
The power turbine can be mounted in gas journal and thrust bearings in an exhaust volute casing attached to the containment ring of the power turbine.
According to the present invention there is also provided a domestic energy supply comprising a gas turbine engine as outlined above, a variable frequency wide voltage regulated a.c. generator driven bythe power turbine of the engine, a boiler and/or an absorption system driven by the exhaust heat of the engine, and a control system to control the gas turbine, the electricity generated and the boiler and/or the absorption system, and to balance the energy from the electrical power output and the heat energy output.
The present invention will now be more particularly described with reference to the accompanying drawings in which
Figure 1 shows a sectional elevation of one form of gas turbine engine according to the present invention,
Figure 2 is a view on arrow A in Figure 1, including the engine combustion system in section,
Figure 3 shows in diagrammatic form a power plant incorporating a gas turbine of the type shown in Figure 1, and
Figure 4 is a notional layout of the electrical supply and control of the power plant.
Referring to Figure 1, a gas turbine engine 10 comprises a centrifugal compressor 12 driven by a centripetal turbine 14 via a shaft 16 to which the compressor and turbine are both attached. The shaft 16 is journalled in a gas bearing 18 and the rotor assembly of shaft, compressor and turbine also has a gas thrust bearing 20.
The rotor assembly is mounted in a housing 22 which comprises upstream and downstream end plates 24,26 respectively and a split central core 28 clamped between the end plates by suitable securing means, e.g. nut and bolt arrangements 30.
The upstream end plate 24 has an intake flare 32 attached to it and the inside surface of the end plate is shaped to provide the housing of the compressor 12 and partially defines the compressor outlet 34 and exhaust volute 36. The central core has a surface which in conjunction with the corresponding surfaces of the end plate defines the compressor outlet and exhaust volute.
A duct 38 is formed in the central core and
65
70
75
80
85
90
95
100
105
110
115
120
125
2
5
10
15
20
25
30
35
40
45
50
55
60
65
GB 2 153 437 A 2
connects the exhaust volute 36 with a side mounted combustion chamber 39 (Figure 2).
In a similar mannerthe end plate 26 and the downstream face of the central core are shaped to define a turbine iniet volute 40 which is connected to the outlet from the combustion chamber by a duct 42 in the central core. The outlets of the ducts 38 and 42 are concentric and are attached to the combustion chamber by a suitable flanged connector 39a.
The combustion chamber 39 which is screwed to the connector 39a, has outer and inner casings 39b and 39c respectively. The inner casing has an upstream airswirler39d, and a fuel injector 39e is mounted on the outer casing and extends through the centre of the airswirler. In this instance the fuel injector as for gas fuel, but a liquid fuel or a dual fuel injector can be provided. An igniter 39f is also mounted on the outer casing, and extends through the wall of the inner casing. The inner and outer casings define an annular space 39g which receives compressed air from the duct 38. The products of combustion are discharged from the inner casing to the duct 42.
Downstream of the volute 40 and between the central core and the end plate 26 is mounted a ring of nozzle guide vanes 44 to direct the hot, high velocity gases from the combustion chamber into the turbine 14.
As well as securing the components of the rotor assembly 22 together, the securing means 30 also attach a power turbine module 46 to the rotor assembly.
The module 46 comprises two casings 48,50 which locate and retain in position the components of the module, and which are secured together by suitable clamping means (not shown). Inside the casing 48, there is located a diffuser housing 52, the internal surface of which defines the outer surface of an annular diffuser 54. The housing 52 is formed from two components, a diffuser block 56 and a ring 58 to which is attached a row of inlet guide vanes 60. The other surface defining the diffuser duct 54 is defined by the external surface of the bullet 62 of a power turbine rotor 64 on which are mounted turbine blades 66.
The power turbine rotor 64 is mounted in a gas journal bearing 68 and has a gas thrust bearing 70. Both of these bearings are located in a bearing support structure 72, contained within and held in position by the casing 50.
The exhaust gases from the power turbine pass into an exhaust duct 74 which terminates in a volute (not shown) to conduct the exhaust to atmosphere through a suitable opening (not shown) in the casing 50. The exhaust duct 74 is defined partly by the ring 58 and partly by surfaces formed on the bearing support structure 72.
The compressor, compressor driving turbine, power turbine and associated guide vanes can be made from a ceramic material, e.g. silicon nitride, or from a good quality alloy depending on the nature of the fuel used. Other components which can be made from a ceramic material are the split casing 28, the end plate 26 and the power turbine stator ring and turbine casing 58. The remaining components, particularly the containment casing 48 can be formed from steel, or a suitable metal alloy.
It will be noted that the gas turbine is made from a very small number of components which can be easily assembled either by hand or by machine.
A particular feature of the design is the multifunction capability of some of the components. For example, the bullet 62 of the power turbine also partially defines the annular diffuser duct 54, and since it will rotate at high speed wil induct a whirl velocity into the gases from the turbine 14. This feature can be used to aerodynamic advantage in the design of the power turbine and the inlet guide vanes 60. Also, the casing 48 as well as locating and retaining the diffuser duct components also acts as a containment for the power turbine in the case of turbine overspeed.
Referring to Figure 2, the gas turbine engine 10 is shown located in a silenced cabinet 76 having an intake filter and silencer 78. The power turbine 64 drives a variablefrequency wide voltage regulated a.c. generator 80, the output from which passes to a control and distribution system 82, shown in more detail in Figure 3. The exhaust from the gas turbine passes into a boiler and/or absorption system 84, and exhausts to atmosphere through a stack 86 which can be silenced.
Referring to Figure 3, the output from the a.c. generator 80 passes to a rectifier and voltage regulator 88 and hence to the domestic mains via a solid state a.c. generator 90. A tapping can be taken to charge batteries if required. A gas turbine control 92 is powered from the mains supply and receives signals inter alia from the a.c. generator to control the fuel supply to the engine by a valve 94.

Claims (12)

1. A gas turbine engine comprising a compressor driven by a turbine through a shaft, a combustion arrangement arranged to receive a flow of compressed air from the compressor and a flow of fuel, and to discharge the products of combustion to the turbine, a power turbine arranged to be driven by the exhaust from the compressor driving turbine and to drive a load, the engine comprising a plurality of components, at least two of said components partially defining the surfaces of the gas flow path through the engine, one of said surfaces being formed on a static component and the other of said surfaces being formed on a rotating component.
2. An engine as claimed in claim 1 in which the power turbine comprises at least a row of stator vanes and a row of rotor blades, the stator vanes being secured to a casing, and the rotor blades being secured to the powerturbine rotor, the exhaust from the compressor driving turbine being discharged into a diffusion duct formed by a wall of the casing and a central body of the turbine.
3. A gas turbine engine as claimed in claim 1 in which the compressor and compressor driving turbine are rotatably mounted in a casing comprising a central core and two end plates, at least one surface of the core or one of the two end
70
75
80
85
90
95
100
105
110
115
120
125
3
GB 2 153 437 A 3
plates at least partially defining a surface of the compressor or compressor driving turbine.
4. An engine as claimed in claim 3 in which the casing has upstream and downstream end plates, a
5 compressor exhaust volute being defined by a surface on the upstream end plate and a surface on the core, and a turbine inlet volute defined by another surface on the core and a surface on the downstream end plate.
10 5. An engine as claimed in claim 3 in which both the compressor and compressor driving turbine have gas flow paths, the surfaces of the gas flow paths being formed by surfaces on respective bladed rotors and respective surfaces on the end
15 plates.
6. An engine as claimed in claim 3 in which the central core includes inlet ducting extending from the compressor to the combustion arrangement inlet and outlet ducting extending from the
20 combustion arrangement outlet to the compressor driving turbine inlet.
7. An engine as claimed in claim 2 in which the stator vane casing has an outer containment casing, the stator vane casing being attached to the
25 remainder of the engine by the containment casing.
8. An engine as claimed in claim 2 in which the stator vanes are secured together in a ring, and the ring of stator vanes are located in a recess formed in the stator casing.
30
9. An engine as claimed in claim 1 in which the compressor comprises a centrifugal compressor, the compressor driving turbine comprises a centripetal turbine, the combustion arrangement comprises a single stage high inertial mass power
35 turbine.
10. A power plant including a gas turbine engine as claimed in claim 1, the power plant further including a variable frequency wide voltage regulated a.c. generator driven by the power turbine
40 of the engine, a boiler and/or an absorption system driven by the exhaust heat of the engine, and a control system to control the gas turbine engine, the a.c. generator and the boiler and/or the absorption system, and to heat energy output in accordance
45 with demand.
11. A gas turbine engine constructed and arranged for use and operation substantially as herein described, and with reference to Figures 1 and 2 of the accompanying drawings.
50
12. A power plant, including a gas turbine engine as claimed in claim 11, constructed and arranged for use and operation substantially as herein described, and with reference to Figures 3 and 4 of the accompanying drawings.
Printed for Her Majesty's Stationery Office by Courier Press, Leamington Spa. 8/1985. Demand No. 8817443. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.
GB08430676A 1984-01-07 1984-12-05 Improvements in or relating to gas turbine power plant Withdrawn GB2153437A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8400356 1984-01-07

Publications (2)

Publication Number Publication Date
GB8430676D0 GB8430676D0 (en) 1985-01-16
GB2153437A true GB2153437A (en) 1985-08-21

Family

ID=10554670

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08430676A Withdrawn GB2153437A (en) 1984-01-07 1984-12-05 Improvements in or relating to gas turbine power plant

Country Status (7)

Country Link
US (1) US4598542A (en)
EP (3) EP0225868A1 (en)
JP (1) JPS60156936A (en)
CA (1) CA1251050A (en)
DE (1) DE3483583D1 (en)
GB (1) GB2153437A (en)
NO (1) NO160807C (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951460A (en) * 1989-01-11 1990-08-28 Stewart & Stevenson Services, Inc. Apparatus and method for optimizing the air inlet temperature of gas turbines
GB9016353D0 (en) * 1990-07-25 1990-09-12 Csir Power pack
GB2330648A (en) * 1997-10-24 1999-04-28 Robert Pickering Domestic boiler heated by gas turbine
AU2088599A (en) * 1997-12-19 1999-07-12 Allied-Signal Inc. An uninterruptible microturbine power generating system
JP2001527180A (en) 1997-12-20 2001-12-25 アライド・シグナル・インコーポレーテツド Control of constant internal temperature of turbine in power generation system of microturbine
ES2248967T3 (en) * 1999-06-09 2006-03-16 Alliedsignal Inc. MICROTURBINE ENERGY GENERATOR SYSTEM.
SE521955C2 (en) * 2000-05-30 2003-12-23 Turbec Ab Integrated gas compressor
US6622489B1 (en) 2000-10-25 2003-09-23 Hybrid Power Generation Systems, Llc Integrated gas booster modulation control method
US6513318B1 (en) 2000-11-29 2003-02-04 Hybrid Power Generation Systems Llc Low emissions gas turbine engine with inlet air heating
US6571563B2 (en) 2000-12-19 2003-06-03 Honeywell Power Systems, Inc. Gas turbine engine with offset shroud
US6536217B2 (en) 2000-12-20 2003-03-25 Honeywell Power Systems Inc. Liquid fuel reverse purge
GB2373299B (en) * 2001-03-12 2004-10-27 Alstom Power Nv Re-fired gas turbine engine
AU2003290874A1 (en) * 2002-11-15 2004-06-15 Sprint Communications Company L.P. Proton exchange membrane based power system for a telecommunication facility
US6960838B2 (en) * 2002-11-15 2005-11-01 Sprint Communications Company L.P. Power system for a telecommunication facility
US6930402B1 (en) * 2003-05-15 2005-08-16 Sprint Communications Company L.P. Power system for a telecommunication facility
US7456513B2 (en) * 2002-11-15 2008-11-25 Sprint Communications Company L.P. Modular cell site with air-turbine backup
DE502004011691D1 (en) * 2003-11-04 2010-11-04 Mann & Hummel Gmbh ORIGINAL SPIRAL CHANNEL
US7081687B2 (en) * 2004-07-22 2006-07-25 Sprint Communications Company L.P. Power system for a telecommunications facility
US7615889B2 (en) * 2005-05-02 2009-11-10 Sprint Communications Company L.P. Modular cell site
US9142844B2 (en) 2005-05-18 2015-09-22 Sprint Communications Company L.P. Power system for a telecommunications network
US20060263656A1 (en) * 2005-05-18 2006-11-23 Sprint Communications Company L.P. Power system with reformer
US7370666B2 (en) * 2005-09-14 2008-05-13 Sprint Communications Company L.P. Power system with computer-controlled fuel system
US7557531B2 (en) * 2005-12-19 2009-07-07 Sprint Communications Company L.P. Power system utilizing flow batteries
CN102434217A (en) * 2011-11-01 2012-05-02 哈尔滨东安发动机(集团)有限公司 Integrated cantilever rotor structure
WO2014130159A1 (en) 2013-02-23 2014-08-28 Ottow Nathan W Blade clearance control for gas turbine engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB866969A (en) * 1959-12-14 1961-05-03 George Colville Best Gas turbine engines
GB1027530A (en) * 1964-03-02 1966-04-27 Vlastimir Davidovic Gas turbine cycle improvement
US4118927A (en) * 1975-12-05 1978-10-10 United Turbine Ab & Co. Kommanditbolag Gas turbine power plant

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1002293A (en) * 1946-09-03 1952-03-04 Rateau Soc Gas turbine installation for combined heat and power production and control of this installation
US2709893A (en) * 1949-08-06 1955-06-07 Laval Steam Turbine Co Gas turbine power plant with heat exchanger and cooling means
US2709889A (en) * 1951-06-22 1955-06-07 Wadsworth W Mount Gas turbine using revolving ram jet burners
GB723368A (en) * 1952-06-23 1955-02-09 Rover Co Ltd Vehicle gas turbines
GB756413A (en) * 1954-10-08 1956-09-05 David Dutton Budworth Improvements in or relating to the supply and the combustion of fuel in gas turbines
US2923526A (en) * 1955-03-31 1960-02-02 Gen Electric Turbine
US2944785A (en) * 1955-05-18 1960-07-12 Thompson Ramo Wooldridge Inc Impeller for turbine engine and the like
US2821067A (en) * 1956-05-28 1958-01-28 Boeing Co Combustion chamber construction in a gas turbine engine
CH359929A (en) * 1957-10-01 1962-01-31 Bbc Brown Boveri & Cie Gas turbine for ship propulsion
US2946192A (en) * 1958-05-16 1960-07-26 Standard Motor Co Ltd Gas turbine power plant
US3187188A (en) * 1959-07-21 1965-06-01 Curtiss Wright Corp High speed turbo-generator
FR1254037A (en) * 1960-02-29 1961-02-17 Sulzer Ag Radial turbine for compressible media
DE1426265A1 (en) * 1962-03-12 1968-12-19 Volvo Ab Gas turbine plant
US3422800A (en) * 1967-06-19 1969-01-21 Gen Electric Combined gas turbine and waste heat boiler control system
GB1315307A (en) * 1969-08-21 1973-05-02 Cav Ltd Turbo superchargers for internal combustion engines
US3751886A (en) * 1971-08-31 1973-08-14 Westinghouse Electric Corp Vertical steam drum
DE2165528A1 (en) * 1971-12-30 1973-07-12 Kloeckner Humboldt Deutz Ag DEVICE FOR CREATING A SMALL GAP BETWEEN THE ROTATING SHOVELS AND THE WALL OF A FLOW MACHINE
FR2197420A5 (en) * 1972-08-25 1974-03-22 Cav Ltd
FR2264972B1 (en) * 1974-03-20 1977-06-17 Turbine Ind
US4076452A (en) * 1974-04-09 1978-02-28 Brown, Boveri-Sulzer Turbomaschinen Ag Gas turbine plant
US4009568A (en) * 1975-10-30 1977-03-01 General Motors Corporation Turbine support structure
DE2706110C3 (en) * 1977-02-14 1981-07-09 Aktiengesellschaft Kühnle, Kopp & Kausch, 6710 Frankenthal Compressor housing preferably for exhaust gas turbochargers
DE2941252A1 (en) * 1979-10-11 1981-05-07 Joachim Dr. 7031 Aidlingen Artmann De-centralised electric power and heating plant - uses gas turbine to drive power generator and hot exhaust gases for heating purposes
SE423741B (en) * 1980-09-29 1982-05-24 Motor Turbine & Transmissions GAS TURBINE MACHINERY, SPECIAL FOR VEHICLE OPERATION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB866969A (en) * 1959-12-14 1961-05-03 George Colville Best Gas turbine engines
GB1027530A (en) * 1964-03-02 1966-04-27 Vlastimir Davidovic Gas turbine cycle improvement
US4118927A (en) * 1975-12-05 1978-10-10 United Turbine Ab & Co. Kommanditbolag Gas turbine power plant

Also Published As

Publication number Publication date
DE3483583D1 (en) 1990-12-13
NO850046L (en) 1985-07-08
EP0225868A1 (en) 1987-06-16
NO160807C (en) 1989-05-31
EP0148590A3 (en) 1985-11-21
NO160807B (en) 1989-02-20
EP0227638A1 (en) 1987-07-01
GB8430676D0 (en) 1985-01-16
EP0148590A2 (en) 1985-07-17
JPH0580571B2 (en) 1993-11-09
JPS60156936A (en) 1985-08-17
EP0148590B1 (en) 1989-04-12
CA1251050A (en) 1989-03-14
US4598542A (en) 1986-07-08
EP0227638B1 (en) 1990-11-07

Similar Documents

Publication Publication Date Title
EP0148590B1 (en) Improvements in or relating to gas turbine power plant
US7721555B2 (en) Gas turbine with free-running generator driven by by-pass gas flow
US8096127B2 (en) Exhaust turbo-supercharger
US5081832A (en) High efficiency, twin spool, radial-high pressure, gas turbine engine
EP0210249B1 (en) Dual entry radial turbine gas generator
US4002023A (en) Stationary power-generating plant
US5960625A (en) Constant volume combustion turbine with plurality flow turbine wheels
EP1444417B1 (en) Turbine blade cooling system and method of cooling a turbine blade
PL180015B1 (en) Electrical equipment and way of its operation
GB2335238A (en) Turbine cooling inducer with first and second passages and a valve
JPH079194B2 (en) Gas turbine engine cooling air transfer means
US5697767A (en) Integrated turbine and pump assembly
US3844113A (en) Friction impulse gas turbine
EP0811752B1 (en) Centrifugal gas turbine
MXPA05006926A (en) Universal engine for a multi-fuel radial gas turbine.
Rodgers Turbochargers to small gas turbines?
EP0530573B1 (en) Integrated turbine and pump assembly
GB2173260A (en) A radial flow turbine for utilizing energy in exhaust gases from an engine
GB984339A (en) Improvements relating to power units supplied with gas from a plurality of gas generators
US5088276A (en) Turbo-compressor engine
GB817951A (en) Improvements in or relating to gas turbine installations
CA1095272A (en) Single shaft gas turbine engine with radial exhaust diffuser
Montgomery et al. 200–300 HP Gas Turbine Engine Family for the US Army
WO1986004643A1 (en) Dual entry radial turbine gas generator
CN1013214B (en) Single spool, two-stage high performance compress unit

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)