GB2150140A - Anionic polysaccharide separation membranes - Google Patents
Anionic polysaccharide separation membranes Download PDFInfo
- Publication number
- GB2150140A GB2150140A GB08331272A GB8331272A GB2150140A GB 2150140 A GB2150140 A GB 2150140A GB 08331272 A GB08331272 A GB 08331272A GB 8331272 A GB8331272 A GB 8331272A GB 2150140 A GB2150140 A GB 2150140A
- Authority
- GB
- United Kingdom
- Prior art keywords
- membrane
- water
- polysaccharide
- salt
- cellulose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 120
- 238000000926 separation method Methods 0.000 title abstract description 44
- 229920001586 anionic polysaccharide Polymers 0.000 title description 13
- 150000004836 anionic polysaccharides Chemical class 0.000 title description 13
- 229910001868 water Inorganic materials 0.000 claims abstract description 98
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 90
- 239000000203 mixture Substances 0.000 claims abstract description 51
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 29
- 150000003839 salts Chemical class 0.000 claims abstract description 24
- 229920001282 polysaccharide Polymers 0.000 claims description 49
- 239000005017 polysaccharide Substances 0.000 claims description 49
- 150000004804 polysaccharides Chemical class 0.000 claims description 49
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 47
- 239000012466 permeate Substances 0.000 claims description 43
- 229920002678 cellulose Polymers 0.000 claims description 38
- 239000001913 cellulose Substances 0.000 claims description 38
- 125000000129 anionic group Chemical group 0.000 claims description 27
- -1 alkali metal salt Chemical class 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 12
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 7
- 239000000783 alginic acid Substances 0.000 claims description 6
- 235000010443 alginic acid Nutrition 0.000 claims description 6
- 229920000615 alginic acid Polymers 0.000 claims description 6
- 229960001126 alginic acid Drugs 0.000 claims description 6
- 150000007942 carboxylates Chemical group 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- 150000004781 alginic acids Chemical group 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical group [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 4
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 4
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims description 2
- 238000004132 cross linking Methods 0.000 claims description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 claims 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 claims 1
- 229920000447 polyanionic polymer Polymers 0.000 abstract description 17
- 229920006321 anionic cellulose Polymers 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 18
- 238000006467 substitution reaction Methods 0.000 description 11
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 8
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 8
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 125000004181 carboxyalkyl group Chemical group 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012527 feed solution Substances 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical compound [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000015125 Sterculia urens Nutrition 0.000 description 1
- 240000001058 Sterculia urens Species 0.000 description 1
- 229910004273 TeO3 Inorganic materials 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229940000489 arsenate Drugs 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- AFDQGRURHDVABZ-UHFFFAOYSA-N n,n-dimethylformamide;sulfur trioxide Chemical compound O=S(=O)=O.CN(C)C=O AFDQGRURHDVABZ-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 229940071745 poly(sodium vinyl sulfonate) Drugs 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 125000004964 sulfoalkyl group Chemical group 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Inorganic materials O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 1
- XHGGEBRKUWZHEK-UHFFFAOYSA-L tellurate Chemical compound [O-][Te]([O-])(=O)=O XHGGEBRKUWZHEK-UHFFFAOYSA-L 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/362—Pervaporation
- B01D61/3621—Pervaporation comprising multiple pervaporation steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/12—Cellulose derivatives
- B01D71/20—Esters of inorganic acids, e.g. cellulose nitrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/12—Cellulose derivatives
- B01D71/22—Cellulose ethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/40—Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
- B01D71/401—Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
A process for the separation of water from water-miscible organic compounds, comprising contacting a mixture of water and an organic compound against one side of a membrane comprising a salt of an anionic cellulose derivative or blends thereof with a noncellulosic polyanion, and withdrawing at the other side of said membrane a mixture having a higher concentration of water.
Description
SPECIFICATION
Anionic polysaccharide separation membranes
This invention relates to separation membranes and to methods for removing water from organic compounds using separation membranes.
The effective removal of water from organic fluids is important in pollution control and in numerous industries such as in distilleries, the preparation of the anhydrous chemicals and the like. While such separations are comparatively simple when the organic compound is immiscible with water, many organic compounds are partially or completely soluble in water. Separation of such organic compounds from water is sometimes carried out by distilling the mixture but this process requires large amounts of energy. Moreover, some organic liquids which have boiling points close to that of water or which form azeotropic mixtures with water cannot be readily separated using a distillation process.
It has been found that certain materials, when formed into thin membranes, possess the capacity to selectively permit water to pass therethrough while preventing the passage of organic compounds. Thus, Binning et al in U.S. Patent Nos. 2,953,502 and 3,035,060 teach the separation of ethanol from water using cellulose acetate and hydrolyzed polyvinyl acetate membranes. Chiang et al in U.S. Patent Nos. 3,750,735; 3,950,247; 4,035,291 and 4,067,805 describe the separation of formaldehyde from water employing a variety of membranes.
Unfortunately, previously known separation membranes do not exhibit a selectivity as high as desired for many applications; that is, the water which permeates therethrough contains substantial amounts of organic compounds. Thus, it would be desirable to develop a separation membrane which more efficiently separates water from organic compounds.
The present invention particularly resides in a water-selective permeation membrane comprising a salt of a polysaccharide or polysaccharide derivative which bears a plurality of anionic groups derived from a strong or weak acid, said anionic groups being present in an amount sufficient to allow the membrane to permeate water while substantially impeding the permeation of organic compounds therethrough e.g. while substantially impeding the permeation of ethanol therethrough.
In another aspect, this invention provides a permeation membrane comprising a blend of the aforementioned salt of a polysaccharide or polysaccharide derivative with a salt of a noncellulosic polymer having a plurality of anionic groups. The membranes of this invention exhibit surprisingly good selectivity for water, i.e., when contacted on one side with a fluid mixture of an organic compound and water, they allow water to permeate therethrough while substantially preventing the permeation of the organic materials therethrough.
In another aspect, the invention resides in a process for separating mixtures of water and an organic compound comprising
(a) contacting one side of a membrane comprising a salt of a polysaccharide or polysaccharide derivative having a plurality of anionic groups derived from a strong or weak acid with a fluid feed mixture containing water and an organic compound, and
(b) withdrawing from the other side of said membrane a permeate in vapor form, said permeate containing a higher concentrate of water than said feed mixture.
According to the method, surprisingly efficient separations of water and organic compounds can be effected, with the permeate containing a higher concentration of water than permeates obtained using conventional separation membranes.
The polysaccharides or derivatives thereof suitably empolyed in this invention are those which contain a plurality of pendant anionic groups. Said anionic groups are derived from strong or weak acids and include -SO3, -OS03, -COO, -As03, -TeO3, -PO3=, -HPO3 and the like, with sulfate, sulfonate and carboxylate groups being preferred. Exemplary polysaccharides and derivatives thereof include, but are not limited to, alginic acid salts, xanthan gums and derivatives thereof, and salts of anionic cellulose derivatives such as carboxyalkyl cellulose.
carboxy-alkylalkyl cellulose, sulfoalkyl cellulose, cellulose sulfate, cellulose phosphate, cellulose arsenate, cellulose phosphinate, cellulose tellurate and the like. Also useful are salts of anionic derivatives of high molecular weight starches and gums such as tragacanth, karaya. guar and the like which by themselves or in blends can be formed into films of sufficient strength to operate as membranes. Of these, the diverse cellulose derivatives and alginic acid salts are preferred. Especially preferred are salts of carboxylate, sulfate or sulfonate-containing cellulose derivatives. Most preferred are salts of carboxymethyl cellulose.
Various polysaccharides such as alginic acid and xanthan gums contain anionic groups and do not need chemical modification to place anionic groups thereon. Other polysaccharides, notably cellulose, do not contain anionic groups and must be modified to impart anionic groups thereto.
Anionic groups are generally attached to polysaccharides by substitution of one or more of the hydroxyl groups on the anhydroglucose units of the polysaccharide molecule. Various methods for affixing anionic groups to polysaccharide molecules are known in the art and are described, for example, in Bogan et al., "Cellulose Derivatives, Esters" and Greminger, "Cellulose
Derivatives, Esters,'' both in Kirk-Othmer Encyclopedia of Chemical Technology, 3d Ed., Vol. 5,
John Wiley and Sons, New York (1979). Carboxyalkyl groups. for example, can be attached to cellulose by the reaction of cellulose with a haloalkylcarboxylate. The alkyl group can contain up to five carbon atoms but because the alkyl group tends to impart hydrophobic characteristics to the molecule, it is preferred that the alkyl group be methyl or ethyl.Cellulose sulfate can be prepared by reacting cellulose with mixtures of sulfuric acid and aliphatic alcohols, followed by neutralizatin with sodium hydroxide, or alternatively by reacting a dimethylformamide-sulfur trioxide complex with cellulose using excess dimethylformamide as the solvent. It is noted that membranes prepared from cellulose sulfate are brittle when dry and are advantageously kept moist after their preparation and throughout the period of their use. Cellulose phosphate is advantageously prepared by reacting cellulose with phosphoric acid in molten urea, or with a mixture of phosphoric acid, phosphorus pentoxide and an alcohol diluent.
In addition to the methods described hereinbefore, the hydroxymethyl groups of cellulose and like polysaccharides can be converted directly to carboxylate groups of oxidation and hydrolysis according to well-known processes.
When a cellulose derivative is employed in the membrane, the amount of anionic substitution on a cellulose molecule is expressed as the average number of anionic groups per anhydroglucose unit of the molecule (degree of substitution (DS)). Since there are three hydroxyl groups per anhydroglucose unit of a cellulose molecule, the DS can range from 0 to 3. For the purpose of this invention, the anionic degree of substitution must be sufficiently high that the materials prepared therefrom will allow water to permeate therethrough while substantially impeding the permeation of organic compounds. Advantageously, the DS is in the range from 0. 1 to 3.0, preferably from 0.3 to 1.5.In addition to the anionic substituent, the cellulose derivative can also contain other substitution, i.e., methyl, ethyl, hydroxyalkyl and the like in an amount such that said substitution does not substantially increase the permeability of the cellulose to organic compounds.
The anionic polysaccharide or polysaccharide derivative is in the salt form, the counterion being any cation which forms an ionic bond with the anionic groups of the polymers. Said cations generally include alkali metals, alkaline earth metals, transition metals, as well as ammonium ions of the form, R4N+, where each R is hydrogen or methyl. Because of their relative ease in preparation and improved selectivity, the counterion is preferably an alkali metal.
It has been found that the selectivity and the permeation rate, i.e., the rate at which water permeates the membrane, are dependent on the choice of the counterion. For alkali metals, the selectivity of the membrane generally decreases slightly as the counterion is changed from sodium to potassium to cesium while the permeation rate increases as the counterion is varied in the same sequence. However, the selectivities of the membranes of the invention are superior to those of conventional separation membranes even when cesium is employed as the counterion.
The anionic polysaccharide or polysaccharide derivative is advantageously converted to salt form by contacting said derivative with a dilute solution of the hydroxide of the desired counterion. Generally, the salt can be formed in this manner at ambient conditions using relatively dilute, i.e., 0.02 to 1 molar solutions of the desired hydroxide. When the cationic species form an insoluble hydroxide, a solution of a soluble salt of said cation is contacted with the anionic polysaccharide in order to convert said anionic polysaccharide to the desired salt form through an ion exchange process.
In a preferred embodiment of this invention, the anionic polysaccharide or polysaccharide derivative is blended with a salt of a polyanion which is not a polysaccharide having a plurality of groups derived from strong or weak acids such as are described hereinbefore. In general, the polyanion is chosen such that it forms solutions which are sufficiently compatible with solutions of the anionic polysaccharide or polysaccharide derivative such that blends can be produced therefrom. The polyanion is employed in the salt form, with the counterions being those described hereinbefore. The polyanion can be a homopolymer containing repeating anionic units such as polyacrylic acid or poly(sodium vinylsulfonate), or may be a copolymer having repeating anionic units and repeating nonionic units such as a styrene/sodium vinylsulfonate copolymer or sodium acrylate/alkyl acrylate copolymers. The polyanion has a molecular weight sufficiently high that films prepared therefrom do not rapidly dissolve or become distorted in the presence of the water/organic mixture to be contacted therewith. Preferably, the polyanion is a homopolymer of an ethylenically unsaturated sulfonate or carboxylate with sodium polyacrylate, sodium poly(vinyl sulfonate) and sodium poly(styrene sulfonate) being preferred.
The polyanion is employed in amounts sufficient to increase the charge density on the membrane but in amounts less than that which causes substantial incompatability with the anionic polysaccharide derivative in the preparation of the membrane. Generally, such substantial incompatibility is evidenced by the separation of a solution containing these componenets into distinct phases. Said phase separation makes it difficult to prepare a film which is a blend of the polyanion and the polysaccharide. In general, the polyanion will comprise up to about 70 weight percent, preferably less than 50 weight percent, more preferably less than 30 weight percent of the membrane.
The membranes of this invention are advantageously formed into the desired shape by casting films of the membrane onto a suitable surface and removing the solvent therefrom. Said films may be, for example, flat, concave, convex, or in the form of hollow fibers. Preferably, the membrane is cast from an aqueous solution. The solvent is generally removed by evaporation at ambient conditions or at elevated temperatures, low pressures, or by other suitable techniques.
Membranes which are blends of an anionic polysaccharide or polysaccharide derivative and a polyanion are generally formed in the manner described hereinbefore by casting a film from the solution containing both materials. Solutions containing both the anionic polysaccharide derivative and the polyanion are advantageously prepared by mixing solutions of the anionic polysaccharide derivative with a solution of the polyanion or by mixing finely divided portions of each material and dissolving the mixture into a suitable solvent.
The anionic polysaccharide derivative and the polyanion described hereinbefore are generally soluble in water and the use thereof is generally restricted to feed mixtures having relatively low concentrations of water, i.e., less than 50 weight percent water. Accordingly, it is highly preferred to crosslink the membranes in order to render them insoluble in water. Cross-linking of polysaccharides is known in the art and can be accomplished, for example, by reacting said polysaccharide with glyoxal or epihalogydrin ammonium hydroxide. When a blend of a polysaccharide and a polyanion is empolyed, crosslinks may be formed between the polysaccharide and the polyanion, solely between the polysaccharide, or solely between the polyanion.
The crosslinking agent is employed in an amount sufficient to render the membrane essentially insoluble in water. The crosslinking agent advantageously comprises from 1 to 30 weight percent of the membrane. The crosslinked membranes of this invention can be effectively employed using feed compositions containing even very high, i.e., 90 weight percent or more, concentrations of water.
In the preparation of crosslinked membranes, the crosslinking agent is advantageously added to a solution of the polysaccharide, and the membrane formed into the desired shape. The membrane is cured after the removal of the solvent therefrom to crosslink the membrane. The particular means employed for curing the membrane will depend on a variety of factors including the particular polymers and crosslinkers employed. Generally, known procedures for curing crosslinked polymers, such as heating, irradiation and the like, are advantageously employed to crosslink the membranes of the invention.
The membrane has a minimum thickness such that it is essentially continuous, i.e., there are essentially no pinholes or other leakage passages therein. However, the rate at which water permeates the membranes of this invention is inversely proportional to the thickness of the membrane. Accordingly, it is preferred to prepare a membrane as thin as possible in order to maximize the permeation rate while ensuring the integrity of the membrane. The thickness of the membrane is advantageously in the range from about 0.1 to 250 microns, preferably from about 10 to about 50 microns. Mechanical strength can be imparted to the membrane by affixing the membrane to a porous supporting material. Particularly thin membranes can be formed by casting the membrane directly onto the porous supporting material.
Separation of water from organic compounds is effected with the membranes of this invention using general procedures described in U.S. Patent Nos. 3,950,247 and 4,035,291 to Chiang et al. In general, the separation process comprises contacting one side of the membranes of this invention with the fluid mixture containing an organic compound and water and withdrawing from the other side of the membrane a mixture containing a substantially higher concentration of water. The feed mixture can be a mixture of gaeous and liquid components. The permeate side of the membrane is maintained at a pressure less than the vapor pressure of water and is advantageously as low as about 0.1 mm of mercury. Superatmospheric pressure may also be exerted on the feed side of the membrane. The temperature at which the separations are conducted affects both the selectivity and the permeation rate.As the temperature increases, the permeation rate rapidly increases, while selectivity decreases slightly. The increase in rate, however, may be compensated for by the increase in energy needed to maintain the system at an elevated temperature. In general, the temperature is sufficiently high that the water has a substantial vapor pressure at the pressures at which the separation is effected, and is sufficiently low that the membrane remains stable. Advantageously, the temperature is from -- 10"C to 95 C.
The membranes of this invention are most useful in separating water from organic compounds which are miscible with water. Exemplary water-miscible compounds include, but are not limited to, aliphatic alcohols such as methanol, ethanol, propanol, hexanol and the like; ketones such as ethyl methyl ketone, acetone, diethyl ketone and the like; aldehydes such as formaldehyde, acetaldehyde and the like; alkyl esters of organic acids such as ethyl acetate, methylpropionate and the like; p-dioxane, alkyl and cycloalkyl amines and other water-miscible organic compounds which do not chemically react with or dissolve the membranes of this invention. In addition, the organic compound may be one in which water has a limited solubility, such as the chlorinated alkanes like chloroform and carbon tetrachloride.Preferably, the organic compound is an aliphatic alcohol, a ketone, or an aldehyde, with lower alcohols, especially ethanol, being preferred.
The ability of a membrane to selectively permeate one component of a multi-component mixture is expressed as the separation factor a which is defined as
wt % A/wt % B in permeate aA/B =
wt % A/wt % B in feed wherein A and B represent the components to be separated. For the purposes of this invention,
A will represent water.
The separation factor a is dependent on the type and concentrations of the components in the feed mixture as well as the relative concentrations thereof in the feed. Accordingly, it is also advantageous to express the efficiency of the separation membrane in terms of the composition of the permeate. The separation membranes of this invention will generally have separation factors for water/ethanol mixtures of at least 50, preferably at least 100, more preferably at least 500 and often will have separation factors of 2500 or more. The permeates obtained with the use of the separation membranes of this invention to separate ethanol/water mixtures will generally contain at least 90 weight percent, preferably at least 98,weight percent, more preferably at least 99.5 weight percent water.
The separation membranes of this invention are especially useful in the preparation of anhydrous organic compounds, particularly when said compound forms an azeotropic mixture with water. In such systems, the membranes of this invention present an economical alternative to azeotropic distillation. The membranes of this invention can also be used in conjunction with distillation processes to effect rapid, efficient removal of water from organic compounds.
The following examples are intended to illustrate the invention but not to limit the scope thereof. All parts and percentages are by weight unless otherwise indicated.
Example 1
Membrane Sample No. 1 is prepared from an aqueous solution containing 4.25 percent sodium carboxymethylcellulose. The carboxymethylcellulose has a carboxymethyl degree of substitution of about 0.9. The membranes are prepared by casting an excess of the solution onto a glass plate and allowing the water to evaporate, thereby yielding a film having a thickness of about 19.8 microns (0.78-mil).
The following apparatus is used to evaluate membrane Sample No. 1 and the samples in all subsequent examples. The membrane is placed into a Gel man in-line stainless steel filter holder which is modified so that a 14. 19 cm2 section of the membrane is open to the feed solution.
The membrane is supported with cellulosic filter paper and a porous metal disk. The permeate side of the filter holder is connected to a vacuum pump with two cold traps placed in line to collect the permeate by condensation. The membrane and holder are then immersed in a closed flask containing the mixture to be separated. The flask is equipped with a thermocouple or thermometer for measuring temperature and a reflux condenser to prevent feed loss due to evaporation.
Separation is effected by pulling a vacuum of about 0.1 mm/Hg on the permeate side of the membrane and collecting the permeate in the cold traps. The temperature of the feed solution is as indicated in the individual examples. The permeation rate is calculated by periodically weighing the collected permeate. The permeate composition is determined by gas chromatography analysis using a Hewlett Packard 584or gas chromatograph equipped with a thermal conductivity detector. The column is a 1.83 met x 0.32 cm (6 ft x 1/8 inch inside diameter) in
Poropak OS column.
Sample No. 1 is evaluated according to the foregoing procedure using various ethanol/water mixtures as the feed composition. Each separation is effected at 25 C until a steady state condition is obtained, i.e., until the permeation rate and permeate content are nearly constant over time. Once a steady state is reached, the content of the permeate and permeation rate are determined. The respective concentrations of water in the feeds, concentrations of water in the permeates, separation factors and permeation rates are as reported in Table I following.
TABLE I
Separa- Permeation % H20 % H20 tion Rate in Feed in Permeate Factor (g-mil/m2-hr)
5.68 99.36 2578 12.2
9.93 99.25 1200 37.8 18.19 99.49 877 126.5 20.10 99.62 1042 128
It is seen from the foregoing Table I that the separation membranes made from sodium carboxymethylcellulose exhibit excellent selectivity for water/ethanol mixtures as expressed in terms of the separation factor or as expressed as the composition of the permeate.
Example 2
A 4.25 percent solids solution containing 77 weight percent of the sodium carboxymethylcellulose having a degree of substitution of 0.85 and 23 weight percent sodium polyacrylate (based on the total solids weight) is prepared by mixing separate solution of the sodium carboxymethylcellulose and the sodium polyacrylate. Membrane Sample No. 2 with an area of 14.19 cm2 and a thickness of 15.2 microns (0.6 mil) is prepared as described in Example I.
This membrane is used to separate several ethanol/water mixtures at 25 C with the results given in Table II following.
TABLE II Separa- Permeation % H20 %H20 tion Rate in feed in Permeate Factor (g-mil/m2-hr)
4.4 99.6 3200 7.2 16.1 99.8 2600 103 19.7 99.7 1355 161 24.1 99.3 447 308
At all feed compositions, the permeate is essentially free of ethanol when a sodium carboxymethylcellulose/sodium polyacrylate membrane is employed to separate ethanol and water mixtures.
Example 3
Membrane Sample No. 3 comprising 78.5 percent sodium carboxymethylcellulose having a degree of substitution of 0.9 and 21.5 weight percent polysodiumvinyl sulfonate is prepared according to the methods described in Example 1. The membrane is 12.7 microns (0.5 mil) thick and is evaluated with various ethanol/water mixtures at 25 C with the results as given in
Table III following.
TABLE Ill Separa- Permeation % H20 % H20 tion Rate in Feed in Permeate Factor (g-mil/m2-hr)
5.6 99.3 2391 4.6 14.5 99.9 5891 56 19.1 99.9 4231 114
This membrane exhibits very high separation factors at all feed compositions evaluated, with the permeate in each instance comprising almost entirely water.
Example 4
An aqueous solution of the sodium salt of cellulose sulfate having a sulfate degree of substitution of 2.5 is prepared.
A 1.5-mil membrane is prepared in the manner described in Example 1. The membrane is evaluated for 96.25 hours at 25 C with results as reported in Table IV.
TABLE IV
Separa- Permeation
Time % H20 %H20 tion Rate (hr) in Feed in Permeate Factor (g-mil/ni2-hr) 0.75 20.20 98.68 295 440.9
6.79 19.79 99.64 1122 413.2 23.63 18.57 99.68 1366 372.8 96.25 14.57 99.85 3903 261.6
As can be seen from Table IV, excellent separations are obtained using the cellulose sulfate membrane.
Example 5
A 19 micron (0.75 mil) thick film of alginic acid, sodium salt, prepared according to the general procedures described in Example 1, is used to separate an ethanol/water mixture. After 47 hours of operation, the average permeation rate is 163 g-mil/m2hr. The feed mixture comprises 19.2 percent by weight water and 80.8 percent by weight ethanol. The permeate contains 99.5 percent water. The separation factor is 837.
Example 6
To demonstrate the effect of the counterion on selectivity and permeation rate, a membrane is prepared from 80 percent sodium carboxymethylcellulose having a degree of substitution of 0.9 and 20 percent sodium polyacrylate. This membrane is converted to the hydrogen form by soaking the membrane in a 0.4 HCI solution in 90 percent ethanol and 10 percent water.
Conversion to acid form is confirmed from the IR spectrum. The membrane is then soaked in a fresh 90 percent ethanol, 10 percent water solution and evaluated for the separation of ethanol/water solution as described in Example 1. The feed composition initially contains 10.1 percent of water. After 52 hours of operation, the permeate contains 69.8 percent of water yielding a separation factor of 21. The permeation rate is 93 g-mil/m2-hr (2.36 g-mm/m2-hr).
The membrane is then converted to potassium form by soaking in a 0.5 M potassium hydroxide solution and 90 percent ethanol, 10 percent water for 3.75 hours. The membrane is then soaked in fresh 90 percent ethanol, 10 percent water solution for 16 hours and dried. The conversion to potassium form is confirmed by IR spectrum. The membrane is then evaluated using an ethanol/water feed containing 20 percent water. When the water content of the feed is reduced to 19.2 percent, the separation factor is 697. When the water content of the feed is reduced to 13.9 percent, the separation factor is 6188. At feed water content of 10.2 percent, the separation factor is 8795. In all cases, the permeate contains over 99 percent water.In addition to the greatly improved separation factor, the permeation rate increases when the membrane is converted to potassium form from about 93 g-mil/m2-hr (2.36 g-mm/m2-hr) to as much as 595 g-mil/m2-hr (14.8 g-mm/m2-hr).
Example 7
Membrane Nos. VIIA-VIIF, having thicknesses as noted in Table V, are prepared from a 4.25 percent solids aqueous solution containing 80 percent sodium-carboxymethylcellulose and 20 percent sodium polyacrylate, said percentages being based on the weight of the solids. The membrane is used to separate, at 25"C, mixtures containing 11 weight percent water and 89 weight percent of the organic compounds noted in Table V following. The permeate composition, selectivity factor a, and permeation rates for each separation are as reported in Table V following.
TABLE V
Membrane Thickness Organic % H2O Separation Permeation Rate
No. (mil) Compound in Permeate Factor (g-mil/m-hr)
VIIA 30 (1.18) ethanol 99.7 2,700 50
VIIB 19.3 (0.76) 2-propanol > 99.99 (1) 800,000 155
VIIC 32 (1.27) t-butanol > 99.99 (1) 800,000 224
VIID 31 (1.21) 1-propanol 99.997 270,000 250
VIIE 21 (O.82) 1-butanol 98.8 730 412
VIIF 23 (0.90) acetone 99.853 5,500 424 (1) No detectable organic found in permeate.
As can be seen from the foregoing table, the membranes of this invention can be used to perform very efficient separations of water from a variety of organic compounds.
Claims (27)
1. A water-selective permeation membrane comprising a salt of a polysaccharide or polysaccharide derivative having a plurality of anionic groups derived from a strong or weak acid, said anionic groups being present in an amount sufficient to allow the membrane to permeate water while substantially impeding the permeation of organic compounds therethrough.
2. A water-selective permeation membrane comprising a salt of a polysaccharide or polysaccharide derivative having a plurality of anionic groups derived from a strong or weak acid, said anionic groups being present in an amount sufficient to allow the membrane to permeate water while substantially impeding the permeation of ethanol therethrough.
3. A membrane as claimed in Claim 1 or Claim 2 wherein the polysaccharide or polysaccharide derivative is alginic acid, carboxyalkylcellulose, cellulose sulfate. cellulose phosphate, carboxyalkylalkylcellulose or sulfoalkylcellulose.
4. A membrane as claimed in any preceding claim wherein the polysaccharide or polysaccharide derivative contains a plurality of sulfate, sulfonate or carboxylate groups.
5. A membrane as claimed in any preceding claim wherein said polysaccharide derivative is a cellulose derivative containing from 0.1 to 3.0 anionic groups per anhydroglucose unit of the cellulose molecule.
6. A membrane as claimed in any preceding claim further comprising a salt of a polymer which is not a polysaccharide which salt has a plurality of anionic groups derived from a strong or weak acid in an amount sufficient to increase the charge density on said membrane.
7. A membrane as claimed in Claim 6 wherein the polymer which is not a polysaccharide is a polymer of acrylic acid, vinylsulfonic acid or styrene sulfonic acid.
8. A membrane as claimed in Claim 6 or Claim 7 wherein the polymer which is not a polysaccharide comprises from 1 to 70 weight percent of said membrane.
9. A membrane as claimed in any preceding Claim wherein said salt of the polysaccharide or polysaccharide derivative is an alkali metal salt thereof.
10. A membrane as claimed in Claim 9 wherein the alkali metal salt is a cesium salt.
11. A membrane as claimed in any preceding Claim which is crosslinked in an amount sufficient to render the membrane insoluble in water.
12. A water-selective permeation membrane substantially as hereinbefore described in any one of the Examples.
13. A process for separating a mixture of water and an organic compound comprising
(a) contacting one side of a membrane comprising a salt of a polysaccharide or polysaccharide derivative having a plurality of anionic groups derived from a strong or weak acid with a fluid feed mixture containing water and an organic compound, and
(b) withdrawing from the other side of said membrane a permeate in vapor form, said permeate containing a higher concentrate of water than said feed mixture.
14. A process as claimed in Claim 13 wherein the polysaccharide or polysaccharide derivative is alginic acid, carboxyalkylcellulose, cellulose sulfate, cellulose phosphate, carboxyalkylalkylcellulose or sulfoalkylcellulose.
15. A process as claimed in Claim 13 wherein said polysaccharide derivative is a cellulose derivative.
16. A process as claimed in claim 15 wherein said cellulose derivative is carboxymethyl cellulose, cellulose sulfate, or sulfoethylcellulose.
17. A process as claimed in any one of Claims 13 to 16 wherein said membrane further comprises a salt of a polymer which is not a polysaccharide which polymer has a plurality of anionic groups derived from a strong or weak acid.
18. A process as claimed in any one of Claims 13 to 17 wherein the membrane has been rendered insoluble in water by crosslinking.
19. A process as claimed in any one of Claims 13 to 18 wherein the salt of the polysaccharide or polysaccharide derivative is an alkali metal salt.
20. A process as claimed in Claim 19 wherein the alkali metal is cesium.
21. A process as claimed in any one of Claims 13 to 20 wherein the organic compound is an aliphatic alcohol.
22. A process as claimed in Claim 21 wherein the aliphatic alcohol is ethanol.
23. A process as claimed in any one of Claims 13 to 22 wherein the permeate comprises at least 95 weight percent water.
24. A process as claimed in Claim 23 wherein the permeate comprises at least 98 weight percent water.
25. A process as claimed in any one of Claims 13 to 24 wherein the membrane is a membrane as claimed in any one of Claims 1 to 12.
26. A process for separating a mixture of water and an organic compound substantially as hereinbefore described in any one of the Examples.
27. A dehydrated organic compound produced by a process as claimed in any one of Claims 13 to 26.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB08331272A GB2150140B (en) | 1983-11-23 | 1983-11-23 | Anionic polysaccharide separation membranes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB08331272A GB2150140B (en) | 1983-11-23 | 1983-11-23 | Anionic polysaccharide separation membranes |
Publications (3)
Publication Number | Publication Date |
---|---|
GB8331272D0 GB8331272D0 (en) | 1983-12-29 |
GB2150140A true GB2150140A (en) | 1985-06-26 |
GB2150140B GB2150140B (en) | 1987-07-08 |
Family
ID=10552233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB08331272A Expired GB2150140B (en) | 1983-11-23 | 1983-11-23 | Anionic polysaccharide separation membranes |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2150140B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3600333A1 (en) * | 1985-01-08 | 1986-07-10 | The Agency Of Industrial Science And Technology, Tokio/Tokyo | Membranes for sepn. of liquids by evaporation |
US4808313A (en) * | 1985-01-08 | 1989-02-28 | Agency Of Industrial Science And Technology | Liquid separation membrane for pervaporation |
US5554292A (en) * | 1991-09-03 | 1996-09-10 | Daicel Chemical Industries, Ltd. | Permselective membrane of polyacrylonitrile copolymer and process for producing the same |
DE3645263C2 (en) * | 1985-01-08 | 1997-02-13 | Agency Ind Science Techn | Membranes for sepn. of liquids by evaporation |
EP2998013A4 (en) * | 2013-05-17 | 2016-11-02 | Univ Waseda | Method for condensing water-soluble organic matter and device for condensing water-soluble organic matter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB918626A (en) * | 1959-06-23 | 1963-02-13 | Heinrich Thiele | Membranes and shaped articles prepared from polyelectrolytes |
GB1424154A (en) * | 1973-05-16 | 1976-02-11 | Sumitomo Chemical Co | Membrane having selective permeability |
GB2028219A (en) * | 1978-08-11 | 1980-03-05 | Toray Industries | Cellulose derivative membrane |
-
1983
- 1983-11-23 GB GB08331272A patent/GB2150140B/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB918626A (en) * | 1959-06-23 | 1963-02-13 | Heinrich Thiele | Membranes and shaped articles prepared from polyelectrolytes |
GB1424154A (en) * | 1973-05-16 | 1976-02-11 | Sumitomo Chemical Co | Membrane having selective permeability |
GB2028219A (en) * | 1978-08-11 | 1980-03-05 | Toray Industries | Cellulose derivative membrane |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3600333A1 (en) * | 1985-01-08 | 1986-07-10 | The Agency Of Industrial Science And Technology, Tokio/Tokyo | Membranes for sepn. of liquids by evaporation |
US4808313A (en) * | 1985-01-08 | 1989-02-28 | Agency Of Industrial Science And Technology | Liquid separation membrane for pervaporation |
US4944881A (en) * | 1985-01-08 | 1990-07-31 | Agency Of Industrial Science And Technology | Liquid separation membrane for pervaporation |
DE3645263C2 (en) * | 1985-01-08 | 1997-02-13 | Agency Ind Science Techn | Membranes for sepn. of liquids by evaporation |
US5554292A (en) * | 1991-09-03 | 1996-09-10 | Daicel Chemical Industries, Ltd. | Permselective membrane of polyacrylonitrile copolymer and process for producing the same |
EP2998013A4 (en) * | 2013-05-17 | 2016-11-02 | Univ Waseda | Method for condensing water-soluble organic matter and device for condensing water-soluble organic matter |
Also Published As
Publication number | Publication date |
---|---|
GB2150140B (en) | 1987-07-08 |
GB8331272D0 (en) | 1983-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3962158A (en) | Hydrophilic polymer membranes of polyvinyl alcohol and chitosan | |
US4714725A (en) | Membranes | |
US4920193A (en) | Membranes | |
US3950247A (en) | Separation procedure | |
US3750735A (en) | Removal of water from liquid mixtures containing formaldehyde using a porous polymeric membrane | |
US4871461A (en) | Polymer composite membrane | |
US5059327A (en) | Cross-linked separation membrane and process for pervaporation | |
US4851120A (en) | Anionic polysaccharide separation membranes | |
Reineke et al. | Highly water selective cellulosic polyelectrolyte membranes for the pervaporation of alcohol-water mixtures | |
EP0146655A1 (en) | A process for separating mixtures of water and an organic compoundand a water-selective permeation membrane | |
GB2150140A (en) | Anionic polysaccharide separation membranes | |
US4581140A (en) | Porous regenerated cellulose membrane and process for the preparation thereof | |
US5112892A (en) | Method for the production of an asymmetric semipermeable membrane from a solution of a sulfonated polyarylethersulfone | |
CA1255061A (en) | Separation membranes | |
Ruckenstein et al. | Anomalous sorption and pervaporation of aqueous organic mixtures by poly (vinyl acetal) membranes | |
JPS60129104A (en) | Anionic polysaccharides separation membrane | |
NZ206386A (en) | Anionic polysaccharide separation membranes; separation of water-organic compound mixtures | |
KR870000757B1 (en) | Anionic polysaccaride separation membranes | |
Okuno et al. | Behaviour of permeation and separation for aqueous organic acid solutions through poly (vinyl chloride) and poly [(vinyl chloride)‐co‐(vinyl acetate)] membranes | |
JPH10309449A (en) | Organic material separating polymer film and its manufacture | |
NO160602B (en) | WATER-SELECTIVE PERMEATION MEMBRANE INCLUDING AN ANIONIC POLYSACCHARIDE AND USE THEREOF. | |
JPH0372336B2 (en) | ||
US4220477A (en) | Flexible microporous cellulosic membranes and methods of formation and use thereof | |
DK157735B (en) | Water-selective permeation membrane containing an anionic polysaccharide and use of the membrane for separation of mixtures of water and an organic compound | |
CN1459326A (en) | Method for prepn. of high flux polyvinyl alcohol permeation vaporization film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |