GB2147246A - Dough moulding - Google Patents

Dough moulding Download PDF

Info

Publication number
GB2147246A
GB2147246A GB08424721A GB8424721A GB2147246A GB 2147246 A GB2147246 A GB 2147246A GB 08424721 A GB08424721 A GB 08424721A GB 8424721 A GB8424721 A GB 8424721A GB 2147246 A GB2147246 A GB 2147246A
Authority
GB
United Kingdom
Prior art keywords
dough
rollers
pair
fluidised bed
sheeting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08424721A
Other versions
GB8424721D0 (en
GB2147246B (en
Inventor
Josef Karel Pivonka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tweedy of Burnley Ltd
Original Assignee
Tweedy of Burnley Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB838326375A external-priority patent/GB8326375D0/en
Priority claimed from GB848419766A external-priority patent/GB8419766D0/en
Application filed by Tweedy of Burnley Ltd filed Critical Tweedy of Burnley Ltd
Publication of GB8424721D0 publication Critical patent/GB8424721D0/en
Publication of GB2147246A publication Critical patent/GB2147246A/en
Application granted granted Critical
Publication of GB2147246B publication Critical patent/GB2147246B/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21CMACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
    • A21C7/00Machines which homogenise the subdivided dough by working other than by kneading
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21CMACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
    • A21C3/00Machines or apparatus for shaping batches of dough before subdivision
    • A21C3/02Dough-sheeters; Rolling-machines; Rolling-pins

Abstract

In a dough moulding machine, there are pairs of sheeting rollers, which roll out the piece of dough into a sheet. In the method of the present invention the dough piece is caused to pass over an air bed in its approach to a pair of sheeting rollers. Further, the dough piece may pass over an air bed as it is transferred from one pair of sheeting rollers to a following pair of sheeting rollers. The invention also includes an arrangement for replacing the usual feed hopper of a dough panner by a conveyor, an air bed and lateral locating devices for the dough piece.

Description

SPECIFICATION Improvements in dough moulding and apparatus for dough moulding In the manufacture of baked farinaceous products such as bread, it is usual to mould the divided pieces of dough, and in most cases, the dough pieces are then fed into individual baking tins or pans.
A typical moulder/panner as used in a bakery essentially comprises: a moulding head, wherein divided pieces of dough are received and rolled into sheet form a coiler wherein the sheets of dough are coiled upon themselves into rolls, and a panner where the dough rolls are fed into bread pans before proceeding to the oven.
A well known dough moulder has three pairs of sheeting rollers and the distance between the rollers of each pair progressively reduces, so that the dough passing through the rollers is squeezed in three stages, the dough mass being formed into a sheet at the first pair of rollers and then reduced in thickness (and increased in area) at each of the second and third pairs of rollers.
The present invention relates to a dough moulding method, and to apparatus for carrying out the method. Although it is expected that the invention will be applied to dough moulder/panners of the general type to which reference has been made, it is to be understod that it is applicable to any kind of dough moulder in which the dough is caused to pass through one or more pairs of sheeting rollers.
One of the problems associated with dough moulders is that of correct presentation of the divided dough pieces to the sheeting rollers.
Moulder/panners usually have a hopper at the input end, and the pieces of dough, which have been roughly shaped into circular form in a previous process, fall into the hopper from a conveyor, and the hopper itself then guides the dough pieces into the nip of the, or the first pair of, nip rollers.
Sometimes, a dough piece will be deflected as it falls through the hopper and will lie at an angle to the longitudinal axes of the sheeting rollers. When this happens, the sheeting rollers roll the dough into a sheet which is mis-shapen, that is to say, not circular, and as a result, the coiled dough piece presented to the pan is not of the correct shape. It will be appreciated, that one of the objects of dough moulding is that of ensuring that the dough pieces which are fed into the bread pans are of consistent size and shape.
A related problem is that the hopper feed device may not present the dough pieces centrally of the width of the sheeting rollers. If the panner end of the machine is equipped with folding apparatus (such as apparatus adapted to fold the elongate dough piece into a W-formation) that apparatus cannot function properly, if the coiled dough pieces issuing from the machine are not centralised across the width of the machine.
Another problem arises because it is necessary to provide guide plates to convey the dough sheet from one pair of sheeting rollers to the next. The pairs of rollers are usually arranged one above the other, so that the dough sheet falls by gravity from one pair of rollers to the next, but the guide plate is inclined so that it lends support to the dough sheet to prevent collapse of the sheet. There is a tendency for the leading end of a dough sheet to stick to a guide plate, or at least to be excessively retarded by the guide plate, so that the sheet is not properly presented to the next pair of sheeting rollers. This results in the formation of a poor grain or cell structure in the baked product.
Both these problems are accentuated, with modern soft doughs, which contain relatively high quantities of liquids (i.e. water and Liquid fats and glucose). This is because the soft tacky nature of the dough tends to cause any part of the dough piece which engages with a surface of the machine to be retarded, so that the dough Piece becomes mis-shapen each time its strikes a surface as in falling through a hopper, or sliding over a guide plate. The invention aims at ensuring that the divided dough pieces are presented properly to and pass easily through the sheeting rollers of a dough moulder.
According to one aspect of this invention in the moulding of dough pieces, each dough piece is caused to pass over a fluidised bed in its approach to a pair of sheeting rollers. A fluidised bed is a plate having a number of perforations through which streams of fluid are caused to issue, the arrangement being such that when a dough piece falls on to the plate, the escaping streams of fluid under the dough piece unite and form a fluid film between the plate and the dough piece. In practice, a fluidised bed will virtually prevent contact between the dough and the plate, so that the dough piece is effectively floating on the film of fluid.
There may be occasional and localised contact between the dough piece and the plate, but the overall effect is that of the dough floating on a film of fluid without contacting the plate itself. The fluid used for the film may be a liquid, which would have no deleterious effect on the dough sheet, such as water or certain oils, but it is preferred to use a gaseous fluid, and in the preferred method, the fluid is air.
It will be appreciated, that because of the floatation, the soft and tacky nature of the dough makes no difference to its movement, and it has been found possible by the floatation method to ensure proper presentation of the dough pieces to the sheeting rollers.
In one arrangement, each dough piece is caused to pass over a fluidised bed as it is transferred from one pair of sheeting rollers to a following pair of sheeting rollers. The fluidised bed therefore replaces or modifies the guide plate between one pair of sheeting rollers and the next pair.
According to a preferred method, each dough piece is fed from a conveyor directly on to a fluidised bed inclined, so as to guide the dough piece into a first pair of sheeting rollers. This method obviates the customary hopper feed, and has been found to give more consistent properly orientated presentation of the dough to the sheeting rollers than the hopper feed.
It is further preferred that the dough piece in travelling over a fluidised bed on to which it has been fed by the conveyor, is engaged by a pair of lateral locating devices which control the lateral position of the dough piece as it is moving towards the first pair of sheeting rollers.
According to another aspect of the invention, a dough moulder is provided with a fluidised bed located in the path of a dough piece as it travels towards a pair of sheeting rollers, the fluidised bed being adapted to direct a dough piece passing over it into the nip between the sheeting rollers. The bed may in fact terminate very close to the periphery of the lower of the pair of sheeting rollers, so that a dough piece moving off the fluidised bed passes directly on to the surface of the lower sheeting roller at a position immediately in front of the nip of the rollers.
According to a preferred feature of the invention the fluidised bed is located in front of the first pair of sheeting rollers and a conveyor forming part of the moulder is arranged to drop dough pieces directly on to the fluidised bed. The conveyor may be driven through gearing from the moulder driving mechanism so that it is adapted to move in synchronism with the moulder, or it may be independently driven.
In addition to a fluidised bed located immediately in front of the first pair of sheeting rollers, there may be a similar fluidised bed located between one pair of sheeting rollers and a following pair of sheeting rollers, and adapted to guide a dough sheet from the first pair of rollers towards the nip of the succeeding pair of rollers. Indeed in the preferred arrangement, there are three pairs of sheeting rollers with three fluidised beds, one immediately before the first pair of rollers one between the first and seconds pairs of rollers and one berween the second and third pairs of rollers.
With this arrangement, the dough piece is guided through the moulder head entirely on the rollers and fluidised beds.
It is further preferred to provide a pair of lateral location devices on the moulder in positions such that they are adapted to "engage" with the dough pieces travelling over the fluidised bed. The lateral location devices preferably take the forms of rollers rotating about axes substantially perpendicular to the surface of the fluidised bed.
According to yet another preferred feature of the invention the or each fluidised bed is inclined downwardly towards the sheeting rollers.
Preferably the guide plate is foraminous, and means are provided for blowing the fluid through the guide plate and out through its operative surface. For example, the guide plate may be formed with a multiplicity of holes, there being a plenum chamber on the non-operative side of the guide plate and a pump for blowing fluid into the plenum chamber and out through the said holes.
The construction of a dough moulder for use in a bakery, and its method of use, both in accordance with the invention, will now be described by way of example only, with reference to the accompanying drawings, in which: Figure 1 is a vertical section through the moulder, and Figure 2 is a detail view looking in the direction of the arrow II in Figure 1.
In the specific embodiment, the invention is applied to a conventional dough moulder/panner, as used in a bakery, for the production of loaves on a commercial scale. Dough from the dough mixer (not shown) is passed through a dough divider (not shown) which divides the mass of dough coming from the mixer, into separate small pieces each of a required weight for the production of the finished product - for example a 2 Ib. loaf. The divided dough pieces fed to the moulder/panner are generally circular in shape, but at that stage, they have not been subjected to sheeting and rolling.
The dough moulder has a moulding or sheeting head, indicated generally at 8, having side frames 42 and 44, and within this sheeting head there are three pairs of sheeting rollers: 10,12; 14,16 and 18,20. The dough piece passing through the sheeting head passes first through the nip of the sheeting rollers 10,12, then through the nip of the sheeting rollers 14 and 16 and finally through the nip of the sheeting rollers 18 and 20. It will be observed from Figure 1, that the roller arrangement is such that the path of the dough piece through the three pairs of rollers is generally inclined downwardly, and in this specific embodiment, the path is inclined at approximately 45" to the horizontal.
The first pair of sheeting rollers 10 and 12 are spaced apart by an appreciable distance a, and when the dough piece enters the nip between these rollers 10 and 12, it is gently compressed into a sheet of appreciable thickness, as determined by the spacing between the rollers. The sheet of dough emerging from the pair of rollers 10 and 12 passes to the nip between the second pair of sheeting rollers 14 and 16, set closer to each other than the first pair of rollers, so that as the dough sheet passes between them, it is squeezed, to reduce its thickness, thereby at the same time increasing its area.The dough sheet emerging from the nip of the second pair of rollers 14 and 16 then passes through the nip of the third pair of rollers 18 and 20, which are set quite close to each other, so that when the sheet of dough passes between them, it is further squeezed to the desired finished thickness, and at the same time of course, the area of the dough sheet increases. This is a conventional roller arrangement in a moulder panner sheeting head.
In the conventional machine, the divided dough pieces from the dough divider are fed into a hopper, which directs the dough pieces into the nip of the first pair of sheeting rollers 10 and 12. In the present arrangement however, the hopper is replaced by a short horizontal conveyor 22, a fluidised bed 24 and a lateral location arrangement 26.
The conveyor 22 is mounted on the frame of the dough moulder, and simply comprises a pair of driving rollers 28 and 30, and a fabric belt 32, which may for example be made of similar material to the belts used for the coiler part of the moulder/panner. It will be noted that the top run of the belt 32 is relatively short, and indeed the entire conveyor 22 is designed so as to be able to accommodate one or at the most two or three dough pieces from the dough divider. The dough pieces fall on to the top run of the belt 32 from the dough divider, and because there are no constricting surfaces, the dough piece lies flat on the conveyor, and is unlikely to become mis-shapen whilst it is being carried forward by the conveyor.
The fluidised bed 24 has a top plate 34 formed with a large number of small bore holes. In a typical arrangement, the holes may each be 0.062 inches diameter, and evenly spaced from each other in ranks and files over the area of the plate 34. The whole effective surface area of the plate 34 - that is to say the part which is likely to be contacted by the dough sheet - is formed with the small holes. On the underside of the plate 34, there is a plenum chamber 36, secured to bars 38 forming part of the static framework of the sheeting head and extending between the side frames 42 and 44, there being a rubber or rubber-like seal all round the periphery of the plenum chamber, engaging with the undersurface of the guide plate 34.
A short pipe 40 leads from the plenum chamber 36 to a manifold 41 which is located below the three sets of sheeting rollers.
An inlet 43 is provided at the upper end of the manifold 41, and a fan type pump (not shown) is connected via a suitable conduit to the inlet 43.
The fan is adapted to blow air under pressure (above atmospheric pressure) into the manifold 41, and from there, the air flows into the plenum chamber 36 and out through the multiplicity of small bore holes in the guide plate 34. This provides the air for the fluidised bed 24 which is located between the conveyor 22 and the first pair of sheeting rollers 10 and 12.
The guide plate 34 extends from a position very close to the part of the conveyor belt 32 which passes around the roller 28 at the exit end of the conveyor, to a position very close to the surface of the bottom sheeting roller 12, immediately in front of the nip between the rollers 10 and 12 and is inclined at an angle of about 45" to the vertical. As a dough piece slides off the front end of the conveyor 22, it falls on to the surface of the guide plate 34, and then slides down that surface, to engage on the surface of the bottom sheeting roller 12. However, when the pump is operating to blow streams of air out through the holes formed in the guide plate 34, those streams of air unite under the dough piece, to form a continuous film of air between the dough piece and the guide plate 34.
Hence, the dough piece does not actually contact the guide plate, apart from any incidental and localised contact which might accidentally occur, but instead, the dough piece floats on the film of air. In this way, the dough piece is transferred very readily to the nip of the sheeting rollers 10 and 12, and since there is no physical engagement between the dough piece and the guide plate 34, there is no retardation of any part of the dough piece even though the dough might be relatively tacky.
The transfer of the dough from the conveyor 22 to the sheeting rollers is controlled by a combination of the angle of inclination of the guide plate 34 to the vertical and the rate of fluid flow out through the operative surface of the guide plate.
The greater the angle of inclination of the guide plate to the vertical, the greater will be the retardational force applied to the dough sheet by the guide plate, and the greater the rate of flow of fluid out through the operative surface of the guide plate (up to a limit related to the angle of inclination of the guide plate) the lesser the retardational force applied to the dough. Optimum working conditions for a given dough constitution can be achieved by correct balance of the angle of inclination of the guide plate and the rate of flow of the fluid. The angle of inclination is fixed by the construction of the machine and therefore optimisation is arrived at by correct control over the rate of fluid flow.In a specific instance, where the angle of inclination of the guide plate is approximately 45O to the vertical and the dough moulder is being used to produce sheets of dough for conventional 2 Ib. loaves as commonly supplied in the United Kingdom, and using air as the fluid, a rate of flow of 90 cubic feet per minute has been found to be satisfactory.
It is desirable to centralise the dough piece across the width of the machine, particularly if the panner end of the machine is equipped with knives and folders, for the purpose of folding the coiled dough piece emerging from the moulder. The lateral location devices 26 perform this function.
As shown more clearly in Figure 2, there are two such lateral location devices 26, each of which is adjustable laterally between the side frame members 42 and 44 of the sheeting head. Each lateral location device has a generally U-shaped bracket 46, which is carried by a rod 47, which extends across the width of the machine between the side frames. This rod 47 is journalled in bearings in the side frames and has a lefthand screw-threaded portion which engages in a screw-threaded bore in one of the brackets 46 and a righthand screwthreaded portion which engages in a screwthreaded bore in the other bracket 46.At one side of the machine a handwheel (not shown) is keyed on to the rod 47, and by turning that handwheel and the rod, the brackets 46 are caused to move towards or away from each other to adjust the spacing between them, but they always remain equi-distant from the longitudinal centre line of the machine.
A driving shaft 48 also extends across the width of the machine and passes through the two Ushaped brackets 46. The shaft 48 is driven by gearing (not shown) in one of the side frames, from the driving mechanism of the sheeting rollers. Within each U-shaped bracket 46, there is a spiral bevel pinion 50, keyed on to the driving shaft 48, and this pinion 50 engages with a spiral bevel wheel 52 keyed on to a roller shaft 54, which passes through and is journalled in a pair of ball bearings 53 and 55 in the lower horizontal part of the U-shaped bracket 46. A lateral location roller 56 is keyed on to the roller shaft 54, and its periphery may be fluted as indicated in Figure 2.Hence, when the machine is in operation, the two lateral location rollers 56 are rotated, and the arrangement is such that they rotate in opposite directions, whereby the parts of these rollers on the insides (i.e. the parts facing each other) both move in the same direction, so that a dough piece engaging with the rollers 56 is stroked by those rollers in a forward direction, that is to say downwardly across the guide plate 34, towards the nip of the first pair of sheeting rollers 10 and 12. It will be observed from Figure 1, that the brackets 46 are held in an inclined position, so that the locating rollers rotate about axes which are substantially perpendicular to the top surface of the guide plate 34. The bottom edges of the rollers 56 are quite close to the top surface of the plate 34.
In use, the brackets 46 are adjusted, so that the lateral spacing between the rollers 56 is approximately the same as the diameter of a dough piece coming from the conveyor 22. Hence, if a dough piece is displaced to one side of the desired centralised position, when it arrives on the fluidised bed 24, it will engage with one of the rollers 56, which by virtue of its rotation will urge that dough piece back into the centralised position. It has been found, that as the dough piece is floating quite freely over the surface of the guide plate 34, little distortion of the shape takes place as a result of any contact with the roller 56.
A further fluidised bed arrangement 60 is provided between the first pair of sheeting rollers 10 and 12, and the second pair of sheeting rollers 14 and 16. This fluidised bed is constructed in similar manner to the fluidised bed 24, and it need not therefore be described in great detail. The purpose of the fluidised bed 60 is to convey the sheet of dough emerging from the sheeting rollers 10 and 12, to the second pair of sheeting rollers 14 and 16.
The fluidised bed arrangement 60 comprises an inclined guide plate 64 formed with a multiplicity of small bore holes and a plenum chamber 66 secured and sealed to the underside of the guide plate 64, with a short pipe 68 leading from the plenum chamber 64 to the manifold 41. When the fan is operated, some of the air forced into the manifold will flow through the pipe 68 into the plenum chamber 66 and then out through the surface of the guide plate 64. This creates a second fluidised bed on the guide plate leading from the first pair of sheeting rollers 10 and 12 to the second pair of sheeting rollers 14 and 16. The plate 64 is adapted to guide a dough piece on to the lower roller 16 in the same way as the guide plate 34 guides the dough piece on to the roller 12.
A third fluidised bed arrangement 62 is provided between the sheeting rollers 14 and 16 and the third pair of sheeting rollers 18 and 20, which again is similar to the fluidised bed 24, and comprises a guide plate 70; plenum chamber 72 and a short pipe 74 leading into the manifold 41.
Finally, there is a fourth fluidised bed arrangement 76, comprising an inclined guide plate 78, a plenum chamber 80, and a short pipe 82 leading from the plenum chamber into the bottom end of the manifold 41. The top edge of the guide plate 78 tapers to a point in cross section, and provides a knife edge engaging with or just clear of the surface of the bottom sheeting roller 20. Hence, the guide plate 78 is adapted to scrape the sheet of dough emerging from the bottom pair of sheeting rollers 18 and 20 away from the bottom roller 20, should it be adhering to that roller. A further scraper blade 84 carried by a block 86 extending across the width of the machine, engages with or is set just clear of the undersurface of the top sheeting roller 18, so that it is adapted to detach the dough piece from the roller 18 should it be adhering thereto.
Therefore, the dough piece will always be directed on to the fluidised bed 76, from which it is guided on to a conveyor (not shown) forming part of the coiling and tightening mechanism of the moulder/panner.
During operation of the machine, the sheeting rollers are rotated continuously, and the fan is also operated to blow air under pressure into the manifold 43. Hence, air is always escaping through the surfaces of the guide plates 34, 64, 70 and 78. Divided dough pieces from the dough divider arrive one at a time on the top run of the conveyor 22, and are delivered from the outlet end of that conveyor on o the fluidised bed 24. Each dough piece floats over the surface of the guide plate 34, and is centralised by the rollers 56 during its passage over the fluidised bed 24. The dough piece then passes through the first pair of sheeting rollers 10 and 12, after which it is guided over the fluidised bed 60 into the nip of the second pair of sheeting rollers 14 and 16.On emerging from the sheeting rollers 14 and 16, the dough piece is guided by the fluidised bed 62 into the nip of the third pair of sheeting rollers 18 and 20, and on emerging from the nip of those rollers, it is guided by the fluidised bed 76 on to the conveyor of the coiling and tightening mechanism.
It will be appreciated therefore, that the dough piece is always floating when it is being delivered into the nip of a pair of sheeting rollers, and this is of assistance in ensuring that the dough piece does not become mis-shape by retardation resulting from engagement with guiding parts of the machine.
It will be understood, that various modifications may be made to the specific arrangement described with reference to the drawings, without parting from the scope of the invention. For instance, the locating rollers 56 may be replaced by stationary guide plates inclined inwardly and downwardly, and these guide plates may themselves be formed as fluidised beds. Also, it will be appreciated that the invention could be applied to sheeting roller arrangements in which there are only two pairs of sheeting rollers.

Claims (16)

1. A method of moulding dough pieces, in which each dough piece is caused to pass over a fluidised bed in its approach to a pair of sheeting rollers.
2. A method of moulding dough pieces aa claimed in Claim 1, in which each dough piece is caused to pass over a fluidised bed as it is transferred from one pair of sheeting rollers to a following pair of sheeting rollers.
3. A method of moulding dough pieces as claimed in Claim 1 or Claim 2, in which each dough piece is fed from a conveyor directly on to a fluidised bed inclined so as to guide the dough piece into a first pair of sheeting rollers.
4. A method of moulding dough pieces as claimed in Claim 3, in which the dough piece in travelling over the fluidised bed on to which it has been fed by the conveyor is engaged by a pair of lateral locating devices which control the lateral position of the dough piece as it is moving towards the first pair of sheeting rollers.
5. A dough moulder provided with a fluidised bed located in the path of a dough piece as it travels towards a pair of sheeting rollers, the fluidised bed being adapted to direct a dough piece passing over it into the nip between the sheeting rollers.
6. A dough moulder as claimed in Claim 5, in which the fluidised bed terminates very close to the periphery of the lower of the pair of sheeting rollers, so that a dough piece moving off the fluidised bed passes directly on to the surface of the lower sheeting roller at a position immediately in front of the nip of the rollers.
7. A dough moulder as claimed in Claim 5 or Claim 6, in which the fluidised bed is located in front of the first pair of sheeting rollers and a conveyor forming part of the moulder is arranged to drop dough pieces directly on to the fluidised bed.
8. A dough moulder as claimed in Claim 5 or Claim 6, in which the fluidised bed is provided between one pair of sheeting rollers and a following pair of sheeting rollers.
9. A dough moulder as claimed in any one of Claims 5 to 8, in which there are three pairs of sheeting rollers with three fluidised beds, one immediately before the first pair of rollers; one between the first and second pairs of rollers and one between the second and third pairs of rollers.
10. A dough moulder as claimed in any one of Claims 5 to 9, in which there is provided a pair of lateral location devices on the moulder in positions such that they are adapted to "engage" with the dough pieces travelling over the fluidised bed.
11. A dough moulder as claimed in Claim 10, in which the lateral location devices take the form of rollers rotating about axes substantially perpendicular to the surface of the fluidised bed.
12. A dough moulder as claimed in any one of Claims 5 to 11, in which the or each fluidised bed is inclined downwardly towards the sheeting rollers.
13. A dough moulder as claimed in any one of Claims 5 to 12, in which the or each fluidised bed comprises a foraminous guide plate and means for blowing a fluid through the guide plate and out through its operative surface.
14. A dough moulder as claimed in Claim 13, in which the guide plate is formed with a multiplicity of holes, there being a plenum chamber on the non operative side of the guide plate and a pump for blowing fluid into the plenum chamber and out through the said holes.
15. A method of moulding dough pieces substantially as herein described with reference to the accompanying drawings.
16. A dough moulder constructed and arranged substantially as herein described with reference to the accompanying drawings.
GB08424721A 1983-10-01 1984-10-01 Dough moulding Expired GB2147246B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB838326375A GB8326375D0 (en) 1983-10-01 1983-10-01 Dough moulding
GB848419766A GB8419766D0 (en) 1984-08-02 1984-08-02 Dough moulding apparatus

Publications (3)

Publication Number Publication Date
GB8424721D0 GB8424721D0 (en) 1984-11-07
GB2147246A true GB2147246A (en) 1985-05-09
GB2147246B GB2147246B (en) 1987-05-13

Family

ID=26286892

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08424721A Expired GB2147246B (en) 1983-10-01 1984-10-01 Dough moulding

Country Status (1)

Country Link
GB (1) GB2147246B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026792A1 (en) * 1996-01-25 1997-07-31 Mark Williamson Handling materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1090452A (en) * 1964-04-21 1967-11-08 Electronic & X Ray Applic Ltd Improvements in or relating to film-drying machines and to methods of feeding wet films into such machines
GB1466314A (en) * 1973-05-16 1977-03-09 Everex Corp Machine for making strudel leaf dough sheets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1090452A (en) * 1964-04-21 1967-11-08 Electronic & X Ray Applic Ltd Improvements in or relating to film-drying machines and to methods of feeding wet films into such machines
GB1466314A (en) * 1973-05-16 1977-03-09 Everex Corp Machine for making strudel leaf dough sheets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026792A1 (en) * 1996-01-25 1997-07-31 Mark Williamson Handling materials

Also Published As

Publication number Publication date
GB8424721D0 (en) 1984-11-07
GB2147246B (en) 1987-05-13

Similar Documents

Publication Publication Date Title
US5673609A (en) Masa handling apparatus and method for handling masa
KR950009029B1 (en) Method and apparatus for supplying a uniform strip of bread dough
US4113412A (en) Apparatus for forming dough pieces
US3883283A (en) Flour dough sheet forming and conveying systems
US3611950A (en) Manicotti-making machine
US4375349A (en) Apparatus for shaping dough
KR910017939A (en) Method and apparatus for manufacturing continuous belt type bread dough sheet
JPS6052769B2 (en) Method and device for spreading confectionery dough, etc.
US2373012A (en) Process and apparatus for molding bread dough
US2545667A (en) Apparatus for separating closely adjacent strips of dough
US5592870A (en) Masa handling apparatus and method for handling masa
US5204123A (en) Apparatus for manufacturing continuous sheets of bread dough
US4666726A (en) Dough moulding and apparatus for dough moulding with air cushion chute
US2555916A (en) Machine for breaking sheets of crackers into rows
US3792948A (en) Automatic dough rolling apparatus
US4634363A (en) Apparatus for slitting and folding dough pieces
CN111700086B (en) Dough kneading machine and control method thereof
US4236445A (en) Continuous belt filter press
US5330344A (en) Apparatus for forming dough
US1270096A (en) Apparatus for treatment of dough.
GB2147246A (en) Dough moulding
US4750413A (en) Apparatus for centering and shaping dough pieces baked products or the like
US4623545A (en) Dough rolling method and apparatus with air-film lubricated chute
US3494303A (en) Food processing system
US2950693A (en) Apparatus for forming dough products

Legal Events

Date Code Title Description
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19991001